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ABSTRACT

Safery of marine structures against fatigue failure is
achieved through design of individual elemers, utilization of
structural redundancy, and inspection for fatigue cracks with
subsequent repair of detected cracks. Each safety item has a
certain cost and it is of importance to minimize the total
expected cost for the life time of the structure,. Four different
repair strategies are compared and the total expecied cost of
design, inspection, repair and failure is minimized. The optimi-
zation parameters are a stress related design parameter, inspec-
tion times, and inspection qualities.

L. INTRODUCTION

Safety of marine structures against fatigue failure is an
important design consideration. Sufficient safety is achieved
through the use of several safety items: design of individual ele-
ments, utilization of structural redundancy, and inspection for
fatigue cracks with subsequent repair of detected cracks. Each
safety item has a certain cost and it is of imponance to minim-
ize the total expected cost for the life time of the structure. The
optimization must be carried out with the at any time available
information. At the design stage the system configuration is
decided, the sizing of the individual elements and joints is per-
formed, and the initial inspection plan is prepared. The cost
considered in the optimization at this time is cost rclated 1o
structural parameters, cost of inspection, expecied cost of repair,
and expected cost of failure. Afier fabrication and installation,
new information about the as-built configuration and from fabri-
cation control becomes available. With this information an
updated initial inspection plan can be determined. The cost
considered in the optimization at this time is related 1w cost of
inspection, expected repair cost and expected failure cost. The
first inspection may result in the detection and also possible
repair of a crack, or no ¢rack may be detected. With this.addi-
tional information an updated inspection plan is prepared. The
¢ost considered at this time is the inspection cost for the remain-
ing inspections, the expecied repair cost and the cxpected failure
cost. After the next inspection a new optimization is done and
. S0 On. Ah.hough a full inspection plan is determined at each
step, it is thus only the first inspection which is actually carried
out according to the plan.

In the optimization a strategy for repair is necessary, and
four different strategies are considered here.

- all detected cracks are repaired by welding,

- only detected cracks larger than a certain size are repaired

(by welding),

- all detected cracks are repaired. Cracks smaller than a cer-
tain size are repaired by grinding, while cracks larger than
this size are repaired by welding,

- all detected cracks are repaired by replacement of the ele-
ment.

The system reliability aspects, i.e. the effect of redun-
dancy, should be treated by considering the changes in load
paths when large cracks develop. Another system aspect con-
cems the updating of the reliability for one pan of the structure
based on inspection results for another pan of the structure.
Such analyses capabilities are in principle simple extensions of
the present analysis, but may cause large computational
difficulties,

This paper gives a contribute to mathematical modeling of
the design, inspection and maintenance optimization. A number
of more practical aspects for inspection planning have not been
included, while the paper attempis to be rigorous on crack
geometry modeling, reliability and optimization analysis. The
concem is on the crack growth phase with little emphasis on the
crack initiation phase. As such the analysis is more relevant to
structural than mechanical parts.

The paper first presents the applied fatigue crack growth
model based on a fracture mechanics analysis. The necessary
input for the loading, the geometry and the material propenies
are identified. Corrosion is included through a reduction in
plate thickness with time. The four repair criteria are presented,
and associaied with each repair criterion is an event tree giving
the possible events from design until the end of the design life
time. The various safety and event margins for the different
branches of one of the defined event trees are formulated. The
associated failure and repair probabilities are computed by
first-order reliability methods. In the cvent margins a smallest
detectable crack size or crack derection threshold appears. This
crack size is specific for each inspection method and its reliabil-
ity. Inspection reliability in terms of a probability of detection
curve is treated. Modeling of the various cost items is described
and the optimization problem is formulated for optimization at
the time of initial design. The optimization variables are the
number, quality and times of inspection, and a structural design
parameter. The objective function giving the total expected cost

- is derived, and constraints on the reliability as well as simple

constraints on the optimization variables are formulated. The
focus is next on the optimization for structures in service. The
structural design parameters are then fixed and some
inspection/repair results may be available. The optimization
problem is formulated and the objective function expresses the
total expected cost for the remaining of the design life time.
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Some example results are presented comparing the four sira-
tegies for one case and considering one sirategy in more detail
for another case. Results are presented for two different classes
of POD curves, inspection quality models. Both a constant
geometry function and a wansverse stiffener weld geometry
function are applied. A parameter study is presented both for the
crack size limit for which weld repair is performed and for the
expected cost of failure.

2. CRACK GROWTH MODEL AND CORROSION
MODEL

A one-dimensional description of crack size is employed. -

Crack growth is described by Paris’ equation with the stress
intensity factor calculated by linear elastic fracture mechanics
. i .
- =C&K)", AK>AK, . a(N=O)a, @.1)
The left hand side gives the crack size increment in one stress
cycle with stress intensity facior range AK. g is the crack size, N

is the number of cycles and C and m are material constants. AK
is expressed as

AK = Y(@)vma § (2.2)

where Y(a) is-the geometry function depending on the overall

geometry of the detail including the presence of the weld, and §
is the range of a far-field reference stress.

Although a one-dimensional Vdescription of crack size is
employed above, a two dimensional description can easily be
used as well. Instead of solving one differential equation (2.1),
it is necessary to solve two coupled differential equations.

da n -
N =C@K )™ aK > AK, , a(N=D)=a,

de (2.3)
= C(AKC)"', AK > AK , c(N=0)=,

where the first equation describes the growth in depth a and the
second equation describes the growth in length 2¢ of a semi-
elliptical surface crack. When AK, =0 the two equations are

conveniently rewritten as

AK
dc . on
2 =( K " cla=a=c,
_ ‘ 2.4
dN 1 .
%°T (8K J™, N(a=a)=0

The differential equations are coupled since AK, and AK, both

depend on-(a,c). With AK from (2.2) and a 31m11ar expression
for AK , the first equation in (2.4) becomes ’

a_ Yo ¢

F7 (Y(a,c) g clamag=c, 3)

This eqﬁaﬁon does not involve the loading and can be solved to

give the crack length as a function of depth for given geometry -

functions and initial condition. The result can be inserted into
the second equation in (2.4) which is then simply an equation
for the growth in crack depth ideritical to (2.1). Aliematively, a
differential equation for the aspect ratio a/c can be formulated
with its inital condition and the result for the aspect ratio be
inserted in (2.4). Both two-dimensional crack size analyses
require more computer time than the one-dimensional analysis,
but the extension is necessary in many cases in particular when
the inspection result is on crack length without depth
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information.

