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1. Executive Summary 

Digital Twins have been investigated and used in the marine and naval sectors 

already to test out upgrades and maintenance options, with the hopes to expand to a 

more comprehensive ship sustainment system, improving fleet performance, and saving 

time and money. While Digital Twins are lauded for their vast applicability and potential 

capabilities, the practical concerns associated with cost, scope, data, tools, and 

usefulness make the path for development and adoption murkier. This report is intended 

to address these concerns by proposing ontology for the design and development of a 

structural digital twins (SDT) that meet a specific objective in a practical manner, 

considering all of the resource, cost, and accuracy considerations. By proposing a 

hierarchical approach to SDT objectives, the report helps clarify the complex and often 

ambiguous goals of SDTs, making them more manageable and focused on practical 

outcomes. 

A key focus of the report is the identification and mitigation of uncertainties in 

SDTs, which arise from environmental variables, operational conditions, and the inherent 

limitations of models. The report highlights the need for improved definitions and more 

detailed guidelines on incorporating these uncertainties into SDT systems, ensuring they 

provide valid, reliable decision support for operators. It also emphasizes the importance 

of developing clear, performance-based assessment procedures tailored to different 

vessel types and their respective risk tolerances. 

To address these challenges, the report proposes a logic tree framework for 

integrating performance-based assessments with uncertainty considerations, ensuring 

that SDTs can respond effectively to both steady and abrupt changes in operational 

conditions. It also underscores the need for robust validation processes, calling for the 

development of standardized testing methods to ensure the accuracy and reliability of 

SDTs. 

Finally, the report presents practical examples of SDTs applied to real-world data 

from surface ships, providing different approaches, including surrogate modeling, 
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advanced finite element modeling, and predictive methods. These examples highlight 

both the strengths and limitations of current SDT technologies and identify critical areas 

for further research and development. 

2. Introduction 

Since the early 2000’s, the concept of the digital twin (DT) has emerged as a critical 

technology for use in industries ranging from structural engineering to biomedical 

engineering and on. For naval and marine structures, digital twins are discussed in their 

potentials for use in safe and efficient operations of ships, optimal maintenance for ships 

and fleets, and optimal route planning for vessels. The goals of digital twin for ship 

structures distills out to objectives of optimizing performance, increasing availability, and 

reducing costs. The “how” is less straightforward. 

The topic of digital twin is both so broad and so deep that the argument could be 

made that it is not a fundamental concept but the bridging across fundamental concepts 

enabled by the digital revolution. This characterization of digital twin as a ‘compilation of 

capabilities’ understates the challenges present in the topic. That each of the fundamental 

concepts almost always come with caveats, assumptions, limitations, future work, and 

that bringing them together is ripe for inconsistencies and self-contradictions, and un-

tractable solutions chasing after perfection. However, this is exactly the role of the digital 

twin: it lives in reality; with all the uncertainties and errors, incorporating the best 

knowledge of the physical structure, physics, modeling and simulation, and prognostics 

to support decisions.  

This report down scopes digital twin for surface ships further to focus on the 

structural components, herein referred to simply as ‘structural digital twin’ (SDT). The 

report starts with ontological questions regarding what digital twins are and proposes 

concepts to aid the designer and developer to work towards a viable, tractable solution. 

These concepts are covered in sections 3 through 7. Section 8 takes a brief aside to 

discuss the needs for validation for digital twins. And practical examples for SDTs are 

presented in section 9, along with their results and findings.  
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3. Structural Digital Twin Overview 

This is the point where a paper would typically provide a simple, clear, one 

sentence description of the topic being discussed. For structural digital twin for naval and 

marine vessels, there is nothing simple nor clear about it. The section highlights the 

nuances of SDTs in an effort to enable the coherent design process for an SDT. 

 The following subsections touch on the aspects of “what” is a structural digital 

twin, including: “what” is the objective of an SDT and “why” are they relevant, “where” 

digital twins exist and in what form, “how” they work, and the “concerns” there are in the 

industry regarding the twin.  

3.1. What and Why: Objectives of a Structural Digital Twin 

The question “what is a digital twin” is almost always where people start their 

conversations, journal articles, or presentations about digital twin. But, invariably, the first 

talking point of the papers focus on the question “why”. Thus, this section addresses the 

what and the why. 

Structural Digital Twins are at the forefront of development for naval and marine 

applications. For some, the interest lies in the philosophy of it: that a twin has the potential 

to be the convergence of data, knowledge, and reality to support the physical asset. For 

example, Glaessgen (2012) refers to the twin as: 

 “A Digital Twin is an integrated Multiphysics, multiscale, probabilistic simulation of 

an as-built vehicle or system that uses the best available physical models, sensor 

updates, fleet history, etc., to mirror the life of its corresponding flying twin. The 

Digital Twin is ultra-realistic and may consider one or more important and 

interdependent vehicle systems, including airframe, propulsion and energy 

storage, life support, avionics, thermal protection, etc. The extreme requirements 

of the Digital Twin motivate the integration of design of materials and revolutionary 

approaches for material processing. Manufacturing anomalies that may affect the 

vehicle are also explicitly considered, evaluated, and monitored. In addition to the 

backbone of high-fidelity physical models of the as-built structure, the Digital Twin 
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integrates sensor data from the vehicle’s on-board integrated vehicle health 

management (IVHM) system, maintenance history and all available historical and 

fleet data obtained using data mining and text mining” (Glaessgen, 2012). 

For others, the interest lies in the availability of resources; that since the digital 

capabilities exist, they should be capitalized on to best support the physical asset: 

“The DoD is actively undertaking the Industry 4.0 paradigm shift towards the use 

of large data sets to provide previously unobtainable, real-time insights into 

numerous systems, processes, or assets, the 2018 Digital Engineering Strategy 

(DES) serves to “guide the planning, development, and implementation of the 

digital engineering transformation across the DoD.” (US Department of Defense , 

2018) 

Together, these put forth the drive towards digital twins. This generally describes 

“what” a digital twin is, but to get to a functional design and practical instantiation of a 

digital twin, the “why” (or objective of the twin) is imperative. 

Researchers have put forth objectives for structural digital twins, or “why”. This 

includes reducing maintenance costs, reducing risk in maintenance and operations, 

improving efficiency of operations of the vessel or of the fleet, and increasing availability, 

reliability, and resilience (VanDerHorn and Mahadevan, 2021). It also includes optimizing 

for elements of re-usability, interoperability, interchangeability, maintainability, 

extensibility, and autonomy across the entire lifecycle (Moyne et. al., 2020). Alternatively, 

objectives like decision-making support, cost reduction, remote control and monitoring, 

maintenance, condition monitoring, testing and simulation, and training personnel have 

been included (Assani et. al., 2022). Optimal route planning has also been posed as an 

objective for a digital twin (Lee et. al., 2022). In other discussions on digital twins, value 

creation is identified as being based on the actor-to-actor interactions for a particular 

solution, making it more complex to identify the objectives (or requirements) (West et. al. 

2021). Complexity is key.   

To form clear and coherent objectives, the complexity of the objective, the actor-

to-actor interactions, and the broader context of decision making is critical. Thus, this 
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paper proposes that the objective for a structural digital twin is, in fact, defined with a 

hierarchy of objectives as shown in Figure 1; the hierarchy is grouped into different levels: 

- Vision: this is the highest level that expresses what the twin wants to be. It is 

the high-level purpose. For structural digital twins, this includes increasing the 

availability of the fleet, reducing costs for operations and maintenance, and 

optimizing performance.   

- Strategic: this is the middle level that includes a targeted mechanism for 

meeting the vision. For structural digital twin, examples of this include 

supporting the operator via operator guidance and route planning, supporting 

the maintainer and planner for condition-based maintenance and fleet asset 

planning, and supporting designers to optimize the design. 

- Operational: this is the lowest level, where the objectives are scoped to support 

the development of a practical instantiation of a structural digital twin. This is 

where the objective is scoped out for basic requirements and constraints 

including the complexity of the analysis needed, the planning time-horizon, the 

resources available, the flexibility of the vessel to stay/change course due to 

mission criticality, and the level of integration with the decision-making process, 

among others.  

 
Figure 1. Hierarchy of Objectives as Applicable to Structural Digital Twins 

 

Vision

Strategic

Operational

Cost Reduction
Optimize Performance
Increase Availability (A0)

Support Operator: Operator Guidance, Route Planning 
Support Maintainer: Condition Based Maintenance
Support Planner:  Fleet / Asset Planning
Support Designer: Enable Optimal Design

HIERARCHY OF OBJECTIVE

Complexity, Time Horizon, 
Resources, Consequences, 
Flexibility, Level of Integration



 

6 

 

The operational objective refines the scope of the strategic objective. For structural 

digital twin, this is essential for the tractable development of a functional product. 

Operational objectives include:  

- Timeliness (Real Time, Near-Real Time, Time-Delayed): when is the decision 

support needed. If information and decision support is needed in real time, the 

complexity of the digital twin must be designed to support that objective. If it is 

near-real time, a different complexity of twin may be warranted given the trade-

off between time and accuracy. If time-delayed decision support is warranted 

(as may be the case for condition-based maintenance recommendations that 

may be given after a deployment), the twin can take a different form.  

- Use (Operational Guidance, Condition Based Maintenance, Route Planning, 

Fleet Planning): what is the decision that the information is intended to support. 

- Time Horizon (Instantaneous, Near Future, Transit, Deployment): what is the 

required window of time that the data must account for. 

- Consequences: Is the vessel manned, unmanned, autonomous, and operating 

as a part of a set?  

- Operations: Is the vessel operating in routine conditions or critical conditions? 

Critical conditions may include operating in a storm, or critical missions or 

wartime for naval vessels. The twin may need to be flexible to support both. 

- Level of Integration (Support Operator, Human-in-the-loop, full autonomy): 

How redundant, aware, capable of handling uncertainty, does the twin have to 

be?  

An example between a strategic objective and an operational objective that both 

support vision objective of increasing operability is shown in Figure 2. 
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Figure 2. Operational Objective Decomposed 

 

In the development of the above structural digital twin objectives definition, a 

review of class standards was performed. Like in research, there is high interest in the 

class societies to expand into the digital domain via digital twins (or “smart ships”, 

“intelligent ships”, and “condition monitoring”). A comparison of the class societies’ 

guidances and rules is provided throughout this document in the context of the chapter 

itself. Table 1 summarizes the class standards and the objectives and description 

provided. The classes have tended to break out guidances for Hull Monitoring (or similar 

title) and Smart Vessels (or similar title) when discussing concepts related to structural 

digital twin. The objectives and description are brief descriptions and/or excerpts from the 

referenced document. The Hull Monitoring documents tend to focus on ‘how’ the objective 

can be supported, with minimal discussion on the vision objective or the operation 

objective. The Smart vessel documents tend to focus on the vision objective, sometimes 

tying in flavors of the operational objective. One thing is apparent from the review of the 

standards: a full enumeration of the objective of the digital twin is not provided. This is not 

to say that this lack is a flaw, but that gap is (i) a statement on the complexity of the 

objectives (as indicated in the preceding paragraphs), (ii) a statement on the readiness 

of the field for standardization, (iii) both above, (or, as the authors are human, (iv) 

something the authors have not considered). 
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Table 1. Class Standards for Condition Monitoring and “Smart” Vessels 

Class Standard Objective/Description 

ABS Hull Condition Monitoring  
(ABS, 2020) 

Hull Condition Monitoring (HCM) is to monitor, visualize, and trend parameters relevant to environment, 
structural loads, and responses through sensor-based measurements. HCM typically involves onboard 
and/or onshore reporting and threshold-based alarms for operational guidance and post-voyage analysis. 

ABS SMART 
(ABS, 2022) 

“Provide the crew and support personnel with key information to aid in decision making. Common Smart 
Functions include structural and machinery health monitoring, asset efficiency monitoring, operational 
performance management, and crew assistance and augmentation to support vessel operations. The 
difference between Structural Health Monitoring (SHM), as a Smart Function, and the traditional HCM is 
primarily: 
SHM provides structural health diagnostics and prognostics through correlation of various parameters and 
integration with analysis and simulation. 
HCM handles parameter-based monitoring and covers the loads, responses, and identifiable damages 
from direct sensor measurements at certain sensor installed locations.” 

Rules for the Classification of 
Steel Ships, NR467 - JULY 2022, 
Part F, Additional Class 
Notations  
(BV, 2022) 

Hull Monitoring System is a system which: 
Provides real-time data to the Master and officers of the ship on hull girder longitudinal stresses and 
vertical accelerations the ship experiences while navigating and during loading and unloading operations in 
harbor. 
Allows the real-time data to be condensed into a set of essential statistical results. The set is to be 
periodically updated, displayed, and stored on a removable medium. 

BV NR675 Additional Service 
Feature SMART (BV, 2021) 

A smart system is defined as a computer-based system that incorporate functions for the collection, the 
transmission, the analysis and the visualization of data. A function is a defined objective or characteristic 
action of a system or component. Smart functions may include monitoring, decision making support, 
remote monitoring, maintenance. 
Hull smart functionalities dedicated to operation: LI-S3, LI-S4, LI-HG-S3 or LI-HG-S4 
Hull smart functionalities dedicated to hull maintenance: MON-HULL 

DNVGL-RU-SHIP Pt.6 Ch.9 (DNV 
GL, 2017) 

The system shall give warning when stress levels and the frequency and magnitude of ship accelerations 
approach levels that require corrective action. The owner shall decide how the hull monitoring system 
should be configured, i.e., which features to be included and how the measured and processed data shall 
be use as intended as an aid to the master’s judgement and not as a substitute. 

DNV GL Smart Vessel  
(DNV GL, 2020) 

Use data and information to further optimize vessels' operations and reduce the environmental footprint. 
Operation and maintenance - hull and structure (OPH) enhancements include solutions that use data as an 
important element and provide options related to structural integrity management 

Lloyds Register, ShipRight, Ship 
Event Analysis (Llyods Register, 
2021) 

Provide warning the ship’s personnel that these stress levels or the frequency and magnitude of slamming 
motions are approaching a level where corrective action is advisable 
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Class Standard Objective/Description 

CCS, Rules for Intelligent Ships 
(CCS, 2020) 

To provide assistant decision-making for hull and deck machinery maintenance and structural renewal 
during in-service period of the ship based on the establishment and maintenance of hull database system 
and three-dimensional hull structural models. The hull monitoring and assistant decision-making system is 
to include the following functions related to structures. 
- Development of hull inspection and maintenance scheme 
- Recording and assessment of hull structural conditions 
- Development of structural renewal plan 
Hull database system is to be able to integrate data of three-dimensional hull structural models, hull and 
deck machinery inspection and maintenance data, structural thickness measurement data and structural 
repair data. 

Class NK 
(Class NK, 2020) 

To monitor the behavior of hull girders during navigation, loading and unloading, and to provide real-time 
information on stress levels due to longitudinal bending moments and acceleration levels due to ship 
motion. Information is to be intended to aid the judgment of Shipmasters and crew members during 
navigational operations, it is not intended to be a substitute for the judgment and the responsibility of 
Shipmasters. 
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3.2. Where: Resources and Location 

One of the major questions for structural digital twins, is “where does the twin 

exist”. Barring the natural, simple answer of “in the digital environment”, the response 

tends to be divided amongst shipboard or land based. The latter is the focus of the 

remainder of this section. The former is, in fact, not a simple answer as the digital 

environment is in development for some organizations or in flux for others.  

Table 2 presents the breakdown on location, data and computational resources, 

and time-delay considerations as it pertains to the strategic objective of operational 

guidance support. The concepts can be generalized to the other objectives, but it is useful 

to track through the specific example. For the strategic objective of operational guidance 

support, the structural digital twin has the potential to be on the ship or on land with 

communication to and from ship. In both instances, the ship operator is the entity acting 

on the decision. 

 In the instance where the twin is a shipboard twin, it is most likely computationally 

limited and may not have access to datasets external to the ship (since connectivity may 

not always be present). However, the time delay between the twin getting data, making 

assessments, developing decision support findings, and delivering the information to the 

operator, is minimal. For the instance where the twin is land-based, the computational 

capacity is most likely more advanced, and there is access to external data sets. 

However, there may be a significant delay in providing decision support to the operator. 

The largest concern that has been identified by researchers and class societies 

alike is the sense of agency (Woolley et. al., 2023). The digital twin provides decision 

support. For manned and human-in-the-loop systems, agency lies with the human, and 

they have authority (and almost the mandate) to take in additional information (such as 

information from other ship systems and qualitative information on ship performance) and 

make the final decision.  

The concern over agency grows more when the digital twin is land based. It is often 

that the engineering support activity may, in other paradigms, have the authority to direct 
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decisions. However, the shift to the digital twin paradigm and the existence of data, both 

quantitatively (other ship systems) and qualitatively (personnel and awareness on 

performance) means that the decision-making chain of command must be clearly 

established. 

Table 2. Location and Resource Discussion for Operational Guidance Support 

Location (general) Shipboard Land-Based 

Location (specific) Ship Engineering Support Activity 

Resources: Data 

Data from Digital Twin Data from Digital Twin* 

Summary Data from Digital Twin Summary Data from Digital Twin 

Data from Other Ship Systems - 

Qualitative Information - 

- 
External Data Sets (Environmental 
Forecasts, History, etc.) 

Resources: Computational Computational Capacity (limited) Computational Capacity (advanced) 

Resources: Infrastructure Wired/Wireless on Ship Digital Communication System 

Time-delay Minimal Minimal to Substantial 

* Depending on connectivity and digital infrastructure 

 

There is also the case where the twin can exist in both places, shipboard and land 

based. An example of this may be where there are two difference strategic objectives: 

one for providing operational guidance and one for developing condition-based 

maintenance plans. A single digital twin may not be feasible given different computational 

resource available and/or availability of data. As such, there may be nested digital twins, 

both stemming from the base twin, but adapted to meet the operational level objectives 

of the twin. The following describes the locations and differences in resources for the 

nested digital twin: 

The structural digital twin established to support the two different operational level 

objectives may be a set of nested digital twins. This is shown visually in Figure 3 where 

a complex digital twin is developed and then a simple surrogate is developed out of it and 

transferred to the ship. Each twin supports the different operation-level objectives but 

stems from the same core. The nested set of twins will also have access to different data 

over time. The shipboard twin continuously has access to the operational data (strains, 
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accelerations, speed, etc.) that it is acquiring. It may have the opportunity to offload 

information to the shore, but depending on the transfer capabilities, the size and type of 

data may vary. Bandwidth limits may mean that only down-sampled data or summary 

data are exported from ship to shore. The complex model may then be updated, and a 

revised surrogate developed and potentially pushed back as an update to the shipboard 

system. When the ship arrives in port, more information can be transferred to and from 

ship, and the nested digital twins can evolve.  

Nested twins often vary in their access to data and the computational resources at 

their disposal. The digital infrastructure is then relied on to host the twins and support 

data and model transfers. For naval and marine applications, this is a critical component 

since connectivity of the vessel to shore and the capability of sending and receiving data 

may vary based over time.  

The design of the SDT must consider the available infrastructure for shipboard 

communication and ship-to-shore connectivity. Wired and Wireless systems have 

different information security vulnerabilities, in addition to cost and feasibility of 

installation. Likewise, connectivity to the shore and bandwidth for transferring data must 

be considered when designing the SDT. 
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Figure 3. Nested Digital Twin Example
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3.3. How: The Workings of Digital Twins 

How digital twins work is the question met with the most skepticism in practice and 

in literature. This comes on two levels. The first is: "How can a digital twin improve 

availability?”, typically asked with high skepticism. The question stems from the known 

complexity associated with maintenance, repairs, improvements, supply chain, 

availability of skilled labor, and accessibility. The answer to this level of “how” is often tied 

to the improved access to timely, useful, ship specific information on condition and 

prioritization. This necessity in turn leads to the next level of “how”: “how can a digital twin 

provide useful information?”. The latter is the emphasis of this section, and the functional 

examples that are presented in section 9. 

“How can a digital twin provide useful information?”: They are designed to. The 

design of the structural digital twin considers the objectives on all levels. Thus, the twin 

including the sensors, data, models, prognostics, and infrastructure is developed in a 

manner to enable processing, analysis, and communication of information. This considers 

the use, the resources available, the location of the twin, and the digital infrastructure 

available.  

The above still does not answer “how” to the functional extent. The functional 

answer to “how does a digital twin provides useful information” includes the details on 

what data, what model, and what uncertainties are included, what assumptions are being 

made, and what risk is introduced. The answer for “how do structural digital twins’ work” 

is found across this entire report in that it must cover how models, data, uncertainty, 

structural performance, and decision support are explicitly linked. Potential functional 

answers are in some of the examples in section 9, but certainly not all. 

3.4. Concerns: On the Use of Structural Digital Twins 

Trust and agency are amongst the most critical concerns identified for adopting 

the digital twin paradigm (Botín-Sanabria et. al., 2022; Danish Maritime Authority, 2018). 

