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ABSTRACT

Buckling of plates is an important design con-
sideration both for ships and fixed and floating
offshore structures. A probabilistic procedure for
elastic buckling and collapse analysis of unstiffened
plates in marine structures is presented. The procedure
is developed for plates under combined biaxial stress,
shear stress and lateral pressure, due to still water
loading and wave induced loading. Uncertainties due
to loading variables (static and time varying),
geometric variables (thickness and imperfections), as

well as material variables (Youngs modulus and yield

stress) are included. The reliability analysis is based
on first- or second-order reliability methods combined
with methods for outcrossing analysis. The procedure
has been developed specifically for this problem, but
has general applicability in structural reliability ana-
lyses with a mbdture of time-dependent and time-
independent basic variables.

INTRODUCTION

Plate elements in ship hulls, other submersible
and semi-submersible marine structures, and fixed
offshore structures are loaded by a combination of
siresses and lateral pressure. The stresses and lateral
pressure are modeled as time-dependent stochastic
processes, whereas the material properties and
geometry paramelers are modeled as random vari-
ables. The behavior of plate elements with respect to
varfous failure criteria is formulated in terms of Umit

state functions which include time dependent as well

as time independent basic variables.

A strength model for an unstiffened plate under
combined loading is presented and load models for
still water loading and wave induced loading as well
as structural behavior are presented. A rellability
analysis for a problem with time independent as well
as time dependent basic variables 1s developed, where
special emphasis s put upon a coupling between a
first-order reliability method and an outcrossing
analysis for a Gaussian vector process. The reliability
method is applied to the load and strength models.
Finally, results from an example are presented and
general conclusions are offered.

STRENGTH MODEL

The elastic buckling and plasticity failure of a

plate subjected to combined stresses and lateral pres-
sure, Fig. 1, can be formulated as

nlo, Oy Tay 2ABTSE vop) 2 (1

where n{ J=degree of utilization or usage factor,
¢, =stress in the x-direction, g,=stress in the y-
direction, Ty = shear stress, p=lateral pressure,
A = plate length, B = plate width, I"= plate thickness,
5= represents geometrical imperfection, E= Young’s
modulus, 7= Poisson’s ratio, and o= yield stress. In
general, the variables A, B, T, §, E, », and oy are
time independent and the variables o, , L and p
are time dependent. For a stiffened plate also proper-
ties of the stiffeners enter the limit state function.
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Fig. 1 A plate under biaxial stress, shear
stress and lateral pressure.

In general, no closed form solutions are available
for the usage factor which is obtained numerically by
iterative procedures. Plate elements in marine struc-
tures are generally integrated parts of larger orthogo-
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nally stiffened siructures. In [1] a procedure has been
presented to compute the usage factor for an
unstiffened plate subjected to biaxial stress and lateral
pressure. The boundary conditions prescribe the plate
as simply supported out-of-plane along all edges, with
edges to remain straight during deformation but free
to move in-plane. Imperfections from welding and
the erectlon procedure are assumed to be small and in
the shape of the natural buckling mode. The imper-
fection size is described by the dimension-free parame-
ter 8. The procedure has later been extended to
include shear stresses and is here used with this exten-
sion.

A further generalization to a complete hull sec-
tion is suggested in [2], based on a simplified mechani-
cal description of the hull behavior. From a reliability
analysis point of view this generalization is straight-
forward and the limit state function uses cross sec-
tional forces and external pressure rather than local
stresses and external pressure.

LOAD MODEL

Two types of loads are consldered. Loads due to
ship/platform weight, cargo/topside weight, buoy-
ancy, and water pressure are modeled as a renewal
square wave process, see Fig.2. These loads are
denoted still water loads. The amplitudes are random
variables which, depending on the operational pattern,
are modeled as independent or dependent. The dura-
tfon of a pulse for a ship corresponds to one voyage in
a loaded condition and the duration between ballast
changes in a ballast condition. For simplicity, the
duration of a pulse is taken as deterministic and con-
stant. The still water loading induces sectional forces
in a cross section, which agaln induce stresses. A
linear structural analysis is applied in the transforma-
tion from global forces to local stresses. Local stresses
within each pulse are described by correlated random
variables with statistics derived from statistics for
sectional forces. In [3] such statistics have been
presented for ships based on extensive measurements.