It is also possible 1o include more complicated crack
growth descriptions than the semi-elliptical surface crack,.e.g.

.crack growth of a semi-elliptical surface crack: through' the

‘thickness followed by further crack growth of the through-
thickness crack.

A crack initiation period is not included in the formulation
‘above. This is easily done by changing the initial condition
N(a =0 to N(ao)=No' A separaie stochastic model for N, can

‘then be formulated. Alternatively a, can be considered as an
equivalent initial crack. size as is commonly done within

analysis of aircraft structurgs,

A Weibull distribution is often applied to express the long
term stress range distribution for marine structures. Here a
Weibull distribution with random scalé parameter A and shape
parameter B is used.

F ()= 1-exp(~(s/A)%), 5>0. (2.6)

The number of stress cycles per unit time is v, and a joint nor-

mal distribution is assumed for (In4,1/8). The uncertainty in the
Weibull parameters is a lumped representation of the uncernain-
ties in the long term characterization of the environmental con-
ditions, in the load models, in the global responsc analysis, and
in the calculation of the local reference stress.

A structural design parameter z is introduced later in the
formulation of the optimization problem. For a ship structure,
this structural design parameter could typically represents the
hull thickness or the spacing between stiffeners. The base value
of z is z for which the Weibull parameters A and B have been
determined. When z varies from : , each siress range is multi-

plied by the factor s, which is selected of the form
zO ZO
5, = (6, + (- X)), ™sasa™, O<c <1 2.7

This functon is assumed to be able to model stress variations
well in all cases.
Due to corrosion the thickness may decrease with time.

The following' liear model is introduced for the thickness at
time ¢ ‘

() = z—kzt : (2.8)

where Icz is the (random) corrosion rate.

3. STRATEGIES FOR REPAIR

The optimization is carried out without knowledge of the
actual outcome of future inspections. For an optimization car-
ried out either at the design state or in-service, it is thus neces-
sary to consider all possible outcomes of future inspections,
repairs and possible failure. If crack sizes are measured in an
inspection, the number of possible outcomes becomes infinite,
thus making the optimization extremely complicated. To over-
come this problem, a finite set of possible outcomes must be

defined. This can be done by only referring crack sizes to a

finite number of intervals. In the strategies considered here, this
number of intervals is limited to two or three. The limiting
crack sizes can be random.

Four different strategies are considered:
STRATEGY-1 all detected cracks are repairéd by welding,
STRATEGY-2 only detected cracks larger than a certain size



. are repaired (by welding),

STRATEGY-3 all detected cracks are repaired. Cracks
smaller than a certain size are repaired by
grinding, while cracks larger than this size are
repaired by welding,

STRATEGY-4 all detected cracks are repaired by replacement
of the element.

In the first strategy, only one limiting crack size is
included corresponding 1o the smallest detectable crack size. At
each inspection a crack may cither be detected and repaired or
no crack may be detected. An event tree for this strategy is
illustrated in Fig.1. The number of inspections is » and these
are performed at times T.....T, where
0=T<T.<---<T <T  =T. The total number of different courses
is 27, see Fig. 1. This event tree in fact only illustrates a sub-
optimization, as it is not necessary to choose the same time for
the second inspection independent of the outcome of the first
inspection.

In rhe second strategy two limiting crack sizes are
included, corresponding to the smallest detectable crack size
and a size which govemns whether or not repair is done. Small
cracks may be due o weld defects which do not grow, and in
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Fig.l:  Tustration of event tree with repair of all detected
cracks. 0 denotes no repair, while 1 denotes repair.

this strategy a crack is only repaired if its size is larger than a
limiting value, At each inspection three possibilities then exist:
a crack may be detected and repaired-by welding, a crack may
be detected but not repaired, or no crack may be detected. An
event tree for this srategy is illustrated in Fig.2.
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Fig.2: Tlustradon of event tree with no repair of small
’ detected cracks and weld repair of large detected
cracks. O denotes no crack detection, 1 denotes no

repair of a detected crack, and 2 denotes weld repair.

The n inspections are performed ai times T,,.... T . where

0=T05T15---ST~5TH=T. and the total number of different

courses is 3", see Fig.2. Also the event tre¢ in Fig.2 illustraies a
sub-optimizalion as it is again not necessary to choose the same
time for the second inspection independent of the outcome of
the first inspection.

The third strategy also includes two limiting crack sizes,
corresponding © the smallest detectable crack size, and a size
which govermns whether repair is by grinding or by welding.
When the crack depth is small compared to the thickness, repair
by grinding is oficn preferred to repair by welding due to the
significantly smaller cost, and because the reduction in cross
sectional area is so small that is has no significant effect on the
static strength. The limiting size could depend on the remaining
life dme. At each inspection a crack may thus either be
detected and repaired by grinding or welding or no crack may
be detected. An event tree for this strategy is as in Fig.2, except
that O denotes no repair, 1 denotes grind repair, and 2 denotes
weld repair. The total number of inspections is » and these are

performed at times T,.....T, where O=TET<---<T<T =T

The total number of different repair courses is less than 3" as
two successive repairs by grinding are not allowed. These
branches should thus be deleted from Fig.2.