This topic has been discussed briefly in section 3.2. Additionally, there is a concern on 

development and use of the topic. While the emphasis of this report is not the digital 
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infrastructure or digital thread, it is worth noting the impact this has on the development 

of a practical instantiation of a digital twin.  

The ship industry, commercial and naval, traditionally relies of specialized software 

tools for discrete problems. Furthermore, there are many different parties involved in the 

lifecycle of the ship as it progresses from planning to in-service and onward, as shown in 

Figure 4.  The tools were not initially designed for interoperability but have been modified 

or revised to be able to communicate across tools. However, the challenge of an open 

marketplace means that there is a drive for a competitive advantage in ship building and 

design. This leads to challenges in managing the digital product models that would enable 

the digital twin (Fonseca and Gaspar, 2021). Moreover, if/when the challenges of the 

open marketplace are addressed, the communication between the tools may be limited, 

and the actual data and engineering processes may be obscured to protect proprietary 

data and tools. This greatly increases the risk in developing a coherent, reliable, and 

trustworthy digital twin.  

It is important to note there are many more concerns associated with digital twins 

such as security of data, security of operations, accessibility, infrastructure, and 

integration into planning tools for maintenance, to name a few. To manage scope of this 

project, these topics are not detailed herein. 

 
Figure 4. Compatibility Challenges may exist across Different Parties Involved in the 

Different Design Stage   
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4. Structural Digital Twin and Models and Data 

A concept fundamental to Digital Twin is the merging of data with physics-based 

models. Researchers have scoped their DTs around a single type of data and a basic 

model, and have built models on an extensive, diverse database with multi-scale multi-

physics models. This begs the question: are the “small” DTs and the “large” DTs both 

digital twins? The answer comes back to the concepts presented in section 1 – what does 

the DT need to do, to what accuracy and cost point, and with what available resources.  

When “data” is discussed in research for DTs, it has been narrowly defined and 

broadly defined. The definitions again pose the question: “which is right”, and beg the 

answer: “it depends on your specific use case”. In general, data for SDTs can fall in 

categories: 

• Direct structural measurements: strains, corrosion measurements, 

observed crack lengths, out-of-planeness of structural members. 

• Indirect structural measurements: accelerometers for the intent of 

estimating slam pressures, strain gages for estimating global loads or slam 

pressures. 

• Operational data: location as a function of time 

The data can be viewed as continuous data sources and discrete data sources. 

Continuous data would be the time-history data acquired during operations (strain as 

function of time, accelerations as a function of time, etc.). Discrete data can be viewed as 

continuous data but sampled infrequently (on the order of years), such as crack lengths, 

corrosion wastage, and structural changes. Because of their different frequencies, the 

different data types may have different mechanisms for being incorporated into the SDT. 

The continuous data is integrated in an autonomous fashion; no human interaction is 

needed once deployed. The discrete data can be integrated autonomously but may also 

be a discrete-manmade update to the model. 
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When “physics-based models” are discussed, there is as narrow of definition as a 

model that captures one type of behavior (structural response, crack growth, seakeeping 

and loads) to as broad of a definition to include all types of models integrated seamlessly 

across each other. To help formulate the design of a specific SDT, it may be helpful to 

look at the different groupings of physics-based models: 

• Structural Analysis Models: models focused structural evaluation. 

o Complex: High-fidelity Non-Linear Inelastic Finite Element Model 

(FEM), Nested low- and high-fidelity FEM 

o Intermediate: Low Fidelity, Linear Elastic Finite Element Models 

o Simple: Fundamental theoretical behavior 

o Surrogates: Complex or Intermediate models that have been 

represented in a simpler configuration  

• Hydrodynamics Models: models focused on hydrodynamics, seakeeping, 

and loads. 

o Complex: Computational Fluid Dynamics Models (CFD) 

o Intermediate: Lower Fidelity Hydrodynamic simulations 

o Simple: Fundamental theoretical behavior 

o Surrogates: Complex or Intermediate models that have been 

represented in a simpler configuration  

• Damage Models: models thar represent propagation of damage. 

o Corrosion Models: uniform or pitting corrosion 

o Crack Growth: linear or nonlinear crack growth 

• Climatological Models: models thar represent the waves and 

environmental conditions. 

o Complex: full 360 deg definition of the sea spectra 

o Simple: basic metrics of point spectrum including significant wave 

height, wave period, and direction 
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The ‘model’ in a SDT may in fact be the coupling of multiple models from the 

different groupings, integrated in a manner to use the available data to support the 

necessary evaluations. 

The confluence of the two aspects “data” and “physics-based models” also leads 

to the presence of a third concept: data models. This includes Neural Networks, Machine 

Learning Models, among others, that are developed from physics-based simulations. 

These data models are then employed as the surrogates for the physics-based models 

with the intent of incorporating critical physics while working with only a subset of data 

with lower computational burdens. 

When designing an SDT, data, models, and requirements (namely cost and 

accuracy) are essential to consider when establishing the workflow for data-model 

integration and performance assessment. Performance assessment refers to the 

evaluation of criteria relating the demand to the capacity. Figure 5 shows varying levels 

of integrations of data with models for demand and strength. Accuracy of the data, 

accuracy of the model(s), and uncertainty propagation throughout the schema all must 

be considered.  For the demand side, increasing distance from the data through additional 

processing steps can increase uncertainty in the SDT and decrease confidence in the 

assessment. An example of this could be the use of GPS data that then gets mapped 

through climatological wave models to estimate the operating conditions; that then gets 

paired with seakeeping models to estimate the motions and loads. The cost of GPS data, 

however, is low, making this solution a low cost, higher uncertainty SDT. On the capacity 

side, the parallel can be drawn: lower cost, low fidelity models may have higher 

uncertainty. 
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Figure 5. Levels of Data Processing and Levels of Model Fidelity 
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5. Structural Digital Twin and Uncertainty 

The structural digital twin process, as described, is a complex process that 

incorporates a wide set of sources of uncertainties. The uncertainty can be divided into 

two categories: aleatory and epistemic. Aleatory variability is the natural randomness in 

a process; often called natural variability. This corresponds most readily to the natural 

variability in material properties or wave loads or other physical quantities. Epistemic 

uncertainty is the scientific uncertainty inherent to the model of the process. Epistemic 

Uncertainty derives its name from the Greek word episteme, which can be roughly 

translated as knowledge (Ang and Tang, 2017). So, another definition for epistemic 

uncertainty is the uncertainty derived from the lack of knowledge or information regarding 

the physical phenomena that dictate the behavior of a system, ultimately affecting the 

ability to quantify an outcome (i.e., response). For structural digital twin, aleatory and 

epistemic uncertainties are present.  

To start, there are uncertainties associated with measurements. The variability in 

the measurement device, a strain gage, or accelerometer is an uncertainty introduced by 

the method used to quantify the physical phenomena, thus falling under a source of 

epistemic uncertainty. For measurements, there is also the measurement error that 

corresponds to the measurement method and the variation in the physical phenomena, 

which falls under both epistemic and aleatory uncertainty. Measurement uncertainty and 

error are a well discussed fields in test and evaluation that contributes to the overarching 

uncertainty in the structural digital twin. 

There are uncertainties associated with the physics-based models, often referred 

to as model uncertainty. Model uncertainty is the lack of realism in the model, the inability 

to define the physical phenomena completely and accurately. This is often associated 

with the level of approximations for defining the structure and structural behavior. 

Methods for assessing and integrating model uncertainty for structural applications have 

been the topic of discussion in the field of structural engineering (Ditlevsen, 1982). There 

is often a trade space for higher fidelity models, which are intended to have less epistemic 
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uncertainties, to reduced order models based on the availability of accurate data for the 

parameters of the models and the time and resources available for development and 

execution. The trend towards increased model uncertainty via surrogate models is often 

invoked as an essential step for propagating aleatory uncertainties through the model 

(Sudret, 2022). Note that model uncertainty is separate from the variability in the 

parameters in the model (parametric uncertainty), the variability in how the model is 

developed (modeler uncertainty), and the machine precision and errors (computational 

uncertainty).    

Parametric uncertainty corresponds to the uncertainty in the inputs and model-

inherent parameters. Examples of parametric uncertainty for structural models include 

the uncertainties in geometric parameters, Young’s modulus, thermal properties, inelastic 

strength of materials, among others. This form of uncertainty pertains specifically to how 

the model incorporates these parameters, thus bridging the line between aleatory and 

epistemic. 

Natural variability, or the inherent randomness in the physical environment, for 

Structural Digital Twin is a major component of uncertainty. The natural variation in 

structural material properties effects the uncertainty in capacity quantification. The 

environmental variability is another source; this includes both variability of loads in a 

seaway (natural variation), but also the evolution of the seaway (process stochasticity). 

The operations of a vessel within the seaway are a source of inherent randomness. That 

is, from the process perspective, the operational choices dictated by the mission and 

operational constrains and freedom impart randomness into the system. Sampling error, 

on the other hand, is an example of epistemic uncertainty, as it is the error associated 

with trying to measure the randomness in the stochastic processes and operational 

randomness. 

Due to the breadth of uncertainties that exist within the purview of structural digital 

twin, and the duration of this project, the discussion herein is focused on aleatory 

uncertainty associated with natural variation, process stochasticity, and inherent 

randomness. The scope will also be limited to structural loads. It is recognized that the 
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SDT can and should be expanded to include methods for uncertainty quantification for 

the other sources of uncertainty. 

 
Figure 6. Categories of Uncertainties for Structural Digital Twin 

  

5.1. Quantifying Structural Load Uncertainty 

The uncertainties associated with structural loads that will be included in the scope 

of this project for structural digital twin are the uncertainties from inherent variability of 

loads within a seaway (i.e. natural variability), changes in loads due to evolving storm 

systems or the progress of the vessel to a new area (i.e. process stochasticity), and 

changes in load due to changes in speed or heading by the operator (i.e. inherent 

randomness). While changes in speed or heading are not in-fact random, but intentional, 

the resulting affect that those intentional decisions have on the structural loads leads to 

an otherwise unexplained and inherently different set of loads, which, to the structure, is 

random.  

5.2. Incorporating Uncertainties: Conceptual 

The need to incorporate uncertainties into design and assessment procedures is 

prevalent across the fields of structural engineering and marine engineering. Naturally, 
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these concepts need to find their way into the field of structural digital twin for surface 

ships. In the design and assessment processes for civil and marine structures, the field 

has long been aware of the natural variability of structural loads (i.e., demand) and 

material properties and structural performance (i.e., capacity). Thus, both demand and 

capacity have been conceptualized as random variables, as shown in Figure 7a. The 

potential for the capacity to be less than demand then defines the probability of failure.  

In load and resistance factored design (LRFD), and to some extent allowable 

strength design (ASD), the natural variability of the loads and strength are included. In 

LRFD, the demand and capacity are quantified deterministically and then factored to 

account to for natural variability and risk tolerances for the specific case. This is idealized 

in Figure 7b. The ASD approach does not explicitly formulate the design approach as 

such, but implicitly accounts for the natural variability and risk tolerances with a much 

broader brush. 

As design practices evolve and as digital twins enter into design and operation 

stages, there is a high potential for a fusion of concepts for how to deal with natural 

variability. For example, data may be available to statistically quantify the structural loads 

within the digital twin. However, for performance assessment, the structural capacity is 

essential. The SDT may be capable of providing the most accurate representation of the 

structure but may not have the information available to statistically quantify the current 

strength. As such, it may lead to the fusion of concepts of a probabilistic quantification of 

demand, and a factored approach for capacity (see Figure 7c).  The challenge therein is 

in setting the targeted probability of failure. Particularly for marine and naval applications, 

the decomposition of the factor and the capacity is challenging.  

The SDT must, therefore, be able to quantify the natural variability in the load and 

have a clear understanding of failure mechanisms. The remainder of section 5 discusses 

the uncertainties in loads for SDT. Section 6 contains a discussion on failure mechanisms 

and strength assessments.  
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Figure 7. Concepts in Load and Resistance Factored Design and the Extension to Mixed 

Data Sources 
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For structural digital twins for surface ships, the objectives of the twin will dictate 

the extent to which uncertainty is included. For example, condition-based maintenance 

twins could be formulated in a way where the observed, deterministic, data is used to 

assess the state of the vessel. In that instance, there is no need to assess probabilistically 

since the question is “what did the ship actually experience?”. However, there could be 

the additional question that the twin is supporting: “is it likely that during the next voyage 

the vessel will incur damage, and should preventative maintenance be done?”. In this 

instance, an understanding for the natural variability would be coupled with process 

stochasticity and inherent randomness.  On the other hand, operational guidance twins 

should incorporate natural variability. 

For operational guidance SDTs, the data recorded on the vessel may include the 

response as a function of time, as shown in Figure 8a. The deterministic assessment of 

the data would indicate that the largest value, shown in yellow in Figure 8a and b, is less 

than the upper limit (Lu), and the largest negative value, shown in green, is less than the 

lower limit (LL). However, when providing guidance, the assessment not only checks if 

the observed value exceeds the threshold, but also determines if the demand is likely to 

exceed the threshold if the current condition is continued. This could be supported by a 

statistical quantification of the response, shown in Figure 8d by the solid blue line. 

However, it is more common to define the response by the extrema (also referred to as 

peak and troughs), shown in grey and black in Figure 8c for hog and sag, respectively. 

The statistics of the extrema can then be quantified separately where hog extrema 

(peaks) and sag extrema (troughs) can be treated as random variables.  

Additionally, SDTs should be developed around the concepts of process 

stochasticity, in that the probabilistic distribution of the response extrema has the potential 

to evolve with environmental changes (see next paragraph for additional changes). These 

types of changes can be integrated into the SDT through updating and/or predictive 

approaches. For example, the ship may be entering into a storm, or a storm may be 

developing where the ship is. In this case, the understanding of the past and current 

statistical fit can be used to update or predict what the future distribution may be. This 
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concept is shown in Figure 9, and shows how not accounting for continuous changes in 

operations, such as a building storm, could lead to an underestimation of the probability 

of failure in the next time window. 

  
Figure 8. Deterministic and Probabilistic Representation of Observed Data 
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Figure 9. Information for Decision Support Using (top) Current Information Only and 

(bottom) Past and Current Information and Predictions 

 

Predictive and prognostic methods to support SDT have been the topic of 

continued research. The complexity of the problem lends itself to solution approaches 
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intelligence. Lee et. al. (2022) developed deterministic predictions for wave trains incident 

on a ship and the resulting ship motions were conducted. Nielsen et. al. (2022) 

investigated a hybrid maneuvering model for predicting the speed of a ferry under model 

uncertainty and varying operating conditions. The work demonstrated the applicability of 

neural networks to capture complex, nonlinear behavior that is not an inherent component 

of first principle hydrodynamic models (Nielsen et. al., 2022). 
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to support a statistical quantification. However, the limited technology associated with that 

real-time state awareness of wave environment to the required level of detail inhibits this 

path. As such, the SDT must be developed in another manner to account for this inherent 

randomness. 

Class societies have developed and published rules, notes, and guidances 

regarding hull monitoring systems and smart systems. Inherently, these types of systems 

are narrowly scoped instantiations of structural digital twins. The varying classes address 

different characteristics of a system: 

1) Approach: the authors have characterized the approaches in the class 

standards as pertaining to different means for accounting for natural variability, 

process stochasticity, and inherent randomness. The methods in the class 

standards include: 

(i) Diagnostic (or deterministic): reliant on data observed. 

(ii) Probabilistic: reliant on a statistical characterization of observed data 

wherein stationarity is assumed 

(iii) Prognostic (or predictive): reliant on the aggregation of current and 

past information with methods for forecasting 

2) Calculation Period: the period that the system must use data from to support 

assessments. 

3) Update to Display: defines the rate required to provide a visual update to the 

operator. 

4) Limits: what structural considerations are being accounted for when 

interpreting the response data to provide context and make the information 

useful to the decision maker. 

A summary of the review of rules and guidances is provided in Table 3.  

In the review and comparison, there is an inconsistency in requirements for 

approaches. Most standards require a probabilistic assessment of the current data. Some 

require predictive approaches. However, missing in the class standards reviewed is a 



 

29 

 

requirement to account for inherent randomness (i.e., the ability to incorporate abrupt 

speed, heading, or environment changes). This omission may lead to systems being 

designed to provide probabilistic assessments that are not valid and thus lead to false 

positives or false negatives while providing guidance.  

In current research, Nielson (2022) suggests that 20-30 minute windows may be 

applicable for use in certain cases. However, the use cases should be considered when 

establishing what windows are used for probabilistic quantification. The 20-30 minute 

window provides a useful upper bound. 

The calculation periods for assessing natural variability and process stochasticity 

are inconsistent across the standards. Anywhere from “a rolling basis” to 4 hours was 

provided as the time window to collect data for statistical and predictive assessments. 

The standards provided no referenced sources to indicate that the time window is based 

on rigorous review of the uncertainties expected in the application. BV was one of the few 

to provide a requirement based on a performance metric of the method: “the recording 

duration per cycle is to be adapted to produce results that are not to deviate by more than 

10% from one wave encounter to the next in steady navigation conditions” (BV, 2022). In 

some instances, the standards indicated that the interval could be configurable, although 

it is unclear if “configurable” indicates that it is one-time configurable and set at the 

deployment of the system, or if it indicates that the system is self-aware and adapting the 

inputs for the configuration.  

The complexity of the assessment approaches is alluded to in DNV’s guidance “for 

predictive assessments, past 4 hours for displacement ships and 30 minutes for high-

speed vessels” (DNV GL, 2017).  This could stem from the propensity for process 

stochasticity to vary based on ship type: displacement vessels tend to sit in the water 

consistently over longer periods of time. And larger vessels tend to follow a low-varying 

path. So, all other conditions being the same, the response is relatively constant 

(stationary). However, planing vessels, or short-mission vessels with variable paths, may 

only stay in constant (stationary) conditions for a short period of time.  
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The refresh rate of the display also varies extensively from real-time to 30 minutes. 

The variation in the requirement speaks to the variation in which different users may need 

information to affect change. However, it can also have an influential effect on the design 

of the system. The real-time or near real time relay of information dictates that the 

developer design the SDT or support analysis to be executed with the available 

computing resources. The architecture of the SDT may become more complex to account 

for the quick response needs and the need for higher fidelity assessments and statistical 

analysis.  

As a side note, DNVGL - Rules for classification: Ships DNVGL-RU-SHIP Pt.6 

Ch.9 (DNV, 2017), has a note regarding filtering of data: “Software shall include high-

pass, low-pass and band-pass time domain digital filters. The cut-off frequency of the 

filters shall be configurable through the software and shall be stated in the configuration 

file; the hull monitoring system shall have the capability to optionally remove the strain 

due to temperature differences in the hull girder” (DNV, 2017). This is the only class 

society denotation found that alluded to the concept that strains associated with different 

sources need to be identified and accounted for appropriately.  

The concept that strains come from different sources is a critical feature that is not 

clearly adjudicated or discussed in the class guidances. The variability of measurements 

to thermal changes, electromagnetic interference (EMI), or other sources on vessels must 

be accounted for when established the SDT performance assessment approach. The 

measured data must be processed to ensure that the measurements pertain to the limit 

for which they are being evaluated.  
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Table 3. Requirements for “decision support” based on class guidance. 

Class Standard Approach Calculation Period Update to Display 

ABS Hull Condition 
Monitoring 
 (ABS, 2020) 

Not Identified 
20-30 min; 
Rolling basis is accepted 

Real time or near-real time 

ABS SMART 
 (ABS, 2022) 

Diagnostic and 
Prognostic 

NA NA 

Rules for the 
Classification of Steel 
Ships, NR467, Part F 
(BV, 2022) 

Probabilistic 

Not less than 10 minutes 
(the recording duration per 
cycle is to be adapted to 
produce results that are not to 
deviate by more than 10% 
from one wave encounter to 
the next in steady navigation 
conditions.) 

Not provided 

BV NR675 Additional 
Service Feature 
SMART 
(BV, 2021) 

Prognostic 
Invokes NR467 - JULY 2022, 
Part F 

Invokes NR467 - JULY 
2022, Part F 

DNVGL - Rules for 
classification: Ships 
— DNVGL-RU-SHIP 
Pt.6 Ch.9 
(DNV GL, 2017) 

Probabilistic 
and Predictive 

Time period for statistics shall 
be configurable. 
For predictive assessments, 
past 4 hours for displacement 
ships and 30 minutes for high-
speed vessels. 