A

Fig. 2 Load model for still water load.

To model the wave induced loading, the sea con-
dition is divided into stationary sea states. Here a s¢a
state is defined by the most important wave charac-
teristics, 1.e., the main wave direction ©, the significant
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wave height H; and the mean wave period Tz. Short
crested seas are modeled by combining long crested
waves from different directions weighted according 1o
a wave energy spreading function.

Long term probabilities for various main wave
directions are determined from wind measurements,
wave measurements on stationary buoys, or better
from sailing ships thereby accounting for operational
patterns. A wave scatter diagram is used which gives
the fraction of time with different combinations of Hyg
and Tp. The one-dimensional Plerson-Moskowitz
wave spectrum, which is uniqueiy defined for each
specific combination of }g and T, is used within each
sea state to describe the wave energy on different fre-
quencies. Within each sea state stationary conditions
are assumed. Each pulse in the still water load pro-
cess contains a number of sea states,

Linear wave theory is applied and a Gaussian
wave loading is assumed. A linear structural behavior
is assumed and wave induced load effects are thus
Gausslan processes. Transfer functions from the sea
elevation to stresses and pressure are denoted by
H, (), 'H,,,(m), Hf,,(“’)’ and H,(w), respectively.
The vector (o, (t )0, ()7, (¢ )p (1)) 1s 2 Gausslan
vector process with zero mean value. Covarlances for
the components and time derivatives are

Varlo, 1= _[lH,“(m)lzs,, () o (2)
ar(6, 1= fo?1H, @)%, (0} (3)
[+

Covlo,,0,)=Rel {H,: (@), (@5, (@) 0] (4)

Covld,.8,1= Rel { WH g (@H , (@35, (@)X ] (5)

and similar equations. An overbar denotes a complex
conjugate, and S, (@) is the wave spectrum.

RELIABILITY METHOD

The reliability of a structural element is gen-
erally analyzed with respect to one or more failure
criteria. For one criterion the performance is described
through the limit state function g ( )

<0 forzin failure set
g(2) {=0 forzon limit state surface
>0 forzin safe set

(6)

The vector Z is a vector of basic variables describing
uncertainties in loading, material properties, geometry,
statistical estimates and analysis models. In addition,
the limit state function can depend on a set of deter-
ministic design parameters and time. The failure pro-
bability for the considered failure mode, P, is the
probability that the vector Z has a value for which
g (z)<0.
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Outcrossing Analysis

Let the vector of basic variables be Z=2Z(; ),
where Z(r ) is an ergodic vector process. The fallure
probability for a failure criterion with limit state
function g is in a time period [0,D]

Pr = P(g(Z(t)) £ 0forsome t €[0,D]) (18)
or simply as

Py = P(ogigng (ZeN<0) (19)

The safe set is S = {21g (z) > 0} and an upper bound
on the conditional failure probability is, [5]

Pr S P(g(ZION€0) + {S)D =P+ S)D (20)

The first term on the right hand side P, is the instan-
taneous failure probability and the second term is the
expected number of outcrossings of the safe set. Asan
alternative the conditional failure probability can be
approxXimated by

Pr = 1-(1-P,) exp(—-l{s—)q) (21)
l—Po

The mean outcrossing rate of the safe region,
{5 ), may be obtained from a generalization of Rice's
formula, [5],

AS)= £f z(z)_joy:wfé” 2y 2)diy d(3S)  (22)
Iy =

where Z, is the projection of the time derlvative Z on
the out-bound normal vector at a point cn the limit
state surface 35. With ¥ time dependent basic vari-
ables the calculation of »{S) requires an k—~1-fold
surface integration. An additional problem is that
often the limit state surface is only given in an impli-
cit way.