The fourth strategy is similar to the first Strategy, except
that the element is replaced when a crack is detected. This stra-
tegy may not be very relevant for ship srructures, but for other
structures a replacement may be easier and less costly than a
repair. The structural parameters for the replacing element may
be different from the properties for the original element. The n
inspections are performed at times T.....T, where

0=TsT - <T <T =T, and the total number of different repair
courses is 2*. An event tree for this strategy is identical to that

in Fig.1, except that 0 denotes no replacement and 1 denotes
replacement.

4, SAFETY AND EVENT MARGINS

Failure is defined as crack growih beyond a critical crack
size a. This size is often selecied as corresponding to the
element/hull thickness, but can also refer 1o a size for which
brittle or ductile failure of the remaining cross section takes
place for a specified extreme loading. The limit state function g
for failure before a time ¢ is therefore

g=a -a() 4.1
When (2.2) is inserted in (2.1), this equation may be written as
2 AKlkr
— = C Y(@)"(Ra)™* § 1(5>_"'Y(a)ma ) 4.2)

where 1() denotes an indicator function which takes the value
one when the inequality in the paranthesis is valid and zero oth-
erwise. Due 1o the generally large number of cycles to failure,
the two terms containing the stress range can be approximated
by their expected value. With Weibull distributed stress ranges
this gives
AKt.hr m
E[S" 1(S» ———)]1=A"T(1+ F) G{a) 4.3)

Y(a)\ma

where the auxiliary G-function is
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r(1+%)

Gla)= 44

In (4.2) the variables can now be separated and both sidcg of the
equation be integrated

J'a(t) dx

8, YE™m)"?Gz)
where the initial condition N(a =0 has been inserted. The left

hand side of this equation is an increasing function in the upper
integraton limit a(). From the failure criterion in (4.1) the
safety margin for failure before time ¢ can then be formulated as

a
mofo_d
2, YE)™(rx)™?G(x)

=CviA™ r(1+%) 4.5)

-Cvm"‘l‘(l+%) " (4.6)

The first inspection at time T, leads to a crack detection or
no crack detection. An event margin is defined as

a
P S
3, Y()"(m)™*G(x)

The event margin is negative when a crack is detected, i.e. when

m m
—CvT A l‘(1+§) “4.7

the crack is larger than the smallest deteclable crack size and is -

otherwise positive, e, is the smallest detectable crack size as
described in detail later, If a crack is detected in the . first
inspection, and if the decision about repair (strategy. 2) or repair
method (strategy 3, welding or grinding) depends on a measure-
ment of the crack size, an event margin can be formulated for
the event that the crack is larger than a, and therefore should be
repaired by welding
a
Hr'=£ . S ——— OV AT D) (48)
s YE)MmR)™Gx)
where a, is a random variable 10 account for crack size meas-
urement unceriainty. The distribution of a, is discussed later.
The event that a detected crack is rcpaired by welding is
{H <0}. _
When a crack is detected and repaired at time T, the
safety margin after weld repair is
M) = IGC—L —Cv(-T)AT(1+Z) (4.9)
8, Y (0™ Glx) 1 B

where 1>7,. The geometry function is modelled as identical

before and after a repair. The material parameter C is fully

dependent before and after a repair when grind repair has been
performed, and independent before and afier repair when a weld

repair or replacement has been selected. With weld repair, the
crack size afier repair a, is the crack size afier welding and

inspection has been carried out. With grind repair a, is replaced
by a,, which'is an equivalent initial flaw size. Finally, with
replacement of an element with a detected crack, a, is replaced
by a, since the distribution of the initial crack size is assumed

identically distributed for the original and replacing element. In
the examples presented later, it is assumed that crack sizes a,,

a anda for different inspections are mumally independent.

It follows from the description above that a crack is
assumed present initially and after each repair. This is perhaps
a dubious assumption after a repair, if this is performed by
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grinding. The idea behind this repair method is exactly to
remove the crack and to introduce a Jong crack initiation period.
The geometry function is also likely to change due to grinding.
It is, however, possible to select-an equivalent initial crack size
to account for the initiation period. This is a common practice
for design of aircrafis where procedures for determining the
equivalent flaw size from experiments are available. This
approach also solves the complication with the change in
geometry function, because the crack looses the memory of the
grinding once it has started propagating and has propagated a
short distance. It then acts as if no grinding had been per-
formed. )

A notation is introduced w describe the sequence of
repair/no repair evemts in each branch. As an example, with
repair ai times 7, and T, and no fepair at T, the safety margin
for failure before ¢, where T<usT,is

a
MY =J' ¢ dx
a4 Y(x)"(nx)™2 G(x)

The event margin for crack detection at time T, is

- CV(-T)A™ r(1+%)“ (4.10)

HIlD = J‘a“ dx

G YO )™*G(x)

and the event margin for weld repair at time T, (strategies 2 and
3)is :

- Cv(T‘—TZ)A”'l"(1+%) @11

H 10 _[ag' dx
¥ Yer@miGH)

Safety and event margins are defined similarly for the other
branches, '

- Cv(Ta—Tz)A"'r'(1+~rg-) (4.12)

A structural design parameter z is introduced in the optim-
ization, typically representing the hull thickness or the stiffener
spacing. The base value of z is z, for which the Weibull long

‘term stress parameters A and B have been determined. When z

varies from z, each stress range is multiplied by the factor s,

from (2.7). When z is varied from its base value, the safety
margin in (4.6) is changed as

-a
M=] " —& (4.13)
&, Y(x)™(nx)**G(x)

- m 20 20 2m m
CviA ('317+(1_C;)(7)) I‘(1+F)

The event margins 4 and H” in (4.7) and (4.8) and the other
safety and event margins are changed correspondingly.

Due to corrosion the thickness may decrease with time. A
linear model for the thickness at time ¢ was introduced in (2.8)
in terms of the is the (random) corosion rate k. A damage

amplification factor F (s can then be defined as described in
Madsen®™ in terms of zi(z—k 1) and (i-c )z /(c z). When crack
growth is from time T, to time T, the factor (T,-T,) in a safety
or event margin is replaced by {TF (T)T F T

5. FAILURE AND REPAIR PROBABILITIES
The probability of failure before time ¢ is P (). The
comresponding reliability index is

B = 7P (1) G.1)



Expressions for the failure probability and expected numbers of
repair are here presented for strategy 1 only. For the other stra-
tegies similar although slightly more involved expressions are
valid.