5 minutes 

DNV GL Smart Vessel 
(DNV GL, 2020) 

Probabilistic 
and Predictive 

Invokes DNVGL-RU-SHIP Pt.6 
Ch.9 Sec.3, 

Invokes DNVGL-RU-SHIP 
Pt.6 Ch.9 Sec.3, 

Lloyds Register, 
ShipRight, Ship Event 
Analysis (Llyods 
Register, 2021) 

Probabilistic 
(implicit) 

Not provided Not provided 

CCS, Rules for 
Intelligent Ships 
(CCS, 2020) 

Predictive 
Time interval shall be stated in 
configuration file 

No longer than 5 minutes 

CCS, Hull monitoring 
and assistant 
decision--making 
system for operations 
in ice (CCS, 2018) 

Predictive 
*Forecast for the next 1-2 
hours 

Real-time 

Class NK 
(Class NK, 2020) 

Probabilistic 
(implicit) 

4 hours At least every 10 to 30 min 

Notes: 
* only forecast window was identified 
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6. Structural Digital Twin and Structural Performance 

Structural performance assessment is the convergence of the concepts of 

structural loads, capacity, and failure mechanisms. This section focuses on structural 

performance assessment in the context of decision support for operational guidance, 

condition-based maintenance, and design. SDT is the prime candidate for the naval and 

marine community to incorporate performance-based decision support due to the reduced 

uncertainties that are associated with usage. Usage is no longer a set of possible 

operational conditions, but one immediate state of operations. And data is available to 

enhance the uncertainty quantification for demand. Thus, all that is needed for 

performance-based decision support is a clear quantification of failure. 

Failure is commonly defined as “a state of inability to perform a normal function” 

(Merriam-Webster.com, 2022). Structural failure, therefore, can be defined as “a change 

in state such that the structure no longer provides a required function (load carrying or 

otherwise) or impacts some specified system performance to an unacceptable degree” 

(Hess, 2003). Similar definitions for failure have been used in the civil engineering 

industry for decades, spurring advancements in code organization and structural analysis 

methods.  

Through recognizing the function of a structure as both resisting predictable 

internal and external loading and supporting the functional use of the structure, it can be 

concluded that conforming to prescriptive code requirements, which usually focus on 

structural capacity insofar as resisting design loading, does not guarantee structural 

system integrity. In the civil industry, buildings with special service functions (e.g., 

hospitals, laboratories, etc.) and extreme loading conditions (e.g., earthquakes, fire, 

tsunamis, etc.) have guided the design landscape into adopting a performance-based 

design approach to resist the unique structural demands that are above prescriptive 

design considerations. The critical functions of structures, like hospitals in the civil context 

and ships in the naval context, require that design practices meet the demand with 

intensive engineering design. The availability of demand information (i.e. seismic records, 
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burn rates, wave profiles) and the advanced computational tools enables an 

understanding of performance, where layers of uncertainties have been removed 

because of the data and models, which makes this level of rigor not only possible but 

required for structural performance. Thus, these special loading and function cases can 

be designed accordingly using the modern computational tools and procedures normally 

outside the limited scope of prescriptive codes (Dusenberry, 2019). This parallels the use 

case for digital twins for surface ships well. 

Surface ships (naval and marine) serve very particular critical functions (medical 

ships, supply ships, defense, rescue), are consistently under highly dynamic and extreme 

loads (which, in-part, can be quantified with gathered data), and can be assessed on a 

performance level. In order to do this, an in-depth analysis of what constitutes a 

systematic failure is needed. The following presents an initial discussion on failure 

through comparing the philosophy behind the civil and naval structures codes while 

proposing a new design framework to advance the methodologies by which failure of 

structures is determined for naval vessels. 

The structural components and structural systems of naval and marine ships 

support a wide variety of functions which range from resistance of seaway loading through 

primary and secondary structures to support for on-board machinery or equipment. A 

failure can fit into one of two categories: ultimate failure or serviceability failure (Hess, 

2003).  

The first, ultimate failure, covers component failure (e.g., material yielding, 

buckling, fracture, etc.) which is often adequately defined in prescriptive codes and 

system failures (e.g., progressive collapse, non-linear buckling, disproportionate collapse, 

etc.) which require more complex analysis methods to study. The second, serviceability 

failure, is the limit state which defines all states at which the structure did not perform as 

intended, increased the risk of ultimate failure, or disrupted the normal function of the 

structure (Barrow, 2021). Defining these failure categories and how to create proper 

performance metrics for them is important for the design, resilience, and continuing 

operation of a naval vessel. 
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6.1. Ultimate Failure 

Ultimate Failure is defined by the total or partial collapse of a structural component 

or system due to reaching an ultimate limit state (Hess, 2003). Both the civil and naval 

fields adopted probabilistic design philosophies in the form of Allowable Strength Design 

(ASD) (sometimes referred to as Working Stress Design) and Load and Resistance 

Factor Design (LRFD). These design methods determine failure to occur when the 

load/stress (demand), usually a probabilistic value, which is applied to the component is 

greater than the strength (capacity), usually a deterministic value, of the component. Both 

methodologies account for the variability and uncertainty in the strength of the structural 

members through a safety factor applied to the average expected capacity of the member. 

LRFD includes another factor to increase the average expected demand on the structural 

member to account for the variability in loading. As mentioned, these design philosophies 

are probabilistic in nature and require significant data sets to understand the variability in 

the strength, geometry, and loading for structural members. For the civil field, this 

variability in loading and materials is well documented and the reasoning behind the 

current factors used in the AISC/ANSI Specification (American Institute of Steel 

Construction, 2016) is detailed in an article by Theodore Galambos (Galambos and 

Ravindra, 1981). 

However, the naval structures field does not have as well documented or studied 

distributions for loading and has some peculiarities in the application of LRFD design 

philosophies to code equations. In a study comparing multiple ship structures standards, 

the Ship Structures Committee found that those codes which had adopted an LRFD 

formulation were modifying the structural response factors so the result would match the 

pre-LRFD specifications (Kendrick et. al., 2006). A sample comparison of the 

compressive buckling equations from AISC/ANSI 360-16 and International Association of 

Classification Societies, IACS (International Association of Classification Societies, 

2022), is shown in Table 4. A significant difference in the philosophy of the two 

approaches is that the AISC/ANSI specification accounts for inelastic buckling, which is 
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why the two equations from AISC shown have lower coefficients, while the IACS 

formulation does not.  

Because of the complicated nature of wave loading, whipping, slamming, and other 

highly dynamic loading patterns which ships experience, obtaining a generalized set of 

loading data to perform any probabilistic analysis on is a difficult task. Complex loading 

scenarios such as these also cannot be fully analyzed using first-principal mechanics 

analyses. This ambiguity on desired risk levels and probability of exceeding them places 

the engineer in a position to determine whether the design approach which is prescribed 

is conservative or not because it is not necessarily built-in to the method. It is therefore a 

logical progression that the naval engineering process must account for the specific 

scenarios which the ship will be found in and be designed to a clearly defined reliability 

requirement. 

Table 4. Comparison of Compression/Compression Buckling Failure Definitions 

 
AISC/ANSI 360-16 

(American Institute of 
Steel Construction, 2016) 

IACS 
(International Association of 

Classification Societies, 2022) 

Prescribed Reduction Factor 
on Capacity 

ɸc = 0.9 
0.65, 0.75 

 (Load combination dependent) 

Compressive Stress 
Capacity of Short, Non-

Slender Elements 
𝐹𝑐𝑟 = (0.658

𝐹𝑦

𝜋2𝐸
(𝐾𝐿/𝑟)2 )𝐹𝑦 Not Specified 

Compressive Stress 
Capacity of Slender 

Elements 
𝐹𝑐𝑟 = 8.66𝐸 (

𝑟

𝐾𝐿
)

2

𝐹𝑦 𝐹𝑐𝑟 = 𝜋2𝐸𝑓𝑒𝑛𝑑

𝐼

𝐴ℓ𝑝𝑖𝑙𝑙
2 

 

Prescriptive code methods for naval and marine structures that define stress limits 

with implicit factors of safety for all components have two drawbacks: 

1. The structural behavior due to connected elements is not accounted for in the 

stress limit evaluation (Hess, 2003) so structural compatibility and secondary 

strength may not meet functional requirements. 

2. Complicated mechanical mechanisms such as non-linear buckling, fatigue, and 

fracture, the most common failures in naval structures (Hess, 2003; Raju and 

Premanandh, 2018), are simplified down to a stress limit. 
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Because of the ambiguity in the formulation of capacity and demand safety factors, 

as well as the possible problems that arise from looking at only local component failures, 

a system-wide definition of failure and a more robust method of defining and calculating 

failure becomes necessary. This is one example of the “limit of validity” (Hughes and Paik, 

2010) which Hughes brings up in defense of performance based (or rationally based) 

structural design. 

Defining a system failure for a naval vessel is where the common ASD and LRFD 

approaches are no longer able to be used effectively (Czujko, 2018). A system failure is 

a critical component failure or series of component failures which results in a catastrophic 

loss of strength or stability for the entire structure. Identification of the critical components 

of such a failure and the mode of the collapse is the job of the designer or engineer. Some 

methods for prediction and designing against progressive collapse, one of the most 

prevalent forms of system failure where a component failure causes a series of other 

component failures, have been created, but significant knowledge gaps have been 

acknowledged (Czujko, 2018). Other system failures, such as accidental failures caused 

by collision, explosions, etc., are specialized to the naval design industry because of the 

possibility of water infiltration and major stability issues. Therefore, if no explicit analysis 

methods for these are set, the designer or engineer must set performance minimums to 

ensure that the risk of these failures are low.  

6.2. Serviceability and Non-Structural Failures 

Any failure that does not immediately result in a structural collapse will fall under 

the category of a serviceability failure or non-structural failure. These two types of failures 

occur due to structural behavior, but no ultimate limit state has been reached or no 

structural instability has been made. The civil and naval/marine structures industries use 

two different definitions for a serviceability failure: 

1. AISC/ANSI 2016 (American Institute of Steel Construction, 2016): A serviceability 

limit state is a “limiting condition affecting the ability of a structure to preserve its 
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appearance, maintainability, durability, comfort of its occupants, or function of 

machinery, under typical usage.” 

2. NSWCCD-65-TR-2002/14 (Hess, 2003): “We may consider a serviceability failure 

to be an event which increases the risk of ultimate failure to unacceptable levels 

or degrades non-structural systems in an unacceptable manner.” 

Both definitions commonly associate deformation and damage to the structural 

system, especially that which places the structure in immediate danger of an ultimate limit 

state as a serviceability failure. Both imply that repairability and continuing operation are 

key goals of designing against serviceability failures.  The civil structure definition includes 

more subjective goals such as “comfort of [the structure’s] occupants”. This, as well as 

the “function of machinery”, are not explicitly delegated tasks for naval structural 

engineers when designing large structural systems. The other category of failure, non-

structural failure, is one in which the structural behavior (i.e. vibration, thermal or electrical 

conductivity, appearance, etc.) directly impacts the functioning of a non-structural system. 

These types of failures usually do not have any inherent failure limit and require 

acceptable performance limits to be defined prior to design. 

AISC directly states specific parameters to be controlled for serviceability of civil 

structures: deflections, drift, vibration, wind-induced motion, thermal expansion and 

contraction, and connection slip. Hess notes that naval serviceability design equations 

are usually based on deflections and material yield (Hess, 2003). The second is normally 

controlled in component and system failure design but deflection failures are a 

commonality between the two approaches. Naval structures could suffer susceptibility to 

buckling, unseating of cargo or equipment, or degrading of total seakeeping ability due to 

excessive deformation. Each possible failure state due to deformation of the structural 

system needs to be defined and limits set based on individual concerns. 

Operational failures are also an important consideration for serviceability and non-

structural failures. These occur when structural behavior directly inhibits or impedes 

equipment or personnel from performing normal in-service tasks. A common failure of this 

type is excessive vibration. This may occur when the structural system resonates at the 
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frequency of the machinery attached to it causing significant vibrations, sounds, or both. 

These vibrations may also cause significant damage to structural components through 

fatigue and crack propagation (Vukelić & Vizentin, 2017).  Another operational failure may 

be excessive acceleration (Hess, 2003). A structure will be designed against high 

accelerations, but if the structure allows for these to be common, then discomfort of 

human personnel and damage of machinery is possible. These are two examples of 

events which may be considered failures and, with proper design limits, could be 

designed against or detected in in-service ships. 

Life-safety is one consideration which, though not explicit in naval design, is an 

important metric for serviceability. This refers to the probability of injury or death due to 

structural effects under different loading conditions. This is a well-documented metric 

often used in earthquake analysis of building structures (Applied Technology Council, 

2018). This often takes the shape of defining safety levels or predicting the casualty risk 

for different loading scenarios. These levels are usually defined as, from least risk to most 

risk: Operational, Immediate Occupancy, Life Safety, and Collapse Prevention. 

Operational means that there is minimal to no damage under that category’s loading and 

the structure can continue to function through the event. Immediate Occupancy means 

that minimal damage has occurred, none of the damage could be categorized as a 

serviceability failure, and function of the structure can continue after minor repair. The 

Life Safety level is the loading level when damage resulting in serviceability or component 

failure occurs to the structure, but minimal injury or deaths can be expected from the 

structural damage. The last safety level is when the loading causes structural damage 

which does not result in a system collapse but has no guarantee of continuing functionality 

or safety of occupants. Similar metrics can be adopted for ship structural systems for 

critical loading scenarios. An example of what that might look like is shown in Table 5. 

The “Seakeeping Viability” level may be the level at which the hull girder integrity is 

ensured but secondary structures are not, and the ship cannot continue its mission. “Life-

Safety” could be the level at which there is significant structural damage to secondary 

structures, but none would endanger personnel or critical life support systems. “Mission 

Continuation” could be the category marking minor structural damage which will need 
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repair post-mission. “Operational” would be the damage level associated with little to no 

damage and no repair needed. Characterizing different structural states under this type 

of system would offer significant guidance and knowledge regarding the in-service 

structural integrity. 

A non-structural failure which may be significant to the design and continued 

operability of the ship is the cost of repairing the ship after a significant structural failure 

event. First, in design, repairability can be considered in the design of structural members 

and connections, especially in considering the areas of high risk of component failure. In 

service, the cost trade-off between repairing a damaged member vs. repairing a failed 

member or structural system needs to be considered for monitoring systems and alarms. 

There may also be a trade-off of the repair/non-operational time of preventative repair 

versus corrective repair (Applied Technology Council, 2018). 

Table 5. Potential Vessel Damage Categories 

Damage Category 
Repair and Non-
Operational Time 

Initial Design 
Costs 

Repair Costs 
Life-Safety 

Rating 

Operational 

 

$$$$ $ High 

Mission 
Continuation 

 

$$$ $$ High 

Life-Safety 

 

$$ $$$ High 

Seakeeping 
Viability 

 

$ $$$$ Mid 

Note: $ are used to provide rough approximation on costs for comparisons 
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6.3. Performance-Based Design and Risk Assessment of Failures 

A commonality between all the failure categories detailed above is that defining 

the limit states to determine when failure occurs requires both high-fidelity models and 

engineering judgement for the individual structures, especially for complicated systems 

such as naval ships. The knowledge gaps in the demand and capacity probabilistic 

properties are a significant hindrance to the creation of safe and thorough prescriptive 

codes, therefore a performance-based design philosophy should be adopted. 

Performance-based design would allow the engineers and designers to detail what failure 

looks like from a combination of past projects, codes, and engineering judgement 

(Dusenberry, 2019). With the only requirement being setting performance metrics, this 

enables the use of high-fidelity physical, mechanical, and numerical models to check the 

performance, instead of relying on prescriptive equations to check compliance. This style 

of design has been shown to result in better performing, efficient, reliable, and cost-

effective marine and naval structures (Hughes & Paik, 2010). The application to SDT for 

operational guidance and condition-based management is logical. 

As mentioned previously, probabilistic analysis is needed to determine the 

acceptable probability of failure in structural specifications. This requires a large data set 

of field loading conditions and structural responses. Not only would a data set like this 

assist in the creation of better safety factors to pair with the definition of failure, but it 

would also begin to build a baseline for development of risk levels associated with the 

component and system failures. These risk levels could become the performance metrics 

by which serviceability failures are defined. High-fidelity models could be studied and 

equilibrated to in-service ships. Combined, this information would be able to be used in a 

SDT which can warn of critical situations and offer guidance on how to decrease or avoid 

the risk.  
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6.4. Limit States for SDT 

In a review of class society’s rules for hull monitoring systems and smart vessels, 

the concepts of failure mechanisms appear in the definition of limits. Table 6 summarizes 

the limits identified. As the industry pursues concepts like structural digital twin and its 

practical implementation, there is a clear need for an enhanced understanding of 

structural failure and structural criteria. For performance assessment, ultimately it is 

coherency across the load definition, the failure definition, and the risk tolerance levels.  

A brief aside on demand: the structural loads or demand (i.e., structural response) 

as developed in the SDT or hull monitoring system are derived from measurements 

coupled with physics-based models, statistical assessments, and, sometimes, data 

driven models. Thus, the demand, as suggested in the standards, has the potential to 

range from a deterministic value to an unspecified probabilistic value, or an unspecified 

predicted probabilistic value. The standards then provide the limits (shown in Table 6) 

without explicitly tying the load to the strength assessment or the risk tolerance for the 

use case. This lack of class-documented requirement is an area that requires immediate 

improvement. It is essential that the SDT be developed in a manner that coherently and 

appropriately accounts for loads, strength, and risk. 

Coming back to strength: There is a broad variability in the limits that are required 

to be incorporated by the class societies. The catch-all approach is broadly taken; in that 

the explicit engineering decision tree for loads, strength, and risk is left to the discretion 

of the developer and then to be submitted for review and approval. This indicates a clear 

need to formalize the approach so as to ensure the safety of the vessel and the safety of 

vessels and personnel nearby.  

The limits as defined by “[t]he requirements on the basis of which the hull structure 

is approved” (BV, 2022) enable a clear enumeration of strength and which failure 

mechanisms are accounted for. However, this does not afford consistency across the 

performance assessment method since the loads are being established by the data, as 

opposed to empirically calculated lifetime load values. Furthermore, the risk tolerances or 
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safety margins are not being revised with respect to the change in the decision that is 

being support: immediate use as opposed to long-term design.  

The further elaboration of limits is essential to the implementation of structural 

digital twins. The specific failure mechanism and component or system level assessment 

methodologies should be laid out. The coherent assessment approach for accounting for 

loads, strength, and risk needs to be established. The fundamental shift from “design” to 

“performance” is required for the rules societies to enable clear and coherent guidance 

for SDT for navigation performance support and performance (condition) based 

maintenance. 
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Table 6. Limits for “decision support” based on class guidance. 

Class Standard Limits 

ABS Hull Condition 
Monitoring (ABS, 2020) 

The warning levels are to be set with reference to the approved 
scantlings and their conditions of approval. Warning level settings are 
to be submitted for review. 

ABS SMART (ABS, 2022) Deformation, yielding and buckling, fatigue 

Rules for the Classification 
of Steel Ships, NR467, Part 
F (BV, 2022) 

The requirements on the basis of which the hull structure is approved 

BV NR675 Additional 
Service Feature SMART 
(BV, 2021) 

Invokes NR467 - JULY 2022, Part F, 

DNVGL - Rules for 
classification: Ships — 
DNVGL-RU-SHIP Pt.6 Ch.9 
(DNV GL, 2017) 

User configurable 

DNV GL Smart Vessel 
(DNV GL, 2020) 

Invokes DNVGL-RU-SHIP Pt.6 Ch.9 Sec.3, 

Lloyds Register, ShipRight, 
Ship Event Analysis (Llyods 
Register, 2021) 

Not provided 

CCS, Rules for Intelligent 
Ships 
(CCS, 2020) 

Not explicitly defined; generically related to:  
Longitudinal strength of the hull structure. 
Stress in the critical structural areas; Temperature of the structural 
members affected by high or low temperature. 
Bow slamming pressure (for applicable ship types).  
Liquid sloshing in tanks (for applicable ship types).  
Structural stress of ice belt region of ice-reinforced ships. 

CCS, Hull Monitoring and 
Assistant Decision-Making 
System for Operations in 
Ice (CCS, 2018) 

Permissible stresses for shell plate, framing, bays, longitudinal 
strength through bending and shear. 

Class NK 
(Class NK, 2020) 

Index values for setting up alarms to judge danger to ships from stress 
and acceleration are to be decided by ship-owners in consultation with 
the Society 
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6.5. Recommendations for Strength Formulation and Integration with SDTs 

This preliminary review of the ship failure definitions pertaining to structural design 

reveal that there is still much research and development that needs to be performed to 

properly create a performance-based definition of failure which accounts for the 

complexities in naval design and provides more freedom for the designers or engineers 

to create efficient, safe, and effective structures. Some key actions that should be taken 

are: 

1. A literature review of all naval design specifications and handbooks to check the 

underlying physical assumptions and catalogue all safety factors. These can be 

compared to other maritime, shipping, civil, etc. structural specifications to analyze 

different design philosophies and judge which offer better safety for naval design. 

This can be followed by lab and model testing to analyze the probabilistic 

distribution of material properties, the buckling behavior of various components 

(with the goal of creating buckling curves that can be referenced for design), the 

fatigue, corrosion, and fracture behavior compared to requirements by specified 

standard details, etc. 