For stationary Gaussian processes an asymptotic
result is available, which may be used as an approxi-

mation to (22). T_he mean value vector and covariance
matrix for (Z(t ),Z(t M are

[z ey c.:

B ien = {0 I Coaterzen = lczz Cys, (23)

Conslder first a transformation corresponding to the
Rosenblatt transformation (10)

U(t ) = L(Z(t }—pz) (24)

where U is a set of uncorrelated and standardized nor-
mal variables. L satisfies

L7UHLTYY =y (23)

L is a lower triangular matrix and may be determined
by a Cholesky triangularization procedure for positive
definite matrices. The asymptotic value of the mean
outcrossing rate of the safe set §, in u-space
corresponding to § in z ~space is, [8],

(8, )~ u(S,) (26)
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85, is the tangent hyperplane at the design point in
u -space computed for the case where 7Z is independent
of time, see Fig. 3.
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Fig. 3 Outcrossing of safe set and safe
set with linearized boundary.

The approximating hyperplane has the equation
35, B—fu=0 (27)
An outcrossing of the safe set 5, by the vector process
is then replaced by an up-crossing of level 8 by the
scalar process of U(r ). This process has zerc mean

and unit variance and the mean up-crossing rate of
level B is

Warle? Ul ¢(8) (28)

1
HB)= —=—
2T
where ¢{.) denotes the standardized normal probabil-
ity density, The variance of the derivative process Is

Var[o Ul= of Cjyor= o LC35L ¢ (29)
The approximation t0 the failure probability in (21) is
thus taken as

Py = 1—-d(B)exp | (30

V2rd(8)

It is noted that the approximation {s independent of
elements In the cross covariance matrix Cyz An
improved asymptotic formula for the outcrossing rate
is available in [9]. This formula is slightly more
involved and includes C,; as well as curvature infor-
mation in the point Bor. When the process a7 U is nar-
row banded a better result may be obtained by repiac-
ing the mean up-crossing rate (28) by an effective rate
determined by an interpolation between the wup-
crossing rate for the envelope process for small levels
and the up-crossing rate of the process itself for high

levels, [5,10).

Combined Reliability Analysis Procedure
In the general case the vector of basic variables
consists of the sets



When all basic variables are random variables the
computation of the failure probability can be
efficiently done by first- or second-order reliability
methods. When one basic variable is a random func-
tion of time, i.e. a random process, the interest is gen-
erally only on the maximum or minimum value of
This
maximum or minimum value is a random variable for
which the distribution may be determined, and first-
or second-order reliability methods can then be
applied directly. When two or more of the basic vari-
ables are random functions in time a load combination
problem exists and modifications of first-order tech-
niques are needed. In the past, approximate rules such
as Turkstra’s rule, [4,5], have been used to replace the
random processes by one or more combinations of ran-
dom variables. Turkstra’s rule has proved to provide
sufficlent accuracy for many linear combinations of
independent processes. The use of Turkstra’s rule or a
similar rule for dependent variables and for nonlinear
combinations has, however, not been verified.

SuULlLe

this function gver some eppriﬁnd time interval,

Nonlinear load combinations are here treated as
first-passage problems for a vector process out of a
safe set. Emphasis is put upon Gaussian vector
processes describing response of a linear structure to
wave loading. Based on the first-passage analysis a
failure probability conditioned on the basic random
variables is computed. The overall failure probability
is then obtained by integrating the conditional failure
probability over all values of the time independent
basic variables.