Expressions for the failure probability are given.
For Os:sT‘ H : '

P (1) = P(M(:)<0) (5.2)
For T1<tSTz:
P = PT)+ AP (T 5.3

=P(T )+ &PXT &)+ AP (T 1)
=PT)
+P(M(T )>0 ~ H>0 ( M°(1)=0)
+ P(M(T,)>0 ~ HE0 ~ M'(1)<0)
For T<usT |
PL()=P(T)+ AP (T 4) 54
=P T+ 8PPT, 1+ AP T 1)+ aPIT ) + A}J}l(rz,z)
=P,(T)
+PM(T)>0 ~ H>0 M°(T2)>0 AYVH>0 ~ MP(1)20)
+PM(T )>0 (~ H>0  MUT )>0 (~ HS0 ~ M (1)<0)
+ P(M(T))>0 (~ H<0 M‘(T2)>O  H'>0 ~ MI9(0)<0)

+PM(T )>0 (~ HS0 \ M'(T )>0  H'<0 (~ M'(1)<0)

and so on for each inspection time and the life time. With n
inspections between 0 and 7, 2**!-1 paralle]l systems are
analysed to compute the failure probabilities.

The variation of the reliability index with time is shown in
Fig.3 in sketch form.

is

5.0+
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Fig.3:  Variation of reliability index with time.

The reliability index decreases with time corresponding 10 an
increasing probability of failure with time. The curves for the
reliability index have a change in slope afier an inspection and
are close to having a horizontal tangent. This is so because the
failure rate immediately after an inspection is very small, since
the inspection has either not revealed a crack or repair has taken

place. A crack of size close to the critical size is detected with a
very large probability, and when no crack is detected there 15 a

very small probability that the crack can grow to the critical size
within a small time period after the inspection. If a crack is
repaired the crack size after repair is expected w0 be much
smaller than the critical size, and also in this case is there a very
small probability that the crack can grow to the critical size
within a small time period after the inspection.

The expected number of repairs E[R} a1 time 7 is identi-
cal 1o the probability of repair at time 7. Itis

EIR ] = P(M(T,)>0 () H<0) (5.5)

E[R] =ERJ] +E[R}] (5.6)
= P(M(T))>0 (~ H>0 ~ MXT)>0 (~ H'S0)

+ PM(T )50  HSO ~ MY(T,)>0 ( H'<0)

ER) =ER{O) +ERYN + ERIQ < ERIN 5.
=PM(T )>0 ( H>0 ~\MY(T,)>0 ~ H*>0
N M°°(T3)>0 ) H®<0)
+PM(T )>0  H>0 M°(T2)>O  HP<0
AYMOT,)>0 ~ H<0)
+PM(T )>0 HS0 A\ M(T )>0 ~ H'>0
MY MAT)>0 ~ H1O<0)
+P(M(T >0 (~\ HL0 ~ M{(T )>0  H'<0
M MINT)>0 ~ H'<0)

and so on for each inspection time. With n inspections between

0 and T, 2"-1 parallel sysiems are analysed 10 compule repair
probabilities.

PROBAN, see Tved: @, can be used for the analysis of the
parallel systems 0 determine the expected number of repairs at
each inspection time and the probability of failure. The FORM
option for parallel systems with inactive constraints included is
applied, and this is consistent with the manner in which the sen-
sitivity factors are computed. To check the accuracy of the
failure probability in the life time a SORM analysis has also
been performed. The SORM result has not been found to devi-
are significantly from the FORM result For a general reference
on FORM/SORM methods, see e.g. Madsen et al®,

6. DEFINITION OF INSPECTION QUALITY

The inspection quality is related o the probability of
detecting a crack of a given size and the accuracy in sizing a
detected crack. The probability of detecting a crack depends on
the crack size, the inspection method and the inspection team.
The reliability with respect to the probability of detecting a

I-E-5



it

crack is defined by the POD (probability of detection) curve for
which a shifted exponential form is used here.
a-a

: A
The smallest detectable crack size is denoted by 2. The proba-

pla)=1-exp(- ) a»a_ 6.1)

bility of detecting a crack of size a is equal to the probability
that g  is smaller than a. The following identity therefore holds:

F, @) =p(a) ©2)

showing that the POD curve is identical to the distribution func-
tion of the smallest detectable crack size. Other functions than
the exponential function for the POD curve can easily be used.
Values for the smallest detectable crack size in different inspec-
tions are assumed mutually independent.

The inspection quality is characterized by the parameter A,
which is the mean size above a_. of the smallest detectable
crack. A can take values between O and e, and a small A
signifies a high inspection quality while a large A-value signifies
a poor inspection quality. In the optimization an auxiliary
measure of inspection quality g is introduced. ¢ can take values
in the interval [0;=>.

4= (63)
A ]
4=0 corresponds 1o no inspection, while g=e corresponds to a
perfect inspection where all cracks largerthana . are found.

Simple constraints on ¢ are introduced in the optimization
grEgLq™ 64

where g™ and ¢™* correspond to the poorest and best possible
inspection quality, respectively.

Data on inspection qualities are scarse. For MPI a quality
corresponding 10 a 90% probability of detecting a 40.0 mm long
crack may be reasonable. Since MPI recognizes the crack
length, some (random) relation between crack length and crack
depth is necessary as described in the previous sections.

The POD curve has a finite probability of not detecting a
crack which has grown through the thickness. This is in some
situations not reasonable as this evemt is detected by other
means, ¢.g. by oil spill. It may thus be relevant to modify the
POD curve to yield a probability of one for detecting cracks
larger than a specific size.