2. A survey of common serviceability failures, especially those which have interrupted 

service or delayed mission activities. This can be followed by an analysis of the 

structural effects which caused these failures and development of structural 

guidelines to avoid them in the future. 

3. Creation of a guidance document for system-wide structural failures. This will 

include the different types of system failures, how to identify the critical structural 

elements and their failure states, and criteria for additional structural integrity for 

the systems. This can be created through a review of past structural system 

failures of naval ships, a numerical analysis of multiple naval ships to determine 

critical structural elements and failure modes, and literature review on system-wide 

failures in other fields (e.g., progressive collapse in civil structures). 

4. Development of design damage categories could offer guidance in the SDT 

recommendations for the operations and maintenance of the ship. This could aid 
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in prioritizing costs and time towards enabling performance, as opposed to 

enabling compliance with design-stage products that had high uncertainty in usage 

assumptions and may be over conservative. All previous research goals listed 

above feed into this goal as it covers all failure modes and compiles them into 

usable categories. 

5. Determination of load combination effects on performance. Complex failure modes 

may exist that are otherwise unaccounted for in standard design processes where 

they were not explicitly included but implicitly covered because of safety factors 

and margins put in the criteria. It may also allow for better early detection of failure 

as the structural impact of combined environmental and internal loading is better 

known. 

The development of a performance-based approach for structural failure of naval 

and marine ships is essential to the development of meaningful Structural Digital Twins 

because it offers a higher-fidelity and more rational approach to defining failure modes 

and classifying damage levels. This in-turn offers invaluable information for design, in-

service guidance, preventive maintenance, and repair. More knowledge on component 

and system failures with better techniques for the prediction, detection, and classification 

of them offer more information which can be used to develop robust structural models 

and train predictive algorithms to better capture structural behavior. 
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7. Structural Digital Twin and Decision Support 

SDTs that support operational guidance and condition-based maintenance are 

great candidates for a performance-based structural evaluation approach. When 

formulated for the specific problem, performance-based structural evaluation approach 

allows for the demand (deterministic, probabilistic, and/or predictive), capacity 

(component and/or system as quantified through low- or high- fidelity models), and risk 

tolerance to be included. The importance of different situations, such as peacetime or 

wartime, allows the STD to appropriately address situations. Likewise, a SDT can be 

designed to support operations in normal weather or rough weather, where risk tolerance 

levels may also differ. It allows for different considerations to be made if the ship is 

manned or unmanned, thus incorporating the fact that there are different consequences 

of failure.  

For SDTs, performance-based decision support first involves the identification of 

the state that the vessel is in: 

• Routine / Under Duress (Peacetime / Wartime) 

• Manned / Unmanned 

• “Normal Weather” / “Heavy Weather” (Day-to-Day /  Hurricanes) 

State identification helps establish the imperative for operations, consequences, 

and risk tolerances. Each branch may have different performance-based criteria. For 

instance, the safety margin for the “peacetime-manned-normal weather” branch may be 

different from the safety margin for the “wartime-unmanned-normal weather” branch.  

Next, performance-based decision support requires a definition of capacity. This is 

typically done by first defining what failure is. Structural failure models can include (1) 

system-levels models structured around component failures and (2) explicit quantification 

of system performance. The first includes defining the individual components and their 

failure mechanisms, and then describing the system’s performance as a series, parallel, 

or series-parallel model with all the components included (Ang and Tang, 2007). The 
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second is, as previously described, a complex nonlinear analysis of the full structural 

system to evaluate for failure, load shedding, and progressive collapse. While the latter 

more appropriately accounts for the physics in the failures, the variability inherent in the 

problem drives this approach towards a probabilistic characterization of the structural 

capacity. The probabilistic, nonlinear analysis of a large system becomes computationally 

expensive (if it has enough data on the stochastic parameters to be run at all). 

The following logic tree framework is proposed for use when developing SDT 

solutions for operational guidance. First and foremost, the SDT must be developed to be 

able to place itself in the correct branch: 

1. Routine – Manned - Normal Weather 

2. Routine – Manned - Heavy Weather 

3. Routine – Unmanned - Normal Weather 

4. Routine – Unmanned - Heavy Weather 

5. Under Duress – Manned - Normal Weather 

6. Under Duress – Manned - Heavy Weather 

7. Under Duress – Unmanned - Normal Weather 

8. Under Duress – Unmanned - Heavy Weather 

In this construct, “optionally manned” vessels can be supported. Where-in the vessel may 

be manned for certain operations and unmanned for others. 

Until the point in time where a robust probabilistic solution that can account for 

steady state, gradual changes in state, and abrupt changes exists, the SDT must also 

can identify what state it is in: 

• Steady state 

• Gradual changes in state 

• Abrupt changes 

Then, a performance based structural assessment path can be developed for each 

path. This is conceptualized for the “Routine - Manned - Heavy Weather” branch (i.e. 
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branch 2) in Figure 10. In this figure, there are separate paths that are posed for each of 

the states.  

• For the steady state, deterministic data provides valuable information on what the 

ship has recently been subjected to, and probabilistic data is useful for accounting 

for the natural variability in the response. Both could be used. In each case, the 

components included in the definition of the system would be evaluated, and then 

assimilated into the system level assessment. The deterministic and probabilistic 

evaluation would then have to be fused to provide a clear output from the SDT. 

• For the gradual change branch, the same process could be applied, although now 

including the predictions.  

• For the abrupt change branch, the deterministic value may be the only useful data 

to include in the evaluation. However, since it is the only data that is being used, 

the margin being mapped to the structural evaluations may be different from that 

used in the deterministic branch of the steady state (or gradual change) branch. 

The logic tree shown in Figure 10 should be expanded for a complete SDT, with additional 

7 branches.  

The logic tree implicitly prescribes a system level structural assessment that is 

developed from a series, parallel, or series-parallel model containing the different 

components. Discussion on how that would be developed and validated is outside of the 

scope of this work. 

This logic tree also implies that there is a systematic method to integrate 

deterministic assessments (i.e., based only on retrospective data), probabilistic 

assessments (that account for the current variation in the response) and predictive 

assessments (that track and account for trends over time). This is a challenging problem 

focused on risk and risk tolerances. Further discussion on this is needed for the 

development of a SDT, but falls outside of the scope of this paper,  

It is worth noting that the performance-based approach allows for the SDT to 

account for monitoring data and the different branches of the situation. This is 
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fundamentally different from design. In the design stage, rules and standards have to 

holistically account for all the branches at once, and all of the potential loading scenarios. 

The rules and standards often lack the clear enumeration of how load variability is 

included, how material variability is accounted for, how strength variability is included, or 

how consequences and risk tolerances play a part in the criteria. This makes it extremely 

challenging to pull out the core requirements for structural assessment when it comes to 

digital twins and related products (such as monitoring systems). 

To parallel the proposed logic tree for SDTs for operational guidance, this paper 

proposes the same framework can be applied to condition based maintenance (CBM) 

SDTs with the appropriate adjustments for risk associated with the objective. The logic 

tree for CBM SDTs can be defined around the deterministic data. That is, only what 

happened to the ship is considered when identifying if any inspection actions need to be 

taken. This is shown in Figure 11. 

CBM SDTs can also be expanded to include probabilistic and predictive quantities. 

However, the time window for predictions is larger (i.e., 1 transit, 1 year, 1 deployment, 

etc.) than the shorter time windows (i.e. 1 min to 4 hrs.) included for the operational 

guidance support. Thus, the methodologies for predictions will be different. They would 

need to account for the potential conditions that the ship may experience over the transit 

(or year or deployment), as well as the current damage state and damage growth models. 

This is shown in the logic tree for prognostic based CBM in Figure 12. This topic of 

prognostics and digital twins is being addressed by the broader DT community (Woolley 

et. al., 2023). 
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Figure 10. Logic Tree for SDT with a Performance Based Structural Assessment 

Approach 
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Figure 11. Example Decision Tree for Condition Based Maintenance based on Observed 

Data Only 

 

 

 
Figure 12. Example Decision Tree for Condition Based Maintenance that Includes 

Prognostics. 
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8. Validation of Structural Digital Twins 

Validation of the SDT is essential prior to use. This statement may sound obvious, 

but it is critical, and therefore worth noting. Furthermore, the complexity of the design of 

SDTs dictate the need for validation and testing requirements. 

 The simplified definition for a SDT is data driven, physics-based models to support 

decisions. Unfurling the simplified definition provides a basic understanding for the 

validation needs for the: 

1. Data: This includes the evaluation of the reliability, durability, accuracy, among 

others, of the (1) hardware components, (2) data acquisition system, and (3) 

data quality. 

2. Models: This includes the evaluation of the model with respect to (1) the 

model’s ability to represent the physical as-built condition of the ship (or 

structural component), (2) the model’s ability to represent the demand (e.g., 

Load), and (3) the solver’s ability to appropriately assess response. 

3. Decision Support Process: This includes the evaluation of the 

recommendations provided by the SDT (e.g., do the accuracy/uncertainty 

bounds meet requirements, were the correct requirements set for supporting 

the decision, etc.) 

As the field of SDT (and the fields of Smart structures and Structural Health 

Monitoring) continues to develop, the validation and verification processes need to 

continue to develop as well. The class societies have started to document the 

expectations for validation and testing, as summarized in Table 7. Further work is needed 

to clarify the validation requirements and codify the testing methods necessary for 

validation. 
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Table 7. Class Standards and Validation & Testing Discussions 
Class Standard Validation / Testing 

ABS Hull Condition 
Monitoring (ABS, 2020) 

Operational verification procedure to be provided to ABS: Verification Procedure, 
covering initial set up and necessary calibration, is to be submitted for review.  
The procedure is to detail how to verify (1) that sensors are both operational and in 
adjustment or within calibration limits, as needed, and (2) how such confirmation 
will be needed for continued satisfactory operations to verify that the data 
collection, analysis, and display functions are still within function and calibration 
limits. 

ABS SMART (ABS, 2022) 

Indicates verification is needed for only tier 3 and 4 SHM systems. 
ABS is to verify and validate. The SHM function’s capability and the health 
assessment results are to be demonstrated to the satisfaction of the ABS 
Surveyor. 
When employing approach of SHM Tier 3, the calibration approach utilizing data 
from structural sensors is to be reviewed by ABS. 
When employing approaches of SHM Tier 4, the risk framework, approach, and 
risk assessment are to be reviewed by ABS 

Rules for the Classification 
of Steel Ships, NR467, Part 
F 
(BV, 2022) 

Not required for Hull, but have requirements for trials and verification for other 
components 

BV NR675 Additional 
Service Feature SMART 
(BV, 2021) 

Not required for hull smart functions, but has requirements for Machinery and 
Navigation smart functions 

DNVGL - Rules for 
classification: Ships — 
DNVGL-RU-SHIP Pt.6 Ch.9 
(DNV GL, 2017) 

Documentation requirements for Hull monitoring system - Test procedure for quay 
or sea trial - Report from quay and sea trial 
The initial readout of the sensor shall be checked against an agreed loading 
condition in calm water, with the attendance of a surveyor from the Society. If the 
difference is greater than 5% of the approved value or 10 N/mm2 occurs, 
whichever is the greater, the setup and subsequent checking shall be repeated. 
Calibration shall be verified by a surveyor from the Society. 
The operation of the hull monitoring system shall be verified upon installation by a 
surveyor from the Society: 
witness that the relevant procedures for testing the system are carried out. 
ensure that the recorded data is according to the requirement. 
verify that the maintenance and calibration log is complying with the relevant 
procedures. 

DNV GL Smart Vessel 
(DNV GL, 2020) 

Invokes DNVGL-RU-SHIP Pt.6 Ch.9 Sec.3, or system qualification (SQ) process 

Lloyds Register, ShipRight, 
Ship Event Analysis 
(Llyods Register, 2021) 

Not provided / not found 

CCS, Rules for Intelligent 
Ships 
(CCS, 2020) 

For Hull: The System testing procedure is to be submitted to CCS for information. 
After completion of installation of the system and equipment, survey and test are to 
be carried out in accordance with testing procedures to verify system function and 
effectiveness. 

CCS, Hull monitoring and 
assistant decision--making 
system for operations in 
ice  
(CCS, 2018) 

Installation, calibration, and actual verification of some tests and analysis if 
deemed necessary by the surveyor. 

Class NK 
(Class NK, 2020) 

Verification of installation requirement. 
Validation of strain level changes associating with changes in draught to be 
completed within 3 months of initial setup in the presence of a surveyor. 
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It is useful to note that CCS, Rules for Intelligent Ships have further elaboration of test 

and validation processes for machinery systems. This includes concepts such as 

- The baseline data of the equipment and systems are to be measured in the initial 

healthy condition (after the run-in period) or obtained by other means. The 

reference condition during measurement is to be documented. 

- The baseline data are in general to be measured during shipboard trials and the 

following requirements are to be complied with: 

1) Baseline data are to be measured by designated personnel. 

2) The measured baseline data are to cover the expected operating conditions 

of the equipment and systems. 

3) The effectiveness of the measured baseline data used for fault diagnosis 

and health assessment is to be assessed. 

4)  For new equipment or equipment after major conversion, the baseline data 

is to be measured after a period of running. 
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9. Functional Approaches for Structural Digital Twin 

Thus far, this document has focused on the philosophy and ontology around SDTs. 

This section will present the practical approaches and examples.  

The approaches explored in the project address the question: “If I have a 

measurement at a discrete location, can the response in uninstrumented locations be 

approximated?”. To further bound the problem to a more feasible scope, the question is 

further guided by the use cases: hull girder fatigue and major structural damage. For 

fatigue, vertical bending moment cycles and the induced stress is the governing feature 

for design (DNV-GL, 2018; ABS, 2017). The stress concentration and detail related 

assessments all stem from the quantification of the vertical bending moment range 

histogram, at least in early stages of design. For operational guidance and major 

structural damage, typically the concern is performance of the hull girder. The smaller, 

component level failures have less consequence. Given that these two concepts are the 

main drivers for this discussion on SDT, it then gives way to scoping of the problem to 

focus on vertical bending moments. The philosophical question then becomes: If moment 

data is available for the instrumented location, can moment information in other locations 

be inferred? This is conceptualized in Figure 13. 
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Figure 13. Philosophical Question: If data (shown as a red dot) is available for the 

instrumented location, can information in other locations be inferred (shown as the 
dashed lines)? 

 

Therefore, the bounded scope of this project pertains to vertical bending moments 

(VBM) for monohulls. This is driven by the need to narrow the scope to formulate a 

functional solution and by the prevalence of VBM for overload and fatigue. The former 

supports operational guidance needs and both support condition-based inspection needs. 

Furthermore, the bounded scope for this project pertains to the use of strain gage data 

as the data sources and finite element analysis (FEA). This was due to the availability of 

data and the technical merit in enhancing methods for coupling data with FEA. 

Since there is no direct method for measuring vertical bending moment, vertical 

bending moment is approximated by measuring strain in the hull girder, in areas isolated 

from secondary and tertiary strains, and using finite element analysis (FEA) derived 

calibrations to relate primary loads to strains. Assuming the strain response at a given 

location is the combination of vertical bending and lateral bending contributions 

[
𝜀1

𝜀2
] = [

𝐶𝐹1,𝑉𝐵 𝐶𝐹1,𝐿𝐵

𝐶𝐹2,𝑉𝐵 𝐶𝐹2,𝐿𝐵
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𝑉𝐵
𝐿𝐵

] (1) 

where εi is the strain at location i, VB and LB are the vertical and lateral bending moments 

at the frame, respectively, and CFi,j is the calibration factor relating the response j to the 
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measurement at location i. To summarize at a conceptual level: this analysis requires that 

use of data (strains) with other physics-based models (FEA for establishing the cal 

factors), thus putting this into the category of a higher-order data-model fusion approach.  

Section 9.1 presents a method that uses the actual strain response and the 

calibration approach described above. The method presented in Section 9.2 relies on the 

actual strain response data to be coupled with alternative FEA derived modal factors, and 

as such is a low-order data model coupling approach. It should be noted that “high order” 

and “low order” are loosely used to denote the layers of analysis that get applied to the 

data to support the SDT methods. 

9.1. Approach A: VBM Estimation via Data, FEA, & Surrogates  

9.1.1. Method: Envelope Approach 

A SDT method for approximating the vertical bending moment (shortened to 

Moment herein) along the length of the ship based on measurement data at one location 

was developed and evaluated. The underlying concept for this approach borrowed from 

design practices, wherein the evaluation of the hull girder is performed with respect to the 

bending moment envelope. Typically derived from empirical equations, analytical 

simulations, or model testing, the vertical bending moments are quantified along the 

length of the ship. The envelope represents the largest possible value for the location, as 

shown in black in the top plot of Figure 14. For cut 1, the moment may be the largest at 

time a, with a moment distribution along the length of the ship shown in light blue in Figure 

14. The maxima for cuts 2, 3, and 4 do not occur at the same time. Their maxima 

correspond to different instances in time, with different longitudinal distributions of 

moments.  

It is imperative to note that this approach is developed to support two dimensional 

assessments of the hull girder for bending capacity. As shown in the bottom plot in Figure 

14, the derivative of the moment envelop is not the shear envelope. The shear envelope 

(not shown) would be the largest values of shear expected along the length of the vessel. 
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At all cuts, the derivative of the moment envelope has a shear value less than that of at 

least the cut-specific maxima.  

Nevertheless, the use of moment envelope enables the evaluation of the structure 

to certain failure mechanisms. And, for this example application, those failure 

mechanisms were deemed sufficient for performance assessment. The methodology can 

be extended to apply to the different loads, and potentially load interactions, but for sake 

of time and priority, it was limited to just vertical bending moment.  

The moment envelope method is developed as follows: 

1. Develop an analytical model to support the estimate of seaway induced loads 

acting on a vessel in each operational condition.  

2. Evaluate the analytical model for a given operational condition (Sea State, Speed, 

Relative Heading) for the vertical bending moments at the desired, uninstrumented 

locations, and the instrumented location. 

3. Develop the moment envelope for the single operational condition (see Figure 15). 

4. Repeat the simulation for all arrays of operational conditions applicable to the 

specific vessel and develop the associated moment envelopes. 

5. Develop an aggregate moment envelope (see Figure 16). 
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Figure 14. Moment and Shear Longitudinal Distribution 
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Figure 15. Process for Developing a Moment Envelope for a Single Operational Condition 

via Seakeeping Simulation 

 

  
Figure 16. Process for Developing the Aggregate Envelope via Seakeeping Simulations 

for all Relevant Operational Conditions 

 

The aggregate moment envelope then defines the most conservative* relationship 

between the moment at the measured location and the moment in other locations. Thus, 

the uninstrumented locations bending moment can be estimated based on the ratios from 

the moment envelope.  

*Conservative was called out in the preceding description of the approach. This is 

because it is conservative when confined to the context of the analytical realm. However, 
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the analytically derived relationship is subject to the assumptions, limitations, and 

accuracy of the analytical model itself, which, unless validated, contributes to 

unquantifiable epistemic uncertainty (see section 5). For example, Large Amplitude 

Motions Program (LAMP) (Lin et. al., 2008) can be developed with respect to different 

hydrodynamic approaches: LAMP-1 (body-linearized 3-D method) through LAMP-4 

(large-amplitude 3-D body-nonlinear method). It can also be used to develop whipping-

induced responses if the whipping routine is evaluated.  

Another concept that falls out of the development of the largest moment envelope 

is the lowest moment envelop. The delta (i.e., the vertical distance) between the two 

curves represents the level of (quantifiable) conservativism that can be introduced by this 

method. Note that the lowest envelope is equal to the largest envelop only at the 

instrumented location. 

The method was developed and applied to a notional naval vessel. Operational 

conditions from the expected sea states, forward speeds, and relative headings were 

considered. Table 8 and Table 9 present the aggregate envelopes developed for Hog and 

Sag. Assuming the data is available for cut 2, the largest envelope can be used to 

approximate the vertical bending moment response at cuts 1, 3, and 4. For both Hog and 

Sag, the level of conservativism in this approach is roughly around 50%. This level of 

conservatism could lead to over-restrictive guidance that could hinder the operations of 

the vessel and negatively impact the mission/transit unduly. 

As such, it was hypothesized that increased knowledge, such as known speed or 

known speed and sea state, could improve the performance of the methods if the moment 

envelope was developed with respect to the conditioned information. The aggregate 

envelopes were thus developed from the data set, conditioned on speed. The results are 

shown in Table 10. No improvement was noted. Next, the aggregate envelopes were 

developed from the data set, first conditioned on sea state and then on speed. The results 

are shown in Table 11. Moderate improvement was noted when this additional information 

is available; the average conservativism was reduced to approximately 30%.  
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The envelope method is a simple to implement method for estimating bending 

moments in unmeasured locations. However, its natural conservativism may be too 

constraining to support the transition of this approach to support shipboard guidance.  