The first-order reliability method, the cutcrossing
analysis for Gaussian vector processes, and the com-

bined reliability analysis procedure are described in
the following,

First-Order Reliability Method

The failure probability for a given failure mode
is denoted by Pr and may be computed by

=P@)<0)= [ f(z)dz
g(?)(o
where f z(z} is the joint probability density function
of Z. An exact evaluation of Pp is rarely feasible and
first-order reliability methods (FORM) have therefore
evolved as practical methods to evaluate good approxi-
mations in an efficient way, [S]. A further improve-
ment is achieved by use of a second-order rellability
method (SORM), [5]. _
In the evaluation of (7) a FORM uses a varfable
transformation of Z into a set of uncorrelated and
standardized normal variables U,

U = T(Z) (8)

For independent variables one possible choice for the
transformation T is
T: U‘ = QFI(F‘(Z‘ ))p i=1.2, ceey

(7

(9)

188

where &( ) denotes the standardized normal distribu
tion function and Fp () is the distribution function

for Z,. For dependent variables the Rosenblatt
transformation, [6], has been suggested In [7],

T: U, =& WF(Z1Z,,....2Z,,)), i=1.,n (10)
) is the distribution function for
Z, conditioned on (Z,...,Z_;)

The equation for the limit state surface in -
space becomes

T see=3

g, (0)=g(Tu))=0 (11)

In a FORM the limit state surface in u-space is
approximated by its tangent hyperplane at the point
on the surface closest to the origin, i.e. the point with
the highest probability density., This point v =T(z")
is called the design point and is found by a minimiza-
tion procedure with one constraint. The design point
is expressed as

(12)

Al
where B denotes the distance from the origin to the
B is

approximating tangent hyperplane in u-space.
called the first-order reliability index and the sign of
B Is determined as the sign of g, (0). o is a unit vector
normal to the limit state surface at the design point
and is directed towards the failure set. The com-
ponents in the vector are called sensitivity factors.
The first-order approximation to the failure probabil-

ity is

u = Ba

The design point u° must generally be obtained
by an iterative search algorithm. One algorithm con-
sists of constructing a sequence U;,0;5,...,U0p, ..,
according to the rule

r 8 (v, )
U +1 U, ot + i Vg, (5, )] Um (14)
where «,, is a unit vector defined by
R 7ACTS. (15)
T V. (u, )l

The gradient of g, Is related to the gradient of g
through

Ve, =1 v (16)

where J is the Jacobian matrix,
y= |8 an

ou;

For independent variables the use of the transforma-
tion (9) leads to a diagonal Jacobian matrix, while the
Rosenblatt transformation (10) leads to a lower
triangular matrix.



Z=1(2,7,it ) (31)

where Z,; is a vector of random variables and Z,(z ) is
an ergodic random process. In a general formulation
some distribution parameters describing Z,(r ) may be
modeled as random variables and thus contained in
Zy. In that case Z,(z )IZ, =z, is an ergodic random
process, and the procedure described below can
equally well be applied.

With a limit state function g the failure proba-
bility in a time period [0,D]1s

= P N M LN — r b
PF -— .ln( juhx £ (ZI’L‘ZU A= GJ = k32)
0%t €D

_f.. - L P( min g(2,.Z,(t)) <0)f ,(z)d 7

The conditional failure probability

PF (Zl) = P(Og:.[gb g (21,22(t )) "'-<-. 0) (33)

is given by (30) where P, 8 ,& and possibly also L
and C;. now depend on the value z,. A direct n fold
integration 1o compute the failure probability by (32)
is impractical for nontrivial cases. Therefore a first-
order reliability method, as described earlier, is
applied for this integration to approximate the failure
probability. One possible approach is suggested in
[11). An alternative formulation, differing in the
order in which the numerical calculations are per-
formed, has been suggested in [12]. In this approach
an auxiliary standard normal variable U s introduced
and a limit state function A (z,2,) is defined as

&Py (2, (34)

It can be easily proven that P{» (I/,Z,)€0) is equal to
the unconditional failure probability Pr in (32).
Based on the formulation in (34) and the expression
for Pp(z,) in (30) a first-order or second-order relia-
bility method can be directly applied. When the itera-
tlon procedure in (14) is used, derivatives of Pg(z,) in
(30) are needed. These derivatives may be computed
numerically, but analytical formulas can be developed
based on parametric sensitivity factors in first-order
reliability methods, [5].