The value-of A as described above refers to the average
performance of the inspection equipment handled by different
operators. The variation from operator to operator should, how-
ever, also be included. The form of the POD curve in (6.1) can
be maintained, but the parameter A should then be random.

The reliability with respect to the accuracy in sizing a
detected crack is rélevant for the two repair strategies 2 and 3.
The limiting size is a, but due to measurement uncertainty a
random variable a, is used.

The inspection quality is a continuous variable in the
optimization. In reality only a discrete number of inspection
qualities are available. The optimization can then be performed
in two steps. POD first step the quality is continuous and based
on the result, fixed inspection qualities are selected for the
second optimization, which is then only for inspection intervals.
The same applies for the inspection intervals as inspections can
only be performed during- certain periods of the year, and the
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same may apply for hull thickness or spacing between
stiffeners.

7. COST MODELING

The following cost items are included in the modeling of
the total expected cost C:

Initial cost C=C0)
Inspection cost Cu=C@
Cost of grind repair ~ C,

Cost of weld repair  C
Cost of replacement C__=C_(2)
Cost of failure C.=C.(

The mean values of all cost items are assumed to increase with
the rate of inflation. The difference between the rate of return
for the project and the rate of inflation is assumed to be a con-
stant r. An example of cost modeling is shown in the example.

8. FORMULATION OF OPTIMIZATION PROBLEM

8.1 Optimization at design

The number of inspections n during the life time 7 is
selected beforehand. This is done to avoid an optimization with
a mixture of integer and real valued optimization variables. The
analysis is repeated for several values of » and the resulting
optimal cost values are compared. The value of n with the
smallest total expected cost is the optimal value. The
optimization variables are the inspection times and qualities
together with the structural design parameter z.

The optimization is now formulated for strategy 1 as:

n
min €+ T (C,q)1-P, )+ CER) ——B8.1)
z i=1 (1+r) "

tl""’tu

9,4,
n+1 1
+ L@ fTF ) T
i=1 (I+r)*
5.4 P(Tyzpe

n
MR-y l‘Slm“
=1
t’““‘g‘sz‘“"‘, i=12,....n
a"Sg g™, =12 n
ZTRE LR

The possibility of predetermining one or more of the inspection
times and qualities as well as z is available.

The constraint on the minimum reliability is somewhat
superfluous as the effect of the reliability is already included in
the objective function. The constraint is solely included to
allow for an optimization also in cases where authorities or oth-
ers have defined limiting values for the failure probability. If
the optimization without this constraint leads to a design and
inspection procedure with an intuitively too small reliability,
this most likely indicates that an error in the cost modeling has
been made. Instead of giving the requirement on the failure
probability in the life time it would also be possible to give a



requirement on the failure rate, i.e. the probability of failurc per
time unit, but this would cause serious computational
difficulties in the optimization. Another possibility is to limit
the failure probability within each inspection interval rather
than for the life time.

For strategies 2-4 the optimization is formulated similarly.
For strategy 2 the optimization is formulated identically to stra-
tegy 1, For strategy 3 the only change is thai the expected cost
of repair contains two terms cormesponding 1o the two repair
methods, while for strategy 4 the cost of replacement depends
on the structural parameter for the replacing element, and the
simple constraint on the structural parameter is extended to the
structural parameter for all replacing elements also.

8.2 Optimization after inspection

The inspection plan is optimized at the design stage as for-
mulated in the previous section. When the result of the first
inspection is known, a new optimal inspection plan can be
determined applying this information in addition to the informa-
tion available at the design stage. The time of the second
inspection therefore depends on the result of the first inspection,
i.e. whether or not a crack was detected and possibly also
repaired. The first inspection plan as illustrated in Figs. 1-2 has
the same time for the second inspection in the two or tree
branches afier the first inspection. Clearly the optimization as
formulated in the previous section therefore only represents a
suboptimization. If the number, times and qualities of inspec-
tions in each branch are included as optimization variables, the
nmumber of such variables increases drastically and the optimiza-
tion becomes impracticable. The major contribution o the total
expected cost is for well designed ship structures generally from
the branch without any crack detections, i.e. involves inspection
cost and expected repair cost for this branch, If this branch has a
dominant importance, this indicates that the suboptimization
results in a choice of design and inspeciion parameters which
are also globa]ly near optimal.

With information about inspection results and repair at
one or more inspection times, the various failure probabilities
and probabilities of repair are conditional probabilities, condi-
tioned upon the result of the inspections. For each inspection
result being available, the wrees of remaining possibilities in
Figs. 1-2 are reduced to one half or third of their size as the
selected branch at each performed inspection time is known.
This is illustrated in Fig.4 for strategy 1 with two inspection

results available. In the first inspection no crack was detected, -

while a crack was detected and repaired in the second inspec-

tion. With the notation from the previos sections, this informa-

tion is expressed as the event/
I'={M(T)>0 ~ H>0 ~\ M%(T,)>0 ~ H°<0} (8.2)
The probability of failure given the event / is then for T, <:<T,
P 1D =aPQT 1) (8.3)

= P(M(T)>0 (~ H>0 (\ MY(T,)>0  H'S0 ~ M® ()20]1)

PM(T )50 (~ H>0  MY(T)>0  HS0 ~\ MO (0)<0 1)
B o P

P(M(T )0 ™ H>0  MYT )>0 (~ HS0 (~ M°}(1)<0)
) P

APQ(T,0)
0!
where P(/) is the probability that the event / occurs. For T, <isT,
the failure probability is similarly

PP TN+ APT D (8.4)

AP T 1y + AP0 2D+ AT 1 | 1)
apdir.ry AP0 APRNT
+ +
P P P

and so on for the remaining inspection times. The expected
nurnber of repairs is at times T, and T,

ol (3%
E[R,|N=ERy 1] = 0 (8.5)
ER IN=ER 01N+ ER M N (8.6)
' ERQ0L  ERQM
TR T PO

and so on for the other inspection times. It follows that the
updated repair and failure probabilities are simply computed as
ratios of probabilities which are already formulated for the
inspection optimization at the design state. The same is true for
the derivatives of these probabilities with respect to the optimi-
Zation parameters.