Table 8. Aggregate Envelope: Hog 

Normalized such that Cut 2 =1 

 Cut 1 Cut 2 Cut 3 Cut 4 

Largest Envelope 0.81 - 1.08 0.66 

Lowest Envelope 0.55 - 0.79 0.43 

Potential Conservativism 48% - 36% 51% 

 

Table 9. Aggregate Envelope: Sag 

Normalized such that Cut 2 =1 
 Cut 1 Cut 2 Cut 3 Cut 4 

Largest Envelope 0.71 - 1.21 0.74 

Lowest Envelope 0.47 - 0.80 0.47 

Potential Conservativism 52% - 50% 56% 

 

Table 10. Aggregate Envelope Conditioned on Speed Only 

Speed 
(kn) 

Field 

Hog: Normalized such that Cut 
2=1 

Sag: Normalized such that Cut 2=1 

Cut 1 Cut 2 Cut 3 Cut 4 Cut 1 Cut 2 Cut 3 Cut 4 

5 

Largest Envelope 0.79 - 1.05 0.62 0.80 - 1.31 0.74 

Lowest Envelope 0.54 - 0.79 0.45 0.51 - 0.86 0.48 

Potential Conservativism 45% - 32% 37% 57% - 51% 55% 

10 

Largest Envelope 0.81 - 1.04 0.56 0.75 - 1.24 0.70 

Lowest Envelope 0.56 - 0.77 0.41 0.47 - 0.84 0.47 

Potential Conservativism 45% - 35% 38% 61% - 48% 48% 

15 

Largest Envelope 0.80 - 1.08 0.66 0.73 - 1.23 0.71 

Lowest Envelope 0.57 - 0.77 0.40 0.46 - 0.82 0.45 

Potential Conservativism 41% - 40% 62% 56% - 51% 58% 

20 

Largest Envelope 0.77 - 1.01 0.57 0.77 - 1.17 0.70 

Lowest Envelope 0.54 - 0.82 0.46 0.51 - 0.75 0.46 

Potential Conservativism 41% - 24% 23% 51% - 55% 52% 

25 

Largest Envelope 0.74 - 1.04 0.58 0.71 - 1.13 0.61 

Lowest Envelope 0.52 - 0.80 0.43 0.53 - 0.80 0.44 

Potential Conservativism 42% - 31% 34% 33% - 41% 41% 
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Table 11. Aggregate Envelope Conditioned on Speed and Sea State 

Sea 
State 

Speed 
(kn) 

Field 
Hog: Normalized to Mid Ship =1 Sag: Normalized to Mid Ship =1 

Cut 1 Cut 2 Cut 3 Cut 4 Cut 1 Cut 2 Cut 3 Cut 4 

6 5 

Largest Envelope 0.79 - 0.97 0.55 0.68 - 1.20 0.69 

Lowest Envelope 0.61 - 0.83 0.47 0.55 - 0.86 0.51 

Potential Conservativism 28% - 17% 18% 24% - 39% 35% 

6 10 

Largest Envelope 0.81 - 0.99 0.56 0.67 - 1.06 0.63 

Lowest Envelope 0.63 - 0.84 0.47 0.52 - 0.93 0.53 

Potential Conservativism 29% - 19% 20% 28% - 14% 18% 

6 15 

Largest Envelope 0.75 - 0.96 0.53 0.69 - 1.11 0.71 

Lowest Envelope 0.58 - 0.82 0.44 0.54 - 0.84 0.52 

Potential Conservativism 30% - 17% 20% 27% - 31% 37% 

6 20 

Largest Envelope 0.76 - 0.97 0.53 0.67 - 1.13 0.70 

Lowest Envelope 0.57 - 0.83 0.46 0.54 - 0.88 0.47 

Potential Conservativism 33% - 16% 14% 24% - 28% 48% 

 

9.1.2. Method: Multivariate Lagged Regressive Model 

Discrete sensing along a ship lends insight into the bending moments the ship is 

experiencing only at the discrete sensor locations. However, the ship’s responses at all 

locations are highly correlated with each other. That is, the response in one location is 

highly correlated to the response at other locations. This fact leads to the existence of a 

model which relates the ship response in one location to expected response in a separate 

location. The ship response is directly correlated through the ship’s dynamic, section, and 

elastic properties which are not always available and may be affected by the operational 

regime. One class of solutions to this problem is data driven regressive modeling. These 

solutions seek to derive a model for one state, based on a combination of other states. 

One of these methods is a lagged regression. Lagged regression (LR) refers to the 

estimation of one state variable based on a combination of past readings of a different 

state variable, defined below. 

𝑥𝑡 = 𝐶 + 𝐵0𝑦𝑡 + 𝐵1𝑦𝑡−1 + 𝐵2𝑦𝑡−2 +  …+ 𝐵𝑛𝑦𝑡−𝑛 (2) 
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9.1.2.1. Initial Assessment 

In the context of ship primary loads, the unknown state may be the vertical bending 

moment at a non-instrumented location, and the independent variable may be the 

measured vertical bending moment at an instrumented location.  The LR model is built by 

finding the coefficients which minimize the residuals between the estimated state and the 

actual measurement. The initial assessment for this method was completed by examining 

the residual error incurred at different lag lengths using the vertical bending moment 

measured from a single experimental run condition of a vessel underway. 

 𝑽𝑩𝑴𝟏𝒕
= 𝑪 + ∑ 𝑩𝒊𝑽𝑩𝑴𝟏𝒕−𝒊

𝒏
𝒊=𝟎   (3) 

 

The results from the initial assessment are shown in Table 12. Since the residual 

errors are minimized for the development of the model, the low errors in standard 

deviation are to be expected. Typically, this data is used to support performance 

assessment, in which the maximum (max) and minimum (min) are the most critical. 

Therefore, the errors in the max and min are reported. 

The results suggest that by taking more fitting terms, or lags, the model will more 

closely match the maximum and the minimum values. However, as more terms are taken 

into the model, the error does not decrease as quickly and in the case of max value error, 

the residual even increases. Moreover, as more terms are included, there is a higher risk 

of over-fitting and having an unstable model. 

Table 12. The residual error, as measured by the difference in maximum, minimum, and 
standard deviation.  

Case Lag (s) 
Dependent 

Variable 
Independent 

Variable 
Error in 

 |Max Value| 
Error in |Min 

Value| 
Error in Standard 

Deviation 

1 0.05 VBM1 VBM2 -21% -50% -2% 

2 0.5 VBM1 VBM2 -9% -23% -1% 

3 1 VBM1 VBM2 -5% -20% -1% 

4 2 VBM1 VBM2 -4% -20% -1% 

5 4 VBM1 VBM2 -5% -16% -1% 

6 6 VBM1 VBM2 -5% -15% -1% 

7 8 VBM1 VBM2 -7% -13% -1% 
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Another possible method to reducing the residual error incurred is to use a multi-

variate lagged regression (MVLR) which adds additional sensor data into the model. One 

example may be to include another VBM reading from a different location.  

 𝑽𝑩𝑴𝟏𝒕
= 𝑲 + ∑ 𝑷𝒊𝑽𝑩𝑴𝟐𝒕−𝒊

𝒏
𝒊=𝟎 + ∑ 𝑸𝒊𝑽𝑩𝑴𝟑𝒕−𝒊

𝒏
𝒊=𝟎  (4) 

 

Table 13 shows the results from including another sensor reading into the MVLR 

model. In the case of .05s lag, the new model exhibited lower error than the single 

independent variable counterpart. However, for the other cases, little advantage was 

found. 

Table 13. The residual error from the MVLR model as measured by the difference in 
maximum, minimum, and standard deviation. 

Lag (s) 
Dependent 

Variable 
Independent 

Variable 
Error in 

 |Max Value| 
Error in 

 |Min Value| 
Error in Standard 

Deviation 

0.05 VBM1 VBM2 -21% -50% 2% 

0.5 VBM1 VBM2 -9% -23% 1% 

1 VBM1 VBM2 -5% -20% 1% 

2 VBM1 VBM2 -4% -20% 1% 

4 VBM1 VBM2 -5% -16% 1% 

6 VBM1 VBM2 -5% -15% 1% 

8 VBM1 VBM2 -7% -13% 1% 

0.05 VBM1 VBM2, VBM3 -12% -34% 2% 

0.5 VBM1 VBM2, VBM3 -7% -23% 1% 

1 VBM1 VBM2, VBM3 -4% -20% 1% 

2 VBM1 VBM2, VBM3 -3% -20% 1% 

4 VBM1 VBM2, VBM3 -3% -18% 1% 

6 VBM1 VBM2, VBM3 0% -12% 4% 

8 VBM1 VBM2, VBM3 -5% -14% 1% 

 

9.1.2.2. Effects of Operating Condition 

The residual errors shown above are measures of how well the models describe 

the actual relationship between sensors for a single run. However, the relationship 
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between the sensors may change depending on operating condition. Figure 17 shows the 

cross correlation between two sensors at various speeds. The different operating 

conditions lead to cross-correlation function which show vastly different behavior. This 

implies that the relationship between the two sensors depends on the operating condition 

and the MVLR method may be susceptible to error when the model is applied across 

operating conditions. 

 
Figure 17. The cross correlation between two VBM measurements varies with respect to 

the vessel's speed.  

 

Further validation efforts for the MVLR method were done using cross validation 

where the model is trained on one set of data and then applied to another. It should be 

noted that this method requires training data to be available at the non-instrumented 

location. Once the model is developed, however, it may be applied to non-training data 

which does not include measurements at the non-instrumented locations and the model 

error may be assessed. A new normalized error metric was included in the assessment 

to scrutinize the performance of the MVLR model more closely. Table 14 shows the mean 
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squared error for each training set, testing set pair with respect to vessel speed. The error 

values represent the similarity between two signals (Perlin & Bustamante, 2016). In this 

case the two signals are the predicted signal from the MVLR model, and the actual signal 

as measured. The values for the mean squared error vary between zero and one; zero 

being a perfect similarity and one being complete dis-similarity. The first take away is a 

significant difference in error depending on which speed was used to train and which 

speed was used to test. This implies that a model created using data from one speed 

condition will have varying error depending on the speed of the test data. Secondly, the 

lowest error does not always occur when the training speed and the testing speed are the 

same. This may be due to the presence of other moderating variables such as heading. 

Table 14. The mean squared error shows variation depending on what speed was used to 
train the model as well as the speed at which the model was tested. 

 Testing Speed (kn) 

5 10 15 20 25 

Training 
Speed 
(kn) 

5 0.176 0.164 0.160 0.176 0.202 

10 0.172 0.167 0.159 0.172 0.206 

15 0.174 0.169 0.161 0.172 0.205 

20 0.177 0.173 0.168 0.179 0.205 

25 0.230 0.216 0.225 0.232 0.187 

 

9.1.2.3. Diverse Model Training 

The above results show that the MVLR error is influenced by changes in operating 

condition. Therefore, operating condition must be considered to expand the applicability 

of the MVLR model. One option is to train the model using data from a diverse set of 

operating conditions. A lagged regression (LR) model was constructed by optimizing the 

coefficients across a full day of the trials. This set includes 35 unique conditions which 

span a wide variety of speeds and headings. The resulting model was validated using the 

remaining trials from other days. The model resulted in an average mean squared error 

of .21 and a median mean squared error of .17. The overall error distribution is shown in 

Figure 18. The errors are heavily skewed with the most errors being below .20 across all 

operating conditions. 
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Figure 18. Error distribution for the single dependent variable LR model trained on a 

diverse set of operating conditions. 

 

Table 15 shows the error values for the best and the worst test cases respectively. 

Figure 19 and Figure 20  show the worst and the best test cases tested using the diverse 

trained LR model, respectively. In the best case, the low mean squared error shows a 

high degree of similarity between the predicted and the actual signal. The difference in 

sign for the errors in maximum and minimum values lends insight into the possible source 

of error. A positive error shows the predicted value is further from zero than the actual 

value. Therefore, for run Condition 1, a large portion of the error comes from a bias shift. 

In other words, some error could be accounted for by shifting the mean of the predicted 

signal. On the other hand, trial Condition 2 does not show this issue. The maximum and 

minimum value errors are both negative which implies that the prediction is dilated. 

However, this dilation does not account for the much larger mean squared error.  Indeed,  

Figure 19  shows that a large portion of the error is being contributed from an apparent 

phase shift which is introduced by the predicted signal. This behavior is often a product 

of non-modeled phenomena. 
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Table 15 Error values for the diverse trained LR model for the worst and best test cases 

 

Error 

Mean 
squared 

Max 
Value 

Min 
Value 

Standard 
Deviation 

Condition 1 0.087 11.9% -7.5% 4.80% 

Condition 2 0.683 -20.4% -19.1% 2.80% 

 

 

 
Figure 19.Measured and LR prediction response for Condition 1  
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Figure 20. Measured and LR prediction response for Condition 2 

 

Figure 21 through Figure 23 show the error distribution associated with the LR 

model at each operating condition. For the heading and the sea state cases, the central 

tendency of the error remains consistent across conditions. However, this is not the case 

for speed. As the speed varies, the central tendency for the error distributions also 

changes significantly even when the model was trained using a diverse set of conditions. 

Also, in all three cases, the skewness and the variance of the distributions are inconsistent 

across operating conditions. Therefore, it may be concluded that even when a diverse set 

of training data is used, the error between the predicted signal and the actual signal 

remains highly associated with the operating condition. 
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Figure 21. The error distributions at each heading tested show similar central tendencies 

and some variation in skewness and variance. 

 
Figure 22. The error distribution at each speed tested shows significant differences in 

central tendency as well as skewness and variance. 
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Figure 23. The error distributions at each sea state tested show similar central 

tendencies and some variation in skewness and variance. 

 

A MVLR model was derived using a diverse set of training data to counter the 

effects of operating conditions. However, the operating conditions were not included in 

the model itself. Therefore, it is possible that the dilation and the phase error are due to 

operating condition effects which are not modeled. 

In section 9.1.2.1, the residual error was shown to decrease when a second sensor 

was used in the modeling effort. As such, a multi-variate lagged regression (MVLR) model 

was trained using two sensors instead of one at the same training conditions as before. 

The overall error distribution is shown in Figure 24, and Table 16 shows the cross-

validation error values when two sensors are used in the MVLR model. For both cases, 

the mean squared error decreased. For the other three errors, namely the maximum 

value, minimum value, and standard deviation error, the model performance shows split 

results. Condition 1 exhibited lower errors across the board and Condition 2 exhibited 

higher errors across the board. This divergence in results further implies that the response 
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under the conditions of Condition 2 is not modeled well using the response at other 

conditions, and operating conditions must therefore be accounted for separately.  

 
Figure 24. Error distribution for the two-regression variable MVLR model trained on a 

diverse set of operating conditions. 

 

Table 16: Error values for the two-regression variable MVLR model trained on a diverse 
set of operating conditions. 

Condition 

Error 

Mean 
squared 

Max 
Value 

Min 
Value 

Standard 
Deviation 

Condition 1 0.074 7.0% -2.5% 3.5% 

Condition 2 0.636 -26.3% -26.1% 9.1% 
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Figure 25. Measured and two-regression variable MVLR model trained on a diverse set 

prediction response for Condition 1 

 
Figure 26. Measured and two-regression variable MVLR model trained on a diverse set 

prediction response for Condition 2. 
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9.2. Approach B: VBM Estimation via Data, FEA, & Structural Modes 

Approach A (presented in Section 8.1) starts with a formulation for estimating 

structural loads (also referred to as internal loads) from strain gages. Approach B keys in 

on this part of the SDT: how are loads estimated from measurements.  

9.2.1. Theory: Formulating the Strain-to-Load Conversion Problem 

Many methods have been developed to infer the internal loads developed within 

structures from imperfect strain, displacement, velocity, and/or acceleration 

instrumentation measurements. This is, generally, a very ill-posed, underdetermined 

problem, as only a few discrete measurements are used to infer the response of the entire 

structure. This is especially true for very large structures such as surface ships, where 

the global loads experienced by the hull girder are typically calculated via measurements 

from a series of perhaps ten to twenty primary strain gauges.  

For the evaluation of surface ship global loads, the assumption is typically made 

that the relationship between strain and the internal loads induced in the hull girder are 

linear, with these linear relationships quantified in a conversion matrix. As will soon be 

discussed, a variety of methods exist to generate these matrices and compute internal 

hull girder loads from measured strains. The differences between these methods stem, 

primarily, from the selection of basis vectors used in defining the conversion matrix, and 

the method of solution applied to the resulting system of equations.  

The basis vector selection gives the method its physical significance; typically, 

these vectors are linearly independent modes of the structural response, as computed 

from finite element (FE) model of the hull girder. The method of solution is independent 

of information preserved within the selected basis. However, the relative number of strain 

gauge measurements, basis vectors, and hull girder loads to be computed dictates the 

dimensions of the system of equations to be evaluated. These relative dimensions dictate 

whether the system is determinate or indeterminate (overdetermined, or 

underdetermined), each requiring different methods of solution. 
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To compute a well-conditioned, relatively insensitive solution for the internal loads, 

provided some discrete set of imperfect strain measurements, the system of equations 

must be, at a minimum, determinate or, preferably, overdetermined. Due to the errors 

inherent in strain sensor measurements, it is preferrable to have an overdetermined 

system, as multiple conditions/constraints can be applied to the same variables/DOFs of 

the model, while not strictly enforcing any of them (as this would increase the sensitivity 

of the system); i.e, soft constraints.  

As such, a novel methodology is presented herein that employs the assumptions 

of linear elasticity, as well as the scalar amplification and linear independence properties 

of eigenmodes, in order to generate a well-conditioned, overdetermined system of 

equations for computing internal load. 

9.2.2. Formulating the Strain-to-Load Conversion Problem 

Bigot et. al. (2013) details the definition of the strain-to-load conversion matrix and 

mathematical formulation of the overall problem. It is summarized here for the sake of 

completeness, though the notation used herein differs from the original summary. Bold 

letters denote vectors and matrices, whereas scalars are denoted by normal text. 

Superscripts denote the dimension(s) of the given variable, and subscripts denote 

variable counters. 

As with many problems of practical importance, this problem is formulated as a 

linear relationship between a set of inputs and a set of outputs. In this case, the input is 

a set of 𝑝 strain measurements, 𝜺𝑝, extracted from gauges/sensors instrumented on an 

in-service platform, and the output is a set of 𝑞 corresponding cross-sectional hull girder 

internal loads, 𝒇𝑞. They are related through a conversion matrix, 𝑪𝑞𝑥𝑝, where  

𝑪𝑞𝑥𝑝𝜺𝑝 = 𝒇𝑞 (5) 

It should be noted that, in general, the quantity of strain measurements is not equal 

to the desired quantity of cross-sectional hull girder loads, i.e., 𝑝 ≠ 𝑞. 
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By defining the measured strain data as the superposition of a set of orthogonal 

modal basis vectors, 𝜺𝑝 can be defined as 

𝜺𝑝 = 𝚿𝑝𝑥𝑚𝛂𝑚 ≡ ∑𝝍𝑖
𝑝
𝛼𝑖

𝑚

𝑖=1

 (6) 

where 𝚿𝑝𝑥𝑚 is a matrix composed, column-wise, of 𝑚 modal strain basis vectors 𝝍𝑖
𝑝
, and 

𝛂𝑚 is the corresponding vector of 𝑚 scalar modal amplitudes 𝛼𝑖. Note that 𝑖 is the counter 

for the modal basis vectors, where 𝑖 =  1, … ,𝑚. 

If displacements are small and strains can be approximated as “infinitesimal”, the 

relationship between strain and internal load can be assumed linear. This assumption 

allows for the computation of the cross-sectional loads via the superposition of modal load 

vectors, corresponding to the same basis as the set of orthogonal modal strain vectors. 

That is  

𝒇𝑞 = 𝐑𝑞𝑥𝑚𝛂𝑚 ≡ ∑𝒓𝑖
𝑞
𝛼𝑖

𝑚

𝑖=1

 (7) 

where 𝐑𝑞𝑥𝑚 is a matrix composed, column-wise, of 𝑚 modal load basis vectors 𝒓𝑖
𝑞
, and 

𝛂𝑚 is, again, the corresponding vector of 𝑚 scalar modal amplitudes 𝛼𝑖. Note that the 

vectors of modal amplitudes 𝛂𝑚 in equations 6 and 7 are equivalent. Under this 

assumption, they can be manipulated and combined to yield the equation below 

𝒇𝑞 = 𝐑𝑞𝑥𝑚(𝚿𝑝𝑥𝑚)−1𝜺𝑝 (8) 

This methodology relies on the inversion of 𝚿𝑝𝑥𝑚. However, if the number of strain 

measurements does not equal the number of vectors composing the modal basis, 𝚿𝑝𝑥𝑚 

is not invertible, and the system of equations becomes either underdetermined (𝑝 < 𝑚) 

or overdetermined (𝑝 > 𝑚). 
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9.2.3. General Notes Regarding Load-to-Strain Conversion Methods 

The standard approaches to the strain-to-load conversion problem have their 

shortcomings. The goal of these methodologies is for 𝑪𝑞𝑥𝑝 to contain, implicitly, all 

possible physical relationships between strain and internal load. Since all physical 

relationships are, to some extent, nonlinear, each element of 𝑪𝑞𝑥𝑝 should be a function of 

𝜺𝑝 and 𝒇𝑞 (and, most likely, many other additional factors), not a constant. Additionally, 

since the data is so sparse and the system of equations is so underdetermined, 

knowledge of these nonlinear relationships only for the DOFs included in the 𝑞𝑥𝑝 system 

in equation 5 does not provide sufficient information to infer the response at other DOFs. 