hluz)=u—

RELIABILITY OF AN UNSTIFFENED PLATE
UNDER COMBINED LOADING

The elastic buckling and plasticity failure of a
plate subjected to combined stresses and lateral pres-
sure may be formulated by a limit state function
given by, see (1)

g{zY= 1-nlo,.0,,7,y .0 A.B.TBE v,0;) (35)

Within each sea state, the stresses and lateral
pressure are induced by still water loading and wave
loading, i.e.,

o . (t)=0, +0.,{)

0,1} =0y, +0,1()

Ty(t)= Teys + Tapw (1)
plt)=p, +p,0t)

(36)
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where 0,,,0,,,7,,;, and p; are still water indu::d
stresses and lateral pressure which are time indeper.-
dent random wvariables within each still water loed
pulse. 0,0t} 0,,(1),7,,(t) and p,(¢) are wave
induced stresses and lateral pressure. It is assumed
that stili water loading is independent of wave
induced loading. The set of basic variables is hence
divided into Zy = (04,0, 7y 05,4 ,B,T 8.E v,05),
and Zy(r )= (0, (2 ), 04, (2 ), 74y, (¢, p,, (£ ).

To perform the combined reliability analysis a
time interval of constant amplitude still water loading

is first considered, Condi tioning on L.l =z, ihe condi-

tional failure probability is obtained from {30), where
the mean outcrossing rate of the safe set is obtained
from

m n
uSY= X p Ly v(B,;) (37)
i=1 j=1
in which p, is the probability of the {th wave direc-
tion, g; is the probability of the jth sea state, and
(B, ) is the mean up-crossing rate for the given wave
direction and sea state, which is computed by (28) and
(29). The output from this combined rellability
analysis is a reliability index and design point

(38)

where o, is the sensitivity factor for the auxiliary
variable &/ in (34), a5 is the vector of sensitivity

factors for the stresses and pressure induced by the
still water loading, and o, Is the vector of sensi-
tivity factors for the geometry and material naram

dve SiEiALGLIGL ynuu.lul:"
Le] S.

The reliabiiity for a period containing one pulse
of the still water load has been determined. In prac-
tice the interest is on a larger reference period, e.g., 1
year or the design life time. Let the number of pulses
in the still water load model within the reference
period be N, With independent still water loading
from pulse to pulse, the failure probability in the
reference period is approximated by

Pr = 1-0,4(8.p) (39)

where B is a vector with identical elements § from
(38), and p is a correlation matrix with elements

U = Ba= B, .0 o)

Nt i=j
Py =3 r L. (40)

Oy QW L]

The theory for series system reliability has been
applied and the probability in (39) can be evaluated
by a simple one-dimensional integral, see [5]. The
above procedure can be modified if a different model
for the stil! water loading is adopted. Along the same
lines, a procedure can also be developed which uses
the duration of a sea state rather than the pulse dura-
ticn in the still water loading as a basic time interval.



EXAMPLE

The procedure is applied for a reliability analysis
of a plate element located at the bottom of a ship hull
at midship. Fixed deterministic values are assumed
for Poisson’s ratio, and for the length and width of
the plate. A fixed deterministic value is also assumed
for the normal stress in the y-direction due to still
water loading. Components of a 3-dimensional mul-
tinormal distribution are assumed for the distribu-
tions of still water induced stress in x-direction, shear
stress, and the lateral pressure, [3]. A lognormal dis-
tribution s assumed for the plate thickness. Normal
distributions are assumed for Young’s modulus and
yield stress. These distributions and their parameters
are given in Table 1. The units in Table ] are m for
lengths and MPa for Young’s modulus, stresses and
lateral pressure.