[ e BRANGH 1
'n__.-"“-Q...,__ — BRANCH?
et R 1 - :
- eI .
1 L —— BRANCH
O L N ]
1
! :
-2, 1o -
——
'Q‘--_ e BRANCH 2%
b
—_ T v v T . S
Tyx0 T T, T T, TzTau

Fig4: Ulustraton of event tree with repair of all detected
cracks and two inspection results available. 0 denotes
no repair, while 1 denotes repair.

With inspection results available at times T, T, " the
optimization problem in (8.1) is modified as

n
min 3 (C(@)(1~P (T,10) + CEIR 1)) 1 ~ @7)
A (1+1)
g4,
n+l 1
+ % C(T) PLT-PT_|D)
= (1+r) -
5.2 BT | 1y=pme
RS Eq™, imjn

n
sl T S0
=l

r'“"‘s:‘sf“", i=f st
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where failure and repair probabilities are computed conditioned
upon the results of the first j-1 inspections. All terms in the
objective function are determined from the formulas above.
The factor L/P() is a common factor for all terms. For the
minimizarion this factor is therefore only entering in the con-
straint on the reliability index. Without this constraint, only the
history, i.c. the selected branches in the event treg, is of impor-
tance, not the probability of the history.

8.3 Optimization methods

Two methods have been considerad for solving the optim-
ization problems. Both methods solve the optimization for a
fixed value of the number of inspections » and the minimum
_ total expected cost by varying » can then be determined.

One optimization method uses the NLPQL algorithm as
implemented by Schittkowski®®. Each step in this method con-
sists of two steps. The first step is a determination of a search
direction by solving a quadratic optimization problem formed
by a quadratic approximation of the Lagrangian function of the
non-linear optimization problem and a linearization of the con-
straints. The second step is a line search with an augmented
Lagrangian merit function and a stopping criterion based on the
Goldstein-Armijo principle, The second optimization method is
similar to the NLPQL implementation, but the line scarch is
somewhat different,

The values of the objective function, the constrainis and

their partial derivatives with respect to the optimization parame- .

ters are computed in a separate routine. This routine calls upon
PROBAN for analysis of 2*'-1 parallel systems for calculation
of failure probabilities and 2"-1 parallel systems for calculation
of expected repair cost for strategies 1 and 4 and an even larger
number of parallet systems for strategies 2 and 3. PROBAN
provides a reliability index and probability for each parallel sys-
tem together with partial derivatives of the reliability index or
probability with respect w A, T and 2. From these partial
derivatives the partial derivatives with respeci 10 ¢, 1 and z are
easily derived, and the gradients of the objective funciion and
constraints can be determined. The Hessian for the Lagrangian
function is approximated based on gradient information.

9. EXAMPLE ]

An examples is invesiigaled with dara which are fairly
realistic and to some extent represent results from an analysis of
a non-load-carrying stiffener weld in a tanker. The stiffener is
analysed both with a constant geometry function and a more
refined geometry function.

The initial crack size a is taken as exponentially distri-
buted with a mean value of 0.1 mm. The crack size after repair
a, is taken as independent of and identically distributed as the
initial crack size, This has been done both for weld repair and
grind repair. Crack sizes after repair are assumed to be mutu-
ally independent from repair to repair. The critical crack size a,
is taken as the hull thickness, 30 mm, defining leakage as
failure.

The nominel long term stress range distribution is
modeled as a Weibull distribution, The distribution parameters
InA and 1/B are assumed w0 follow a two-dimensional normal
distribution with parameters
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ENnA]l = 1.6; D{InA)=0.16, plln4,1/B]) =08, ©.D
E[1/8)=12; D[1/B]=0.15

For the constant geometry function the Weibull parameter InA
fepresents focal stress and the parameter is scaled to give the
same mean local stress as the more realistic and complicated
non-load-carrying stiffener weld geometry function, see Fig..5.

E(inA)=2.3; D[lnA] =020, p[lna.1/B]=-08,  (9.1b)
E[UB)=12; D[1/B]=0.15 ’
The mean frequency of stress cycles is 5 million cycles per year
which represent a mean stress cycle period of 6.3 seconds.
The parameter ¢_is taken as 1.0, and the corrosion rate is
taken as 0, i.e. £=0. o
The stress intensity factor for the transverse non-load-
carrying fillet weld is estimated from a superposition of

influence functions, The stress intensity factor is expressed as
Almar-Ngss et al ®

AK=F iz as ' ©.2)
where: Ac is the nominel stress range and Y=Y, ¥, ¥, Y, ¥ G-:
Y : Crack shape factor
Y : Front face factor
Y,: ~ Finite thickness factor
Y, Finite width factor
Y.: Stress gradient factdr

A semi-elliptical shape of the crack described by the aspect ratio
a/c is assumed. A simple empirical a-c approximation for the
stiffener specimen is assumed

26=259a"%  [mm]

Y : The crack shape factor 1akes into account the effect of
the crack shape and is here approximated by

Y, = (1.0+4.59 (ai2e) 5y

Y : The front face factor accounts for the free surface at

the front of the crack and depends on the crack open-
ing stress distribution, the aspect raiio and the free

Fig.5:  Transverse non-load-carrying stiffener weld. -



surface shape. The correction factor is approximared

as:
Ys =(0.98 - 0.16 (a/2c))

Y The finite thickness correction factor accounts for the
effect of free surface ahead of the crack front and
depends on the crack opening stress distribution and
the aspect ratio, The finite thickness correction factor
is here approximated by a second order polynomium.

Y,=1.0+021 (@/T)+0.14 (aTy

Y. The finite width correction factor is only of interest
for a through crack, here ¥_=1.0.

Y,: The stress gradient factor accounts for the non-

uniform crack opening stresses at the crack locus. An
approximation for estimating Y, for transverse non-

load carrying fillet welds is

1 Y
YG=SCF(]+7—3—(a/T) Y

where SCF is- the elastic stress consentration factor at
the weld 1oe, modeled as.