This is because, unlike linear systems, the ratio of responses between DOFs isn’t 

constant.  

This is one of the major issues with all underdetermined inverse problems; as the 

phenomena being simulated become more complex and nonlinear, more data and 

physical relationships are required to properly model them. As such, the ability to employ 

the assumptions of linear phenomena is ideal, whenever possible, as it provides 

additional relationships to exploit between non-local DOFs. Luckily, in the case of surface 

ship hull girder response, the assumption of linear, small displacement, infinitesimal strain 

response is typically reasonable, as most sea states experienced by the hull girder do not 

induce large structural response; at least globally. As such, the elements of 𝑪𝑞𝑥𝑝 can be 

reasonably approximated as constants. 

The next issue involves the determination and computation of the basis vectors 

composing 𝑪𝑞𝑥𝑝. These bases are what give these methodologies their physical 

significance. Typically, these vectors correspond to set of linearly independent distortion 

modes (i.e, a generalized modal basis) computed via a numerical model of the ship’s hull 

girder. However, a wide variety of methods exist in the selection and computation of these 

modal responses. Ultimately, the methodology selected depends on whether the 

generalized modal basis employed can produce a span capable of reconstructing the 

response for the given loading. 
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One of the simplest approaches is to generate the modal generalized basis from 

modes of response computed by an FE model of the ship hull girder, subjected to a series 

of pre-computed shear forces along its length, in order to induce specified shear and 

moment distributions. Basis vectors have also been generated via linear, frequency-

domain seakeeping simulations, where loads corresponding to waves of varying heading 

and frequency are applied to the FE model of the hull girder; see Bigot et. al. (2015), Jiang 

(2021) and Wang et. al. (2021) Note, however, that for both cases, the computed 

responses are not guaranteed to be linearly independent, or even to have low cross-

correlation. Though, in the latter case, methods have been semi-automated to extract the 

set of least-correlated modes from the pool of extracted modal responses. Alternatively, 

the natural modes of vibration of the hull girder, computed via a structural dynamic FE 

eigen analysis, can also be employed to generate the basis; see Bigot et. al (2013), 

Baudin et. al. (2013), and Jiang (2021). 

While the methodology discussed herein applies more to the solution of the strain-

to-load conversion, it is important to note that the basis selected must be physically 

accurate to be efficient. Bigot et. al. (2013) compared the use of a dry free vibration modal 

basis with a basis generated from linear, frequency-domain seakeeping simulation loads, 

for the case of an Ultra Large Container Ship (ULCS). It was determined that the modes 

generated from the responses to linear seakeeping simulation-generated loads were 

more efficient than the dry modal basis. However, as the authors note, this requires further 

investigation. While the dry free vibration modes may not provide the best modal basis 

for these methods, that does not preclude the use of free vibration modes. It is 

recommended that research into the use of a wetted free vibration modal basis be 

performed. Simple boundary element methods can be used to compute eigenmodes with 

fluid added mass This type of method could potentially provide more physical accuracy 

than a dry modal basis, more generality and efficiency than using a linear seakeeping 

simulation to compute distortion modes, and it would ensure linear independence of the 

modal generalized basis.  
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9.2.4. Improved Strain-to-Load Conversion Methodology 

This section presents an improved strain-to-load conversion methodology. The 

inputs are the displacement modes of the hull girder, as computed via an FE structural 

dynamic eigen-analysis. As such, linear independence of the responses is ensured. The 

measured data and relationships provided by the FE model are then manipulated in such 

a way as to generate an overdetermined system of equations for computing internal load. 

Regarding notation, bold, capitalized variables refer to matrices, bold, lower-case 

variables refer to vectors, and non-bold characters refer to scalars. Superscripts define 

the dimensions of the given variable, and subscripts define its counter. Also note that, 

when describing dimensions (superscripts), all dimensions in parentheses correspond to 

a single dimension; e.g, a variable 𝒂(𝑏𝑥𝑐) is a vector of length (𝑏𝑥𝑐), and 𝑨(𝑏𝑥𝑐)𝑥(𝑑𝑥𝑒) is a 

matrix with (𝑏𝑥𝑐) rows and (𝑑𝑥𝑒) columns. 

This process will first be demonstrated for the case of computing the hull girder 

cross-sectional load at 𝑞 section cuts. The first step is to explicitly define the elements of 

the conversion factor matrix. For this method, this will be an (𝑚𝑥𝑞𝑥𝑝)𝑥𝑝 matrix, where, 

like in the previous sections, 𝑚 is the total number of modes forming the modal 

generalized basis, 𝑝 is the total number of strain gauge measurements composing 𝜺𝑝, 

and 𝑞 is the total number of section cuts at which to compute cross-sectional internal 

loads; the counters employed for the totals 𝑚, 𝑝, and 𝑞 are 𝑖, 𝑗, and 𝑘, respectively. Each 

element of the conversion matrix corresponds to the 𝑖th modal ratio of the 𝑘th modal cross-

sectional load 𝑟𝑘
𝑖  to the corresponding 𝑗th strain gauge measurement location modal 

response 𝜓𝑗
𝑖, as extracted from the FE model of the hull girder; i.e, 

𝑪(𝑚𝑥𝑞𝑥𝑝)𝑥𝑝 =

[
 
 
 
 𝒄1

(𝑚𝑥𝑞)
𝟎1

(𝑚𝑥𝑞)
⋯ 𝟎1

(𝑚𝑥𝑞)

𝟎2
(𝑚𝑥𝑞)

𝒄2
(𝑚𝑥𝑞)

⋯ 𝟎2
(𝑚𝑥𝑞)

⋮ ⋮ ⋱ ⋮

𝟎𝑝
(𝑚𝑥𝑞)

𝟎𝑝
(𝑚𝑥𝑞)

⋯ 𝒄𝑝
(𝑚𝑥𝑞)

]
 
 
 
 

 (9) 
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where each vector 𝒄𝑗
(𝑚𝑥𝑞)

 consists of the modal load-to-strain ratios corresponding to the 

𝑗th strain gauge measurement response 𝜓𝑗
𝑖; i.e, 

𝒄𝑗
(𝑚𝑥𝑞)

= {
𝑟1

1

𝜓𝑗
1

𝑟1
2

𝜓𝑗
2 ⋯

𝑟1
𝑚

𝜓𝑗
𝑚

𝑟2
1

𝜓𝑗
1 ⋯

𝑟2
𝑚

𝜓𝑗
𝑚 ⋯

𝑟𝑘
1

𝜓𝑗
1 ⋯

𝑟𝑘
𝑚

𝜓𝑗
𝑚}

𝑇

 (10) 

Multiplication of the conversion matrix 𝑪(𝑚𝑥𝑞𝑥𝑝)𝑥𝑝 by the vector of strain measurements 

�̅�𝑝 yields the corresponding vector of modal cross-sectional loads at each cross-section, 

and each strain gauge measurement, 𝛄(𝑚𝑥𝑞𝑥𝑝); i.e, 

𝑪(𝑚𝑥𝑞𝑥𝑝)𝑥𝑝�̅�𝑝 = 𝛄(𝑚𝑥𝑞𝑥𝑝) (11) 

where, in this formulation, the overbar in �̅�𝑝 represents measurement data. 

Note that the strain gauge measurement vector simply acts as a scalar amplifier of the 

modal loads used to define the coefficients in 𝑪(𝑚𝑥𝑞𝑥𝑝)𝑥𝑝; i.e., 

γ𝑖,𝑗,𝑘 =
𝑟𝑘

𝑖

𝜓𝑗
𝑖
∙ 𝜀�̅� = (

𝜀�̅�

𝜓𝑗
𝑖
) 𝑟𝑘

𝑖  (12) 

where γ𝑖,𝑗,𝑘 is one of the scalar elements of the vector 𝛄(𝑚𝑥𝑞𝑥𝑝). 

Also note that each vector 𝒄𝑗
(𝑚𝑥𝑞)

 in 𝑪(𝑚𝑥𝑞𝑥𝑝)𝑥𝑝 relates the 𝑗th strain measurement to all 

modal cross-sectional loads. Thus, multiplication of the strain measurement vector by the 

entire conversion factor matrix yields the modal cross-sectional loads for all strain 

measurements, separately. As such, the right-hand side (RHS) vector 𝛄(𝑚𝑥𝑞𝑥𝑝) can be 

defined as a vector consisting of 𝑝 sub-vectors, each corresponding to one of the 𝑝 strain 

gauge measurements; i.e, 

𝛄(𝑚𝑥𝑞𝑥𝑝) = {𝛄1
(𝑚𝑥𝑞)

𝛄2
(𝑚𝑥𝑞)

⋯ 𝛄𝑝
(𝑚𝑥𝑞)}

𝑇
 (13) 

 

 



 

82 

 

where each sub-vector 𝛄𝑗
(𝑚𝑥𝑞)

 is defined as 

𝛄𝑗
(𝑚𝑥𝑞)

= 𝜀�̅� {
𝑟1

1

𝜓𝑗
1

𝑟1
2

𝜓𝑗
2 ⋯

𝑟1
𝑚

𝜓𝑗
𝑚

𝑟2
1

𝜓𝑗
1 ⋯

𝑟2
𝑚

𝜓𝑗
𝑚 ⋯

𝑟𝑘
1

𝜓𝑗
1 ⋯

𝑟𝑘
𝑚

𝜓𝑗
𝑚}

𝑇

 (14) 

Once the cross-sectional modal loads have been computed, the strain measurement 

vector can be defined via mode superposition as 

�̅�𝑝 = 𝚿𝑝𝑥𝑚𝜶𝑚 ≡ ∑𝛼𝑖𝝍𝑖
𝑝

𝑚

𝑖=1

 (15) 

This becomes 

𝑪(𝑚𝑥𝑞𝑥𝑝)𝑥𝑝𝚿𝑝𝑥𝑚𝜶𝑚 = 𝛄(𝑚𝑥𝑞𝑥𝑝) (16) 

Multiplication of 𝑪(𝑚𝑥𝑞𝑥𝑝)𝑥𝑝 and 𝚿𝑝𝑥𝑚 yields a new conversion matrix that relates the 

modal cross-sectional loads in 𝛄(𝑚𝑥𝑞𝑥𝑝) to the modal amplitudes in 𝜶𝑚, not directly to the 

strain measurements �̅�𝑝; this new matrix will be defined as  𝚾(𝑚𝑥𝑞𝑥𝑝)𝑥𝑚; i.e, 

𝚾(𝑚𝑥𝑞𝑥𝑝)𝑥𝑚𝜶𝑚 = 𝛄(𝑚𝑥𝑞𝑥𝑝) (17) 

Solution of the overdetermined least-squares system yields the vector of modal 

amplitudes 𝜶𝑚, from which the resultant cross-sectional loads corresponding to the strain 

measurement data in �̅�𝑝 can be computed via mode superposition. However, this first 

requires the conversion matrix to be reassembled and redefined as 

𝚾(𝑚𝑥𝑞)𝑥𝑚 = [𝒙1
(𝑚𝑥𝑞)

𝒙2
(𝑚𝑥𝑞)

⋯ 𝒙𝑚
(𝑚𝑥𝑞)] (18) 

where 

𝚾(𝑚𝑥𝑞)𝑥𝑚 = 𝑾(𝑚𝑥𝑞)𝑥(𝑚𝑥𝑞)𝑪(𝑚𝑥𝑞)𝑥𝑝𝚿𝑝𝑥𝑚 (19) 

and 

𝑪(𝑚𝑥𝑞)𝑥𝑝 = [𝒄1
(𝑚𝑥𝑞)

𝒄2
(𝑚𝑥𝑞)

⋯ 𝒄𝑝
(𝑚𝑥𝑞)] (20) 
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Where 𝑾(𝑚𝑥𝑞)𝑥(𝑚𝑥𝑞) is a block diagonal weighting matrix used to scale the contributions 

of each vector 𝒄𝑗
(𝑚𝑥𝑞)

 (corresponding to a given strain gauge) to the total solution and, 

now, since 𝜶𝑚 provides the best fit solution corresponding to all strain gauge 

measurements in �̅�𝑝, multiplication of 𝚾(𝑚𝑥𝑞)𝑥𝑚 with 𝜶𝑚 will yield the vector of modal 

cross-sectional loads that best approximates all vectors 𝛄𝑗
(𝑚𝑥𝑞)

 i.e, the solution 𝛄(𝑚𝑥𝑞) best 

approximates all 𝑝 sub-vectors 𝛄𝑗
(𝑚𝑥𝑞)

 of 𝛄(𝑚𝑥𝑞𝑥𝑝), 𝑗 = 1,… , 𝑝. Thus, 

𝛄(𝑚𝑥𝑞) = 𝚾(𝑚𝑥𝑞)𝑥𝑚𝜶𝑚 ≡ ∑𝛼𝑖𝒙𝑖
𝑞

𝑚

𝑖=1

 (21) 

where 𝛄(𝑚𝑥𝑞) is the modal cross-sectional load vector with each of its (𝑚𝑥𝑞) terms equal 

to some weighted average of their corresponding 𝑝 terms (per strain gauge) in 𝛄(𝑚𝑥𝑞𝑥𝑝) 

(corresponding to the weights in 𝑾(𝑚𝑥𝑞)𝑥(𝑚𝑥𝑞)). Note, however, that 𝛄(𝑚𝑥𝑞) is still a vector 

containing modal components of each cross-sectional load; i.e, 

𝛄(𝑚𝑥𝑞) = {γ1,1 γ2,1 ⋯ γ𝑚,1 γ1,2 ⋯ γ𝑚,2 ⋯ γ1,𝑞 ⋯ γ𝑚,𝑞}𝑇 (22) 

Where γ𝑖,𝑘 is the weighted average modal cross-sectional load corresponding to the 𝑖th 

mode and cross-section cut 𝑘. Thus, subsequent superposition of all modal components 

for each cross-section cut yields the best fit RHS force vector 𝒇𝑘; i.e, 

𝒇𝑘 = {𝑓1 𝑓2 ⋯ 𝑓𝑞}𝑇 (23) 

𝑓𝑘 = ∑γ𝑖,𝑘

𝑚

𝑖=1

 (24) 

Additionally, the mode superposition definition can be used to compute the approximation 

of the measurement strain vector �̅�𝑝; the approximation will be defined as 𝜺𝑝 (no overbar); 

i.e, 

𝜺𝑝 = 𝚿𝑝𝑥𝑚𝜶𝑚 ≡ ∑𝛼𝑖𝝍𝑖
𝑝

𝑚

𝑖=1

 (25) 
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The vector of errors between the strain measurement data and the reconstructed strains 

can then be computed, 

∆𝜺𝑝 = �̅�𝑝 − 𝜺𝑝 (26) 

as well as the Euclidean norm of the error, 

norm(∆𝜺𝑝, 2) = ‖�̅�𝑝 − 𝜺𝑝‖2 (27) 

The key elements of this method are summarized below: 

1. As opposed to the standard method of computing the conversion matrix as a 

product of modal bases, the components of the conversion matrix 𝑪(𝑚𝑥𝑞𝑥𝑝)𝑥𝑝 are 

defined explicitly as ratios of cross-sectional load to elemental strains, extracted 

from the FE model of the structure.  

2. Since the responses forming the generalized modal basis are global in nature, the 

strains and cross-sectional loads for every strain gauge-representative location 𝑗, 

and cross-section cut 𝑘, respectively, will likely be non-zero. Thus, the load-to-

strain ratios are unique, non-zero scalar coefficients for every mode, strain, and 

cross-sectional load.  

3. Since all DOFs of linear modes scale by a single amplitude, the products of the 

conversion matrix coefficients in 𝑪(𝑚𝑥𝑞𝑥𝑝)𝑥𝑝 with the corresponding gauge strain 

measurements in �̅�𝑝 should, theoretically, yield 𝛄(𝑚𝑥𝑞𝑥𝑝) with all sub-vectors 𝛄𝑗
(𝑚𝑥𝑞)

, 

𝑗 = 1,… , 𝑝, being equal; i.e, 

𝒄𝑗
(𝑚𝑥𝑞)

�̅�𝑝 = 𝛄𝑗
(𝑚𝑥𝑞)

 (28) 

𝛄𝑗
(𝑚𝑥𝑞)

= 𝛄𝑙
(𝑚𝑥𝑞)

, 𝑗 ≠ 𝑙 (29) 

However, since the strain measurement data will contain some amount of error, 

the condition in equation 29 will likely not be the case, thus, creating the need for 

a best-fit solution to 𝜶𝑚. 



 

85 

 

4.  By defining the conversion matrices 𝑪(𝑚𝑥𝑞𝑥𝑝)𝑥𝑝 and 𝚾(𝑚𝑥𝑞𝑥𝑝)𝑥𝑚 in the manner 

described above, the system is always overdetermined. As previously discussed, 

this is much more preferrable to an underdetermined system of equations (i.e, 

having more equations than unknowns as opposed to more unknowns than 

equations). 

Equations 28 and 29 provide quantitative error metrics to determine whether the 

vectors of the generalized modal basis defining 𝚿𝑝𝑥𝑚 create a span sufficient to 

approximate the loads corresponding to the input strain data, or if additional basis vectors 

are required; again, this assumes that the structural response is linear. 

9.2.5. Recommendations for the Formulation of Loads from Discrete 

Measurements 

The following are the recommended follow-on work associated with approach B: 

1. Compare the proposed methodology with current practices. Assess the 

applicability of the proposed method and the value added. The added 

complexity of solving for modal properties increases the amount of information 

needed to develop the model, as well as adds the layer of modal identification. 

The added time needed to complete the more complex and increased number 

of steps needs to be mapped against the value added. This will provide the 

information necessary to support the design-trade space studies for digital twin. 

2. Approach B utilizes the fundamental mode shapes to develop the strain-to-load 

conversion matrices. The theories of structural dynamics suggest that an 

observed response in the time domain can be decomposed into modal 

components. The applicability of which is worth pursuing as a method to 

estimating the response along the length of the ship. 

Thus, a viable path to explore going forward (to improve the estimation of loads by 

capitalizing on sparse, spatially distributed measurements) could include the use of the 
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developed modes to identify the modal participations factors as a function of time. This 

enables the estimation of loads in uninstrumented areas to a higher level of accuracy. 

An anticipated challenge is the prevalence of the forcing load profile in the 

response profile. The development of the future approach should consider this, as the 

structural vibration modes may be limited at systematically representing the structural 

response to the loading and vibrational behavior of the ship structure. 

9.3. Approach C: Accounting for Uncertainties in Loads  

9.3.1. Incorporating Uncertainties 

The statistical assessment of the natural variability in primary loads extrema is an 

essential step in the development of an SDT.  Fundamentally, the analysis of the primary 

loads assumes that they are stationary and ergodic random processes (amongst other 

statistical characteristics; see Rice (1944) for full details), their extrema (i.e., peaks) have 

been shown to be characterized with the Weibull distributions. In the select case where 

the load is a stationary, narrow-banded, Gaussian process, the extrema can be shown to 

be Rayleigh distributed, which is the equivalent of a Weibull distribution with a shape 

parameter of 2. For secondary loads, it has been shown that the Weibull distribution is 

also a good closed-form distribution to use to quantify the response (Lewis, 1989).  

The Weibull distribution is a robust, closed-form distribution that is actually a family 

of distributions that can have an infinite number of shapes depending on the parameter 

β. The Weibull distribution contains both the Rayleigh distribution (β = 2) and the 

exponential distribution (β = 1). The shape parameter, β, is also referred to as the slope, 

which comes from the fact that the Weibull distribution can be transformed into a 

linearized form by taking the natural log of both sides twice. While the Weibull distribution 

is a useful distribution to quantify extrema, it is also a single-sided, unbounded distribution 

with non-zero probabilities for values of x approaching infinity. Thus, it does not account 

for any physical limitations on maxima. 
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The most generic form of the Weibull distribution is the three-term 

parameterization, expressed as: 

 F𝑋(x) = {1 − 𝑒
−(

𝑥−𝑋0
𝜂−𝑋0

)
𝛽

       𝑥 ≥  𝑋0

0                              𝑥 <  𝑋0 
 (30) 

where, 

FX(x) = cumulative density function (CDF) (i.e., the probability of non-exceedance 

of x) 

xo = threshold value of x (i.e., the value below which there is no measured data) 

β = the Weibull shape parameter 

η = the Weibull scale parameter  

There are multiple methods for estimating the Weibull parameters (xo, β, 𝜂) for a 

given dataset, including linear regression and moment-methods. Linear regression 

capitalizes on the linearized form of the Weibull distribution where independent and 

dependent variables can be defined and fit with a straight line. In doing so, parameters 

can be estimated with least square regression (a stable numerical solver), but the lower 

peaks are disproportionately weighted due to the transformation into the log-log space. 