Table 1: List of plate parameters
Variable Distribution Mean Stand. Dev.
[ Multinormal 1 54.29 5.5
Ty Fixed 41.24 -
Tagr Mulitinormal 2 0.00 0.5
P Multinormal 3 0.166 0.02
A Fixed 5.30 -
B Fixed 1.20 -
T Lognormal 0,015-0.025  0.0015-0.0025
8 Normal 0.01 0.001
E Normal 2.1x10° 1.5x104
v Fixed 0.3 -
oy Normal 385 24

A time period of one year is used. Five main
wave directions are considered corresponding to head
sea, quarter forward seas, and beam sea, with frac-
tions of occurrence time 25%, 2x25%, and 2x12.5%,
respectively. These numbers have been selected some-
what arbitrarily. The sea scatter diagram used is
based on the sea scatter diagram for the North Atlan-
tic, Station India, but it is somewhat simplified. For
all sea states and wave directions the one-dimensional
Plerson-Moskowitz wave spectrum, [5], is used.

The probability of failure for varlous plate
thicknesses is given in Table 2. Column 2 in this table
is related to an analysis with uncertainties in environ-
mental loading only, whereas column 3 is related to
an analysis with all sources of uncertainty included.
Table 2 Indicates that the uncertainities in material
properties and geometry parameters are important and
should be included along with uncertainties in
environmental loading when computing the failure
probability. The most important source of uncer-
tainty is, however, due to uncertainty in the environ-
mental loading with a squared sensitivity factor
around o? = &2 = 0.40—0.55, meaning that 40-55% of
the total uncertainty is due to this source. The second
and third most important uncertalnties are those
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related to thickness and yield stress with sensitivity
factors of &= 0.18—0.30 and o? = 0.23—0.27, respec-
tively. The fourth most important uncertainty is the
still water induced lateral pressure with sensitivity
factor around o? = 0.03. The remaining uncertainties
are less important and have sensitivity factors smaller
than o = 0,01,

The computed probabilitles are for one year with
the assumption of continuous voyage of the ship at a
speed of 7 Xnots in an environment described by the
assumed wave directions and sea scatter diagram. Ina
real situation a ship has several voyages and stops
within each year, is traveling at different speeds and
in different environments. These factors should be
included in the analysis before deciding that a thick-
ness of, e.g., 25 mm , provides enough safety or is very
conservative.

Table 2: Failure probabilities for example plate

Thickness Loading uncertainty only  All uncertainties

0.0150 0.959E-01 0.152E+00
0.0175 0.213E-01 0.523E-01
0.0225 0.669E-03 0.170E-01
0.0250 0.340B-05 0.811E-03

SUMMARY AND CONCLUSIONS

A probabilistic method for elastic buckling and
collapse analysis for unstiffened plates under com-
bined biaxial stress, shear stress, and lateral pressure
is developed. The procedure is applied to evaluate the
failure probability for a plate under still water load-
ing and wave induced loading. The uncertainties in
the wave loading and the still water induced stresses
and lateral pressure as well as the uncertainties in the
the geometry parameters and material properties of
the plate are considered.

A formulation as a first-passage problem for a
stress vector process outcrossing a safe set is first
applied, accounting for uncertainties in the wave load-
ing only and conditioning on all the other variables.
This leads to the conditional failure probability. A
fast integration technique based on a first-order relia-
bility method is then applied to compute the overall
failure probability.

An {llustrative example analysis is performed to
compute the probability of failure of a bottom plate of
a ship hull. The results indicate the importance of
considering the material and geometry parameter
uncertainties. The most important sources of uncer-
tainty are those related to the wave loading, plate
thickness and yield stress.

The procedure may be extended to include other
sources of uncertainty and can be used to develop new
design formats for unstiffened as well as stiffened
plates in ships and fixed and floating offshore struc-



tures. A calibration of partial safety factors and load
combination factors for sectional forces and material
properties may be derived by applying the method.
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