SCF=1621log (¥,Y )+ 3963

The geometry function parameters Y, and Y, represents the hull
thickness and the hight of the weld while Y, and ¥, are decaying
coefficients for the stress gradient factor. In the analysis ¥, =300,
Y2=15.0, Y3=0.360 and ¥ 4=0.249 .

For the constant geometry function ¥ is modeled as 1.0, elim-

inating. the need for applying numerical integrations techniques

for estimating the crack growth with time.

The geometry function parameters can be modeled as sto-
chastic variables representing the uncertainty in the geometry
function calculations.

The material crack growth parameter m is taken as a fixed
value of 3.0. The material crack growth parameter C is taken as
a lognomal variable. The mean value of InC is taken as -29.9
and the standard deviation as 0.5. Tt is required that units N/mm?
and mm are used for stresses and crack sizes. The threshold
value AK_for the stress intensity factor is taken as zero.

The life time of the joint is taken as 30 years. The max-
imum time interval between successive inspection is taken as 30
years and the minimum interval as 1 year. The quality ¢ of an
inspection can vary between 0.23 (roughly corresponding to a
visual inspection) and 1.3 (roughly corresponding to a very
careful MPI inspection). Resulis have been computed both for
an unshifted (am=0.0) and a shifted (am=1.0) POD curve, see
€q.(6.1). The required reliability index-is 3.70,

The cost of an inspection is taken as

-C 2_ 2
Co@) = Copo+ Cpy 4+ Cpp @ = 0.1+ 00g + 046 (9.3)
The cost of the design is taken as
Cl(z) = Cm + Cm(z—zo) =0.0+001(z-zp) 9.4)

The value of CIO is taken as zero, but this value has no influence

on the values of the optimization parameters at the optimal
point. The cost of repair is taken as

C, =350, weld repair

%=1c 5 =0.2, grind repair 6.5
The cost of replacement is taken as (repair strategy 4).
Cla=C, + (2 =50+0.1(z2y) 9.6)
The cost of failure is taken as
C =C,,=8000 0.7

and the rate of interest is 1aken as 4%. All costs are given as
relative values only and may not be very representative.

Results for a constant geometry function are shown in
Table 1 and Table 2 for the unshifted and shified POD-curves,
respectively. The physical interpretation of the shift in the
POD-curve is that cracks smaller than 1.0 mm are not detected.
The repair, failure and total cost are all expected values.

It is observed that the minimum is rather flat as a function
of the number of inspections. It is also seen that the design
parameter in all ¢ases is at its maximurm allowable value at the
solution point. For the selecied cost functions it thus appears to
be more economic to put more ¢ffort into the design to make the
hull almost certain to cause no fatigue problems, rather than to
design with ¢.g. a smaller thickness and maintain the reliability
through inspection and possible repair.

It is observed that the total cost is reduced significanty by
introducing the more realistic shified POD curve; this is
because an unshifted POD curve gives detection of small cracks
with linle effect on the fatigue reliability. Since, according to
the strategy, all detected cracks have to be repaired, this results
in a high repair cost. It is also observed thar the optimal solution
is even more flat as a function of the number of inspections than
for an unshified POD-curve.

The effect of the four different inspection straicgies are

nexi compared for two inspections in a 25 year period. The
input data are as above, except that no limits on the reliability

index are defined, the cost of failure is taken as 1000, and the
mean value of InA is increased to 2.4.

TABLE 1: Optimal solution for a constant geometry function
and varying number of inspections. Strategy 1: all
detected cracks arc weld repaired. Unshifled POD-curve.

No. of insp. 2 3 4 5 6 7

Inidal cost 2.10 0.10 0.10 0.10 0.10 0.10
Inspect. cost 043 0.30 028 0.31 0.35 0.40
Weld rep. cost 048 0.37 0.33 0.34 0.35 0.37
Failure cost 0.39 0.39 0.37 0.30 0.25 0.20
Toual cost 1.50 1.16 1.08 1.05 1.05 1.07

Time of insp. 1 14.6 14.3 14,0 13.1 12.6 12.6
Time of insp. 2 21.7 19.1 17.7 16.3 154 15.1

Time of insp. 3 - 24.1 215 19.3 18.1 17.4
Time of insp. 4 - - 255 227 20.8 19.9
Time of insp. 5 - - - 263 23.7 22.1
Time of insp. 6 - - - - 26.8 248
Time of insp. 7 - - - - 27.4

Qual. of 1nsp. 1 1.00 0.50 0.32 0.28 0.24 0.23
Qual. of insp. 2 1.1 0.52 0.3 0.28 0.26 0.23

Qual. of insp. 3 - 0.56 0.36 0.29 0.24 0.23
Qual. of insp. 4 - - 0.38 0.30 0.24 0.23
Qual. of insp. 5 - - - 0.28 0.25 0.23
Qual. of insp. 6 - - - - 0.25 0.23
Qual. of insp. 7 - - - - . 023
Design param.  70.0 700 70.0 70.0 70.0 70.0

Minimum B 3.70 3.70 372 3.77 3.82 3.89
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For repair strategy 2 with constant geometry tunction and
unshified POD curve the total expected cost is shown for some
values of the mean value of a, The smallest total expecled

cost is obtained with a mean value of 1.0 mm.

Ela, ) (mm) 30 20 15 13 10 09
Total expected cost 610 575 565 560 557 .559

For strategy 3 with constant geometry function and unshifted
POD curve the smallest total expected cost is obtained for a,
larger than 4 mm. The cost at the solution point for the
different strategies is shown in Table 3. .

Results for the stiffener weld geometry function is shown
in table 4 and 5 for unshifted and shifted POD-curves, respec-
tively. The results indicate an optimal inspection plan based on

TABLE 2: Optimal solution for a constant geometry function
and varying number of inspections. Sirategy 1: all
detected cracks are weld repaired. Shifted POD-curve.