Moment methods rely on solving the nonlinear equations for the central moments of the 

observed dataset and the assumed Weibull distribution. This approach weighs all events 

equally but, in some cases, is sensitive to numerical instabilities. A full description of the 

solution techniques is presented in past reports (Abernathy et. al., 1983; Lewis, 1989) 

including the two- and three- term linear regression methods (LR2 and LR3, respectively) 

and the two- and three- term moment methods (MM2 and MM3, respectively). The 

alternative fits are developed for the peaks, and then the method that has the best 

goodness of fit in the upper region is chosen to quantify the statistical distribution.  

Considering guidance is concerned with the strength of the vessel being greater 

than the loads, the extreme values is a useful statistical quantity for SDT: The largest 

values for a sample of a finite size are also random variables. The distribution of the 
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largest values, herein referred to as the extreme, are related to the distribution of their 

initial variate (or sample set) (Ang and Tang, 2007). The initial variate distribution defines 

the probability of the event for the tested time duration. However, the lifetime exposure is 

typically larger than that which was tested. As such, the number of instances, N, of the 

initial variate, x, that occurs over the lifetime can be used to define probability of the 

extreme. Assuming that the events are statistically independent and identically 

distributed, the cumulative distribution of the extreme value is:  

 𝐹𝑌(𝑦) = 𝐹𝑋(𝑦)𝑁 (31) 

where y is the extreme lifetime value, and FY(y) is the probability of non-exceedance of 

the extreme value. Given the CDF of the initial variate FX(x) is defined by the Weibull 

CDF, this can be rewritten as  

 𝐹𝑌(𝑦) = [1 − 𝑒
−(

𝑦− 𝑥𝑜
𝜂− 𝑥𝑜

)
𝛽

]𝑁  (32) 

The value of the extreme value associated with a specific probability of non-

exceedance (PNE) can be expressed as  

 𝑦 = (𝜂 − 𝑥𝑜)[− ln(1 − 𝑃𝑁𝐸1/𝑁)]
1/𝛽

+ 𝑥𝑜 (33) 

where PNE is the probability of non-exceedance. 

This fundamental approach to statistically quantifying extreme events can be 

adapted to support near-real time assessments for SDT. The idea being, if there is data 

being measured by the system and shown in Figure 27 (top), the extrema can be identified 

(bottom). The extrema can then be pulled for a given time window, 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, and 

statistically fit, as shown in Figure 28. 
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Figure 27. Top: Sample vertical bending moment time history; bottom: hog (magenta) 

and sag (blue) peaks identified in the top time history. 

 

 
Figure 28. Illustration of sliding Weibull fit analysis 

 

Once the Weibull fit parameters are computed for a sample window, it is possible 

to use them to produce a forecasted extreme load 𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. The forecasted value 

depends on the 𝑃𝑁𝐸 and the forecast window 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡, which is the duration into the 

future to extrapolate. Equations (34) and (35) were used to extrapolate the future extreme 

load at the 𝑖𝑡ℎ time step, using fitted distribution parameters 𝛽𝑖, 𝜂𝑖, and 𝑥0,𝑖, and the 

number of events in the sample window 𝑛𝑒𝑣𝑒𝑛𝑡𝑠,𝑖. 
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 𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖 = (− ln (1 − 𝑃𝑁𝐸
1
𝑁𝑖))

1
𝛽𝑖

(𝜂𝑖 − 𝑥0,𝑖) + 𝑥0,𝑖 
(34) 

 𝑁𝑖 = 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ∗
𝑛𝑒𝑣𝑒𝑛𝑡𝑠,𝑖

𝑡𝑤𝑖𝑛𝑑𝑜𝑤
 (35) 

 

This method was implemented on a data set (see next section) and evaluated. To 

evaluate the performance of the predictive approach, the forecasted value was assessed 

with respect to the actual observed value within the forecast window. For the forecast 

window, the peak time history data 𝑥𝑑𝑎𝑡𝑎(𝑡) was used to extract the actual future 

maximum load for each Weibull fit (see equation (36)). With this value, one could also 

obtain a relative forecast deviation 𝛿 (see equation (37)). 

 𝑥𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 = max(𝑥𝑑𝑎𝑡𝑎(𝑡)) 𝑤ℎ𝑒𝑟𝑒 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖 + 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (36) 

 𝛿𝑖 =
𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑖

𝑥𝑎𝑐𝑡𝑢𝑎𝑙,𝑖
− 1 (37) 

By plotting these derived quantities and then updating them for different selected 

values of PNE and forecast window, one could assess the effect of these parameters on 

the accuracy of forecasted data.  

9.3.2. Application 

The dataset used in this application is a dataset of continuously recorded strain 

gage measurements from various, discrete locations on a notional naval vessel. The 

strain gage data was coupled with the physics-based model calibrations to infer vertical 

bending, as described in Section 9.  

The dataset was chosen to include severe structural responses that induced 

slamming and whipping on the vessel. The data pertains to the vertical bending response 

at midship. The vertical bending response data represented only the ordinary wave 

response with whipping and did not include the still-water bending moment. A peak-
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finding algorithm was applied to the vertical bending signal to isolate the hog and sag 

extrema for each wave encounter. In this way, the observed, continuous, data (i.e., 

random process) was distilled into random variables (hog and sag extrema). This 

example is representative of content in the ship’s response. The physical response, as 

described, includes multiple physical responses. These different events may be better 

classified separately and extrapolated for the extremes. However, this would require an 

understanding of dependencies and/or joint occurrences of the events and the ability to 

integrate them into statistic of the extremes. This is recommended for further 

investigation, but falls outside of this study. 

The example dataset comprised 17 continuous days’ worth of measurements 

where the vessel is at sea. The initial study is formulated around the most critical day in 

the dataset (section 9.3.3). This deep dive isolates and identifies key features of the 

approach in order to highlight critical design parameters for Approach C (the forecasting 

approach). The expanded study pushes the evaluation to the full data set (section 9.3.4. 

Alternative approaches are then presented and explored in sections 9.3.5 and 9.3.7. 

9.3.3. Initial Study 

The following subsections summarize the evaluation of Approach C with respect 

to the application. Multiple sensitivity studies were performed to investigate the 

performance of the forecasting approach with respect to its parameters, including sample 

size, probability of non-exceedance, forecast window, and non-stationary conditions.  

9.3.3.1. Sample Size 

The forecasting approach (Approach C) was applied to the data set and evaluated 

for 4-time windows  𝑡𝑤𝑖𝑛𝑑𝑜𝑤 = 300, 600, 1200, and 2400 seconds.  The approach was 

applied to the entire data set. The review of the complete dataset identified consistent 

concepts as discussed below. 

Figure 29 shows the time histories of the three Weibull parameters, 𝜂, 𝛽, and 𝑥0 

as computed using all four sample window durations (300, 600, 1200, and 2400 seconds). 
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From it, one can conclude that (1) as sample duration increases, the parameter estimates 

become smoother, and (2) the graphs for longer sample windows lag those for smaller 

sample windows. The first observation is reinforced by the comparison of standard 

deviations, presented in Table 17 (data has been normalized by the values in the first 

column). This table shows that standard deviation of each parameter decreases as the 

sample window size increases.  

Neither observation is unexpected: The graphs for longer sample windows are 

smoother because the parameter estimates are based on larger sample sizes, whose 

statistical characteristics change more slowly between time steps. And by including peaks 

from further in the past, the Weibull fit for a larger sample window will naturally tend to 

reflect the data from further in the past, hence explaining the time lag.  

Table 18 shows the effect of altering the window duration on the forecast deviation 

𝛿 statistics for a fixed PNE and forecast window. One observes that the mean, maximum, 

and minimum 𝛿 tend to shift in the positive direction with increasing window size. 

However, when focused on a smaller portion of the day’s data, this observation no longer 

holds true: There are hours when the mean 𝛿 decreases with window size. This tends to 

occur when there is a significant positive gradient in the 𝜂 parameter, as occurs roughly 

halfway through the day. 
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Figure 29. Weibull Parameter Estimate Time Histories. 

 

Table 17. Normalized Standard Deviations of Weibull Parameter Estimates. 

 𝒕𝒘𝒊𝒏𝒅𝒐𝒘 [seconds] 
 300 600 1200 2400 

𝜼 1.000 0.978 0.965 0.957 
𝜷 1.000 0.875 0.812 0.757 
𝒙𝟎 1.000 0.811 0.664 0.572 

 

Table 18. Deviation statistics vs. sample window size for PNE=0.9 and forecast 
window=600 seconds 

Deviation Statistics 
𝒕𝒘𝒊𝒏𝒅𝒐𝒘 [seconds] 
300 600 1200 2400 

𝝁 0.157 0.164 0.174 0.185 
𝝈 0.237 0.228 0.217 0.211 

𝒎𝒆𝒅𝒊𝒂𝒏 0.131 0.137 0.137 0.145 
𝒎𝒂𝒙 6.142 7.074 6.882 6.612 
𝒎𝒊𝒏 -0.455 -0.409 -0.309 -0.238 
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9.3.3.2. Probability of Non-Exceedance (PNE) 

The forecasting approach (Approach C) was applied to the data set and evaluated 

considering a range of PNE. The effect of PNE on forecast deviation can be examined 

analytically by taking the partial derivative of (37), as shown in (38). This equation includes 

the partial derivative of (34) with respect to PNE, which is provided below in equation (39). 

As shown in the equation, this partial derivative is proportional to (𝜂 − 𝑥0). Its dependence 

on 𝛽 and 𝑁 is less obvious. Figure 30 plots this relation as a function of PNE for different 

values of 𝛽. The plot shows that the partial derivative tends towards infinity as the PNE 

approaches 1. The growth rate decreases as 𝛽 increases.  

 
𝜕𝛿

𝜕𝑃𝑁𝐸
=

1

𝑥𝑎𝑐𝑡𝑢𝑎𝑙

𝜕𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝜕𝑃𝑁𝐸
 (38) 

 
𝜕𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝜕𝑃𝑁𝐸
=

(𝜂 − 𝑥0)

𝛽
(− ln (1 − 𝑃𝑁𝐸

1
𝑁))

1
𝛽

−1 𝑃𝑁𝐸(
1
𝑁−1)

𝑁(1 − 𝑃𝑁𝐸
1
𝑁)

 (39) 

 
 

 
Figure 30. 𝝏𝒙/𝝏𝑷𝑵𝑬 vs. 𝑷𝑵𝑬 for various 𝜷 for 𝜼 − 𝒙𝟎 = 𝟎 and 𝑵 = 𝟏𝟎𝟎 
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Based on these equations and Figure 30, one can deduce the following general 

statements:  

• As PNE increases, the forecast deviation 𝛿 will increase.  

• The increase will be greater for larger 𝜂 − 𝑥0 

• The increase will be greater for smaller 𝛽 

• The increase will be greater for smaller 𝑥𝑎𝑐𝑡𝑢𝑎𝑙 

• The forecast deviation will grow without bound as PNE approaches 1. 

As further confirmation of some of these statements, Figure 31 shows the change 

in forecast deviation against time when the PNE is increased from 0.368 to 0.9. The plot 

shows that the increase is always positive, as expected. Moreover, the change is not 

uniform, indicating it must depend on other time-varying quantities, namely the distribution 

fit parameters.  

Put simply, the PNE gives control over the level of conservatism in the forecasted 

extreme value. By setting the PNE close to 1.0, one can generally ensure the forecast 

deviation will be positive, i.e., one will almost certainly over predict the actual future 

extreme value.   

 
Figure 31. Change in forecast deviation when increasing PNE from 0.368 to 0.9 (for 2400-

second sample window and 600 second forecast window) 
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9.3.3.3. Forecast Window 

The forecast window 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 affects the forecast deviation from two aspects. First, 

it defines the expected number of future events 𝑁 through equation (35). To be precise, 

𝑁 is proportional to 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. According to equation (34), the value of the extrapolated 

extreme event 𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 increases monotonically with 𝑁. Thus, an increase in 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 will 

cause an increase in 𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡.  The second place where 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 enters the forecast 

deviation is through equation (36), which defines the actual future extreme event 𝑥𝑎𝑐𝑡𝑢𝑎𝑙. 

As 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 increases, 𝑥𝑎𝑐𝑡𝑢𝑎𝑙 can either increase or stay the same.  

Since both 𝑥𝑎𝑐𝑡𝑢𝑎𝑙 and 𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 might increase at different rates with larger 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡, 

one cannot make any more general statement about 𝛿 other than it could change value 

in either direction. One may instead look at the 𝛿-statistics for different values of 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡, 

as are reported in Table 19. This table indicates that the mean, median, and standard 

deviation of 𝛿 decrease for larger 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡, i.e., the deviation becomes both smoother and 

smaller. The increased smoothness can also be discerned from Figure 32: The curve 

corresponding to the 3600 second forecast window is much more compressed and closer 

to 0 than the other curves. Unfortunately, it has one section of negative values around 

midday, corresponding to the section of increasing 𝜂 in Figure 29. The other deviations 

for the other forecast windows still tend to overpredict in this interval, indicating 

temporarily better performance. 

In brief, the sample dataset suggests that increasing the forecast window time up 

to 3600 seconds leads to less volatile forecast deviations. Indeed, the relatively limited 

range in deviations for the 3600 second forecast window on its own indicates that the 

forecasting methodology produced generally favorable results on the sample data set. 

However, during times of rapid change in distribution parameters, the forecast will tend 

to either under- or overpredict the actual future extreme event by a significant margin. In 

these situations, an intermediate forecast window such as 600 seconds provides slightly 

more reliable predictions.  
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Table 19. Deviation statistics for different forecast windows  

Deviation Statistics 
𝒕𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕 [seconds] 

60 300 600 3600 

𝝁 0.374 0.221 0.185 0.126 
𝝈 0.396 0.233 0.211 0.153 

Median 0.278 0.185 0.145 0.129 
𝒎𝒂𝒙 5.116 6.192 6.612 0.553 
𝒎𝒊𝒏 -0.357 -0.271 -0.238 -0.333 

Note: PNE=0.9 and 𝒕𝒘𝒊𝒏𝒅𝒐𝒘=2400s 

 

 
Figure 32. Forecast deviation vs. time for different forecast windows (PNE=0.9, 

𝒕𝒘𝒊𝒏𝒅𝒐𝒘=2400s) 

 

9.3.3.4. Non-Stationary Conditions 

The previous section hinted at a challenge intrinsic in the adopted forecasting 

approach, namely the limitations of assuming that the peak distribution is stationary. It 

was already evident from the previously discussed distribution parameter time histories 

that the peak statistics can hardly be considered stationary from hour to hour. To illustrate 

the effect of non-stationary conditions on forecasting accuracy, consider the plots in 

Figure 33. Each plot shows the performance of a forecast based on different sample and 

forecast window combinations. Each forecast applies to the same interval in the sample 
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data, namely the interval enclosing the rapid rise in 𝜂 around midday, as can also be seen 

in Figure 29. 

The top-most plot shows the forecast for the largest sample window and the 

longest examined forecast window of 1 hour. There is a wide interval in the middle where 

the actual future extreme event is larger than the forecasted value. This interval of 

underestimation begins well before 𝜂 even begins to increase. This happens because the 

forecast window is so large that it includes extreme events from the time when 𝜂 increases 

at an earlier point in time. Contrast this plot with the one below it, which uses a forecast 

time of only 300 seconds. The underestimate zone there is significantly shorter and 

occurs later in time. Thus, one might conclude that during non-stationary conditions, the 

forecast performance may be improved by decreasing the forecast window. Finally, the 

bottom plot shows the forecast when the sample window is also decreased to the lowest 

value of 300 seconds. The forecast becomes much more erratic, and an underestimate 

zone still exists, though it is the shortest of all the plots. The plot therefore suggests that 

little is gained by using a smaller sample size to estimate Weibull parameters in this case.  

This initial exploration of forecasting during a non-stationary condition indicated 

that performance could be improved by reducing the size of the forecast window. A 

possible solution to the stationarity problem would be to find an optimum forecast window, 

or to adaptively change the forecast window based on how much the peak statistics 

appear to be changing. Beyond this, improvements might be obtained by extrapolating 

the fitted distribution parameters based on recent behavior and using the extrapolated 

values to predict future extreme events.  

When explored under the context of operating conditions, neither the significant 

wave height nor the wave period changed much during the day (top plot of Figure 34). By 

contrast, one could immediately identify a correlation between the rise in 𝜂 around midday 

and a change in heading from head seas to stern quartering (middle plot of Figure 34). 

This change in heading additionally corresponded with a change in mean speed (bottom 

plot of Figure 34). Thus, one may conclude that the increase in load peak magnitudes 

was principally due to the change in heading and speed.  
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Figure 33. Performance of three forecasts during a non-stationary interval (PNE=0.9) 
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Figure 34. Wave Period, Significant Wave Heigh, Relative Heading, Characteristic Value 

of Response, and Speed. (Note: the time axis for all figures is the same) 
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9.3.4. Expanded Study 

The initial exploration of the dataset was expanded to incorporate the full 17 days’ 

worth of data. The same analysis was performed for all 17 days as was applied to the 1 

day in the Initial Study (section 9.3.3). The related plots and figures did not exhibit different 

tendencies that those presented for the critical day of data and therefore are omitted for 

brevity. The review of the 17 days’ worth of data does, however, show that the 

observations made based on the initial exploratory study’s dataset applied generally:  

1. As the sample window increased, the Weibull fit time histories became smoother, 

but time delayed. 

2. As the sample window increased for the same forecast horizon, the forecast 

deviation time histories became smoother. 

3. As the forecast horizon increased for the same Weibull fit sample window, the 

forecast deviation time histories became smoother and shifted downward and 

exhibited instances of negative plateauing that correlated with periods of 

increasing Weibull scale parameter, indicating that peak values were increasing 

in time, i.e., non-stationary. For all days but one, the median and mean of the 

forecast deviation were positive, i.e., the forecast over predicted the actual future 

extremum.  

9.3.5. Alternative Forecasting Approach 1: Revised Accuracy 

The expanded study underlined the weakness of the extrapolation-based 

forecasting method in non-stationary conditions. Therefore, the next phase of research 

focused on discovering and evaluating methods to improve the forecast accuracy. This 

section describes some of the methods tested for this purpose. 

9.3.5.1. Scale Parameter Forecasting 

The first alternative at improving forecasting accuracy was to extrapolate future 

extreme loads using a Weibull scale parameter that would itself be a forecast based on 

past scale parameter values. This approach was based on the observation that instances 
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of underprediction were correlated with periods when the scale parameter was increasing. 

The scale parameter is an indirect measurement of the magnitude of peak values: an 

increasing scale parameter is indicative of worsening conditions. Consequently, the 

extrapolation tended to underpredict the future extreme because it used a scale 

parameter based on the less severe past conditions. It was hypothesized that a more 

accurate extrapolation might be obtained using an estimate of the future, larger scale 

parameter.  

To test the hypothesis, the expanded study was repeated, but with a small change: 

Instead of using the scale parameter at the current time step to extrapolate a future 

extreme value, the maximum scale parameter within the forecast horizon was used for 

that purpose. In a real-time environment, such a calculation would be impossible, since 

the maximum scale parameter in the forecast horizon would not yet have been observed; 

it could, however, be estimated in some fashion. Using the actual maximum scale 

parameter was an idealization meant to test whether extreme load forecasting accuracy 

might be improved given perfect knowledge of the future values of just the scale 

parameter. 

 𝜂𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑖 = max(𝜂(𝑡)) 𝑓𝑜𝑟 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖 + 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (40) 

 𝑥𝜂,𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑖 = (− ln (1 − 𝑃𝑁𝐸
1

𝑁𝑖))

1

𝛽𝑖
(𝜂𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑖 − 𝑥0,𝑖) + 𝑥0,𝑖 (41) 

 

 As expected, the forecasting study using perfectly predicted maximum scale 

parameters resulted in slightly more conservative forecasted extreme loads. The change 

in the minimum forecast deviation for each day’s data was used as a primary metric for 

assessing the improvement in forecasting accuracy. Without exception, the minimum 

forecast deviation was shifted in the positive direction relative to the original expanded 

study that used the causal value of scale parameter. The degree of change in minimum 

forecast deviation seemed uncorrelated to the sample window size used for Weibull 

fitting. However, after breaking down the metric according to forecast window, it was 

possible to see that the minimum value tended to increase for forecast windows of 600 
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and 3600 seconds (see Figure 35); samples for forecast windows of 60 seconds were 

mostly unaffected. This trend is to be expected, since the longer the forecast window, the 

more time there is for the scale parameter to increase to a more severe value. After 

excluding all samples for a forecast window of 60 seconds, the average minimum forecast 

deviation of the remainder was roughly -0.26, compared to an average minimum value of 

-0.39 for the original expanded study.  