No. of insp. 3 4 5 6 7
Tnitial cost 010 010 010 010 - 010
Inspect. cost 038 037 040 043 045
Weld rep. cost 001  0.01 0.01 0.01 0.01.
" Failure cost 0.21 019 016 0.14 0.13
Total cost” ~ 0.70 0.67 0.67 0.68 0.69

Time ofinsp. 1 129 123 12.1 11.5 11.2
Time ofinsp. 2 17.8° 165 154 14.7 14.1
Timeofinsp.3 235 206 189 17.4 16.4

Time of irisp. 4 - 251 223 203 16.2
Time of insp. 5 - - 258 236 217
Time of insp. 6 - - - 26.5 245
Time of insp. 7 - - - - 274

Qual. of insp. 1 0.53 7 039 0.37 0.31 0.28
Qual. of insp. 2 0.66 049 0.40 0.39 0.31
Qual. of insp. 3 0.70 0.52 0.41 0.33 0.29

Qual. of insp. 4 - 052 042 033 029
Qual. of insp. 5 - - 042 036 030
Qual. of insp. 6 - - .- Co- 0.36 0.31
Qual. of insp. 7 - - - - 0.28
Designparam. 700 700 700 700  70.0

Minimum B 387 390 354 398 400

TABLE 3: Optimal solution for a constant geometry
function and two inspections. Unshifted POD-curve.
Comparison between strategies.

Strategy 1 2 3 4
Initial cost 010 010 010 0.10
Replacement cost - - 0.20

Inspection cost 014 019 019 0.13
Weld repair cost 0.18 002 0.01 -

Grind repair cost - - - 001 -

Failure cost 033 025 024 035
Total cost 0.75 056 -055 0.78
Minimum 319 329 330 318

three inspecions for both the POD modeling alternatives, but

with large reduction in the estimated repair cost for the shified
POD curve, ’
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Table 6 shows a parameter study of the failure cost, resulis
are shown for two inspections with failure cost at 5.000, 8.000
and 10.000, applying the stiffener weld geometry function.

Examples of optimization resulis with inspection informa-

ton available can be found in Holck et al® and Madsen et al®.

TABLE 4: Optimal solution for a stiffener weld geometry
function and varying number of inspections.

Strategy 1: all detected cracks are weld repaired.

| Unshifted POD-curve,

No. of inspections 1 2 3 4
Initial cost 0.10 0.10 0.10 0.10
Inspection cost 0.145 0.140 0.174 0.224
Weld repair cost 0.213 0.215 0256 . 0269
Failure cost 0.50 0.30 . 0218 0.139
Total cost 0.958  0.761 0.718 0.732
Time of insp. 1 18.1 17.0 15.5 14.4
Time of insp. 2 - 23.0 19.7 18.4
Time of insp. 3 - - 244 218

Time of insp. 4 - - - 254

Quality of insp. 1 070 . 0.36 0.25 0.23
Quality of insp. 2 - 0.37 0.24 0.23
Quality of insp. 3~ '- - 1026 0.23
| Quality of insp. 4 - . - 023
Design parameter  70.0 70.0 70.0 70.0
Minimum B 370 3.75 3.84 3.97

TABLE 5: Optimal solution for a stiffener weld geometry
function and varying number of inspections. ‘
Strategy 1: all detected cracks are weld repaired.

Shified POD-curve. amin=1.0 mm

No. of inspections 1 2 3 4
Initial cost 0.10 0.10 0.10 0.10
Inspection cost - 0.213 0.212 0.227 0.265
Weld repair cost 0.010 0.013 0.014 0.015
Failure cost 0.279 0.117 0.088  0.064
Total cost 0.602 0443 0430 0444
Time of insp. 1 16.5 14.2 13.3 12.5
Time of insp. 2 - 213 18.5 16.9
Time of insp. 3 - - 237 212
Time of insp. 4 - - - 25.2
Quality of insp. 1 0.87 0.48 0.33 0.29
Quality of insp. 2 - 0.58 0.37 0.33
Quality of insp. 3 - - 0.41 0.30

Quality of insp. 4 - - - 0.29
Design parameter 700~ 70.0 70.0 70.0
Minimum B 375 4.01 4,08 4.16

TABLE 6: Optimal solution for a stiffener weld
geometry function and two inspections.

Shifted POD-curve

Parameter study on different failure costs

COST OF FAILURE _ 5.000 8.000 _ 10.000

Initial cost 0.10 0.10 0.10
Inspection cost 0.187 0.212 0.228
Weld repair cost 0013 0.013 0.014
Failure cost 0093 0.117 0.133
1 Total cost 0393 0443 0475
Minimum B 304 4.01 4.02




10, CONCLUSIONS

A procedure for optimal design, inspection and repair of a
fatigue sensitive element has been presented. Fatigue crack
growth has been described by Paris’ equation and failure been
defined as growth to a critical size. Reliability calculations and
associated sensitivity calculations have been performed by a

first-order reliability method. Inspection times and qualities as -

well as structural design parameters are the optimization vari-
ables. A standard non-linear optimization routine is used. The
optimization is first carried out at the design stage and later
updated each time new inspection information becomes avail-
able. Four different repair strategies are presented with different
criteria for repair method.
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DISCUSSION

E. Nikolaidis

H.O. Madsen

I have talked with sponsors from FAA and NASA Langley
about probabilistic optimization. One thing that they are
interested to see is a method where experimentally you
can verify that the optimum that you have found is an
actual optimum and not something that is working on a

piece of paper only. I wonder if you have any comments -

on that and if you have anything in mind to verify that your
final design is the actual optimal one.

-e-12

I think one thing that is reassuring about this is that the
reliability levels we've achieved in this optimization are
very close to the reliability levels that we actually decide
from. So probably practice, so far, has not been that far
off. Besides that,1don’tthink I can give you areal answer.