 
Figure 35: Minimum daily forecast deviation using maximum 𝜼 in forecast horizon vs. 

minimum daily forecast deviation using present time 𝜼 

 

Figure 36 through Figure 39 offer a more detailed view of the effect of 𝜂-

forecasting. These figures show the extreme load forecasting results for the expanded 

dataset using a forecast horizon of 60 minutes and a Weibull fitting window of 40 minutes. 

They compare the results without 𝜂-forecasting against results using 𝜂𝑝𝑒𝑟𝑓𝑒𝑐𝑡 and a naïve 

𝜂-forecasting method. The scale parameter for this method is denoted 𝜂𝑛𝑎𝑖𝑣𝑒 and is 

computed as: 

 𝜂𝑛𝑎𝑖𝑣𝑒,𝑖 = {
𝜂𝑖 , 𝑖𝑓 𝜂𝑖 < 𝜂𝑖−1

𝜂𝑖 + (𝜂𝑖 − 𝜂𝑖−1) ∗
𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑡𝑖−𝑡𝑖−1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (42) 

 𝑥𝜂,𝑛𝑎𝑖𝑣𝑒,𝑖 = (− ln (1 − 𝑃𝑁𝐸
1

𝑁𝑖))

1

𝛽𝑖
(𝜂𝑛𝑎𝑖𝑣𝑒,𝑖 − 𝑥0,𝑖) + 𝑥0,𝑖 (43) 
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In effect, 𝜂𝑛𝑎𝑖𝑣𝑒 assumes the trend in scale parameter values that held between 

the current and previous time steps will hold for the entire forecast window, unless that 

trend is downward. In that case, the current scale parameter is used. Such a forecasting 

method could be implemented in real time, as it makes use only of current and past 

observations. To reduce the variability in 𝜂𝑛𝑎𝑖𝑣𝑒, the original dataset, which provided 

Weibull estimates every 10 seconds, was downsampled to 1/5 minutes for this study. 

Figure 36 shows a time history excerpt of forecasted and actual extreme loads. It 

shows that of the three forecasting methods, using the current scale parameter value 

leads to the greatest time lag in forecasted extreme load compared to the actual curve. 

The model using perfect knowledge of the future scale parameter leads to the smallest 

time delay, but the delay persists. The naïve scale parameter forecasting methods leads 

to less of a time delay than using the current value, but also results in more erratic 

predictions, leading in some cases to significant overestimation.  

Figure 37 plots the forecast deviation against the actual future extreme load for all 

points in time. The scatter shows that underestimation occurs throughout the range of 

loadings, i.e., it is not concentrated in specific bands of extreme loads. Moreover, it 

reinforces the observation that underestimation occurs for all forecasting methods, even 

the one using a perfect model of future scale parameters. 

Figure 38 provides a visual to compare the results using the two scale-parameter 

forecasting methods against the baseline method. It plots the forecast deviation of either 

method against the forecast deviation for the baseline method using current scale 

parameter values. Note that the plots have been cropped to exclude some of the outlier 

values visible on Figure 37. By comparing the plots, one may observe that the 𝜂𝑛𝑎𝑖𝑣𝑒 

method tends to cause more significant overestimation of extreme loads than the 𝜂𝑝𝑒𝑟𝑓𝑒𝑐𝑡 

method. Nevertheless, many of the worst underestimations remain uncorrected using 

𝜂𝑛𝑎𝑖𝑣𝑒. 𝜂𝑝𝑒𝑟𝑓𝑒𝑐𝑡 tends to ameliorate the forecast deviation, at least somewhat, in all cases 

of underestimation.  
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Finally, Figure 39 shows the distribution in forecast deviation for all three 

forecasting methods. The mean and standard deviation of the distributions indicate that 

𝜂𝑛𝑎𝑖𝑣𝑒 shifts the distribution the furthest into the positive direction, but also increases the 

spread. By contrast, 𝜂𝑝𝑒𝑟𝑓𝑒𝑐𝑡 increases the deviations while also reducing the spread.  

Overall, this study demonstrated that extrapolating extreme loads using a 

forecasted value of the Weibull scale parameter could improve extreme value forecasting 

accuracy. This was the case even using a naïve forecasting method for the scale 

parameter. However, the results showed that the forecast deviation could still be on the 

order of -0.6, even given perfect knowledge of the maximum future scale parameter. 

Thus, while using even a simple model to predict future scale parameters might ensure 

more conservative extreme load forecasts, this approach still does not eliminate the risk 

of underprediction.  

 
Figure 36. Time history excerpt of forecasted extreme loads using various 𝛈-forecasting 

methods. 
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Figure 37. Scatter plot of forecast deviations vs. actual future extreme load 

 

 
Figure 38. Comparison of forecast deviations of different 𝜼-forecasting methods. 
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Figure 39. Forecast deviation distribution for different 𝜼-forecasting methods. 

 

9.3.6. Extrapolation Forecasting 

In addition to attempting to improve forecast accuracy by forecasting the scale 

parameter time history, a study was conducted to explore the effect of forecasting the 

extrapolated load time history itself. For an initial benchmarking, it was assumed a perfect 

model of this time history was available. Thus, a perfect forecasted time history could be 

generated for the dataset: 

 𝑥𝑝𝑒𝑟𝑓𝑒𝑐𝑡,𝑖 = max(𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) ) 𝑓𝑜𝑟 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖 + 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (44) 

 

The forecast deviations were computed for this new extreme load forecast, and 

the results were compared against those obtained using perfect knowledge of the future 

scale parameter. Again, a forecast horizon of 60 minutes and Weibull fitting window of 40 

minutes were selected. The original 1/10s frequency of fit data was down sampled to 1/5 

minutes. Figure 40 depicts an excerpt of the extreme load forecast time history. It 

illustrates that the forecast obtained by eliminating the time delay in the original 

extrapolations better envelops the actual extreme future extreme load curve than does 

the forecast using perfect scale parameter knowledge. This result suggests that if it were 

possible to eliminate the time delay from the original extrapolation, then the forecast 

deviations could be effectively minimized. Moreover, it indicated that forecasting the 
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extreme load time history would be more effective at increasing accuracy than forecasting 

the scale parameter and recomputing extrapolations. This conclusion is further supported 

in Figure 41, which shows the forecast deviations associated with the 𝑣𝑏𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡 result is 

concentrated at values above 0. In particular, the deviation for the largest values of future 

extreme load is all close to 0.  

 
Figure 40. Extreme Value Forecast Time History Excerpt for Perfect Models 

 

 
Figure 41. Forecast Deviations vs. Future Load for Perfect Models 
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As with the scale parameter forecasting, a naïve load forecast was computed using 

the current (𝑥𝑖) and last previous (𝑥𝑖−1) extrapolated loads: 

 𝑥𝑛𝑎𝑖𝑣𝑒,𝑖 = {
𝑥𝑖 , 𝑖𝑓 𝑥𝑖 < 𝑥𝑖−1

𝑥𝑖 + (𝑥𝑖 − 𝑥𝑖−1) ∗
𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑡𝑖−𝑡𝑖−1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (45) 

 

The result was assessed visually. Figure 42 shows the time history excerpt, which 

illustrates the volatile response of this naïve forecast. While the forecast typically 

overestimates the actual future load, and slightly reduces the time delay, it still does not 

eliminate it for rapidly changing conditions. As further demonstrated in Figure 43, the 

naïve forecast has no effect on many of the worst underestimations. 

For completeness, Table 20 documents statistical measures of the forecast 

deviation for the various attempts to improve forecasting accuracy. 

Overall, the investigations herein suggest that there is an extreme deficiency with 

using time series models to forecast the extreme load time history with sufficient 

accuracy, particularly by using Weibull fit data alone. It is possible that by fusing the data 

with other environmental and weather information, instances of underestimation during 

worsening conditions may be mitigated. Regardless, the extrapolation forecasting study 

did suggest that the extrapolated load time history can provide a conservative envelope 

to the actual future experienced extreme loads once the time lag in the data is removed. 

This result thus provides further supporting evidence to the validity of the general 

methodology. 
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Figure 42. Extreme Value Forecast Time History Excerpt for Naïve Forecast Model 

 

 
Figure 43. Forecast Deviations vs. Future Load for Naïve Forecast Models 

 

Table 20. Forecast Deviation Statistics for Forecasting Attempts 

Forecast Method Mean Median Min Max Std. Dev. 

present 0.100 0.093 -0.878 3.735 0.286 

𝜂𝑝𝑒𝑟𝑓𝑒𝑐𝑡 0.175 0.156 -0.470 3.735 0.259 

𝜂𝑛𝑎𝑖𝑣𝑒 0.224 0.178 -0.878 6.176 0.364 

𝑥𝑝𝑒𝑟𝑓𝑒𝑐𝑡 0.208 0.187 -0.356 3.735 0.242 

𝑥𝑛𝑎𝑖𝑣𝑒 0.289 0.198 -0.878 8.543 0.487 
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9.3.7. Alternative Forecasting Approach 2: Under/Overestimate Classification 

The second approach for improving forecasting accuracy draws upon classification 

modeling. It was hypothesized that a model could be trained to classify a forecast as 

either an over- or underprediction, using past values of Weibull fit parameters and 

extreme value forecasts as predictors. Any forecasts classified as underpredictions could 

then be multiplied by a safety factor. By extension, forecasts classified as overpredictions 

could also be scaled down to less conservative values. 

To evaluate the hypothesis, the data for the expanded study was transformed into 

a training data set for classification learning. For every forecast made in time, a feature 

vector would be constructed consisting of the values of Weibull fit parameters, event 

rates, and extreme load forecasts taken from the present and the last 𝑁 time steps. Then, 

using the knowledge of the actual future extreme load in the forecast window, the feature 

vector could be labeled as either an over- or underestimate. In the process of creating 

such a training data set, it was necessary to set several parameters. These are described 

below: 

a) Predictors: To repeat, the predictors used for classification were: 

- Weibull scale parameter 𝜂 

- Weibull shape parameter 𝛽 

- Average event rate in the Weibull sample window 

- Extreme load forecast 

b) Response: The response or label associated with any feature vector was 

a binary variable representing whether the extrapolation associated with 

the feature vector was greater than or less than the actual future extreme 

event load within the forecast horizon. 

c) Raw Data Parameters: In assembling the feature vectors for a training 

data set, it was necessary to fix the following quantities, which were 

previously introduced when discussing the exploratory study: 

- Forecast window. 

- Weibull fit sample window. 
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- PNE: The PNE was set at 0.90 and was not altered.  

- Different training data sets were developed for different 

combinations of forecast window and Weibull fit sample 

window to assess the effect of these parameters on 

classification accuracy. 

d) Down sampled rate: The Weibull fit parameters had been determined 

down to 10-second intervals. However, on an actual vessel, it may be 

both infeasible and undesirable to make forecasts or even compute fit 

parameters at such a rapid rate. Weibull fit parameters might only be 

estimated at frequencies of 1/minute or 1/5minute. Such a down 

sampling might influence the accuracy of classifying extrapolations as 

over- or underestimates. Therefore, the training data was generated for 

several down samplings of the original dataset to compare classification 

accuracy. 

e) Feature Vector Order: the number of past time steps for which to include 

predictor values in the feature vectors. This value will henceforth be 

termed the “feature vector order” 𝑁. This parameter was varied to study 

its effect on classification accuracy. 

9.3.7.1. Training/Validation Data Split 

After computing the feature vectors from the data developed as part of the 

expanded study, they needed to be divided into training and validation sets. The training 

data would be used to train a classification model to predict whether the extrapolation 

associated with each feature vector was an over- or underprediction. The validation data 

set would be used to test the accuracy of the trained model according to metrics defined 

subsequently.  

In splitting the datasets into training and validation, three considerations came into play: 
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- Size of training data relative to validation data: A larger training data set would likely 

lead to a more accurate classification model. However, a model that performs well 

on a large validation data set would display evidence of more general validity. 

- Proportion of positives to negatives in training data: The proportion of positives to 

negatives in the training data set can affect the classification bias: A model trained 

on mostly positives may tend to overclassify instances as positive (and similarly for 

a model trained mostly on negatives).  

- Random or chronological selection of training data: If the proposed classification 

model were to be trained in real time based on real time data, the training data 

would likely come from a concentrated segment in time. Such a model would be 

feasible to develop but might not perform as well as one trained on data sampled 

from a longer time history.  

The effect of these considerations on classification accuracy were assessed by 

generating models for different combinations thereof and comparing the classification 

metrics. 

9.3.7.2. Classification Metrics 

Classification accuracy was quantified by the false positive rate (𝐹𝑃𝑅), false 

negative rate (𝐹𝑁𝑅), and Overall False Rate (𝑂𝐹𝑅). In this context, a positive classification 

was that an extrapolation was classified as an underestimate. Consequently, 

extrapolations classified as overestimates were considered negatives. The metrics 𝐹𝑃𝑅, 

𝐹𝑁𝑅, and 𝑂𝐹𝑅 are defined as:  

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑃
 (46) 

 𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑁
 (47) 

 𝑂𝐹𝑅 =
𝐹𝑃+𝐹𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
 (48) 

 

In the above equations, 𝐹𝑃 denotes the number of false positive classifications in 

the validation data set, i.e., instances when negatives were incorrectly classified as 
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positive. 𝐹𝑁 denotes the number of false negative classifications, i.e., instances when 

positives were incorrectly classified as negative. 𝑇𝑃 and 𝑇𝑁 stand for the number of true 

positive and true negative classifications respectively. Lower values of 𝐹𝑃𝑅, 𝐹𝑁𝑅, and 

𝑂𝐹𝑅 indicate higher classification accuracy. For the current application, FNR is a more 

important metric than FPR, as it is more conservative to have a lower number of 

underestimates that were falsely classified as overestimates.  

9.3.7.3. Parameter Studies 

Classification models were developed for many parameter variations to 

understand the classification sensitivity to each. This section documents these studies, 

which were conducted by varying a single parameter while keeping all others fixed. 

Training data was typically randomly sampled from the larger dataset several times to 

obtain mean classification metrics. Moreover, training data was normalized, such that the 

mean of each feature was 0.0 and its standard deviation was 1.0.  
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9.3.7.4. Study 1: kNN vs. Decision Tree 

The first study was aimed at identifying the better of two classification model 

choices: k-Nearest Neighbor or a Decision Tree. In simplistic terms, a k-Nearest Neighbor 

(kNN) model estimates the response of any feature vector as equal to the majority 

response of the k nearest feature vectors in the training data. Nearness is typically 

quantified using Euclidean distance. By contrast, a decision tree issues a response after 

evaluating a series of conditional statements based on feature vector elements. Table 21 

documents the parameters and data characteristics of the dataset used for this study. 

Default settings in MATLAB’s built-in decision tree training function were used. The 

metrics visualized in Figure 44 are the average of the metrics computed for each random 

sampling of training data. From this figure, it can be observed that the kNN model 

performed nearly three times better than the decision tree according to each metric. This 

result suggests that the dataset can be better modeled using the kNN approach than by 

other classification algorithms, such as decision trees.  

Table 21. Classification parameters used in the kNN vs. decision tree study. 

Dataset size (# feature vectors) 17,277 
Training Data Size [Fraction of 
Data] 

0.25 

Fraction of Underestimates in entire 
Dataset 

0.253 
Fraction of Underestimates in 
Training 

0.3 

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 [s] 2400 k for kNN 1 

𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 [s] 1800 Number of random samplings 3 

Down Sampled Frequency 1/minute Training Data Selection Method random 

Feature Vector Order 
120 (2 
hours) 

  

 

 
Figure 44. Classification metrics for the kNN vs. decision tree study 
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9.3.7.5. Study 2: Training Data Selection Study 

A second study assessed the differences in kNN classification when training data 

is selected either randomly or from a single chronologically connected segment of the 

whole dataset. Table 22 documents the training data parameters, while Figure 45 

visualizes the classification metrics. The results indicate models based on chronologically 

coherent training data are roughly 7 times less accurate than ones based on randomly 

selected training data of the same size.  A possible reason for this is that when training 

data is randomly selected, each remaining validation feature vector will likely have an 

associated training data vector taken from a similar moment in time. Feature vectors from 

moments close together in time will likely also be nearer to each other in feature space 

and possess the same class label. Hence, a kNN model should be better able to predict 

the validation data labels given a randomly sampled training dataset. 

Table 22. Classification parameters used in the training data selection study. 

Dataset size (# feature vectors) 17,277 Training Data Size [Fraction of Data] 0.25 

Fraction of Underestimates in entire 
Dataset 

0.253 
Fraction of Underestimates in 
Training 

0.3 

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 [s] 2400 k for kNN 1 

𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 [s] 1800 Number of random samplings 3 

Down Sampled Frequency 1/minute Training Data Selection Method varied 

Feature Vector Order 
120  
(2 hours) 

  

 

 
Figure 45. Classification metrics for the training data selection study 
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9.3.7.6. Study 3 Training Data Size Study 

A study was conducted to demonstrate the sensitivity in kNN classification 

accuracy to the size of the training dataset. Models were trained using training data 

constituting 10%, 25%, 50%, and 75% of the available data respectively. The other 

classification parameters were held constant at the values reported in Table 23. Figure 

46 plots the classification metrics vs. the training data size as a fraction of the whole. It 

shows that both the FNR and OFR tend to decrease as the training data size increases. 

The FPR appears to reach a minimum value at around 50% before increasing again.  

 

Table 23. Classification parameters used in the training data size study. 

Dataset size (# feature vectors) 17,277 
Training Data Size [Fraction of 
Data] 

varied 

Fraction of Underestimates in entire 
Dataset 

0.253 
Fraction of Underestimates in 
Training 

0.3 

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 [s] 2400 k for kNN 1 

𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 [s] 1800 Number of random samplings 3 

Down Sampled Frequency 1/minute Training Data Selection Method random 

Feature Vector Order 120 (2 hours)   

 

 

 
Figure 46. Classification metrics for the training data size study 

  



 

118 

 

9.3.7.7. Study 4: K for kNN Study 

The kNN classification algorithm estimates the response of a feature vector based 

on the response of the k nearest neighboring feature vectors in the training data. A study 

was run to quantify the sensitivity of classification accuracy to the parameter k. Table 24 

reports the values of parameters used to generate the training data, while Figure 47 

shows the resulting classification metrics for k values of 1, 3, 5, 7, and 9. The plot for the 

OFR suggests that the rate of false classifications increases almost linearly with the 

parameter k. Consequently, a k value of 1 is assumed to be optimal for the dataset. 

 

Table 24. Classification Parameters used in k for kNN Study 

Dataset size (# feature vectors) 17,277 
Training Data Size [Fraction of 
Data] 

0.25 

Fraction of Underestimates in entire 
Dataset 

0.253 
Fraction of Underestimates in 
Training 

0.3 

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 [s] 2400 k for kNN varied 

𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 [s] 1800 Number of random samplings 3 

Down Sampled Frequency 1/minute Training Data Selection Method random 

Feature Vector Order 120 (2 hours)   

 

 

 
Figure 47. Classification Metrics for the k for kNN Study 
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9.3.7.8. Study 5: Training Data Composition Study 

A study was conducted to determine if there was an optimal proportion of positive 

to negative class instances in the training data. Using the classification parameters 

recorded in Table 25, classification metrics were determined for training data sets 

consisting of 10%, 20%, 25%, 30%, 35%, 40%, and 50% positive classifications (i.e., 

underestimates of future extreme load). Figure 48 displays the results of this study. One 

would expect that as the training data consists more and more of positive class instances, 

the classification model would be more biased in favor of classifying objects as positive. 

This expectation is borne out by the results, which show that the FNR decreases, and 

FPR increases with larger positive representation in the training data. The OFR reaches 

a minimum value when the training data consists of 30% positive class instances. This 

proportion is similar in value to the actual proportion of positive classes in the entire 

dataset, which is 25.3% as reported in Table 25. The result indicates that setting the 

fraction of positive classes in the training data to 30% is close to optimal in terms of 

classification accuracy. 

Table 25. Classification Parameters for the Training Data Composition Study 

Dataset size (# feature vectors) 17,277 
Training Data Size [Fraction of 
Data] 

0.25 

Fraction of Underestimates in entire 
Dataset 

0.253 
Fraction of Underestimates in 
Training 

varied 

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 [s] 2400 k for kNN 1 

𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 [s] 1800 Number of random samplings 3 

Down Sampled Frequency 1/minute Training Data Selection Method random 

Feature Vector Order 120 (2 hours)   

 

 
Figure 48. Classification Metrics for the Training Data Composition Study 
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9.3.7.9. Study 6: Feature Vector Order Study 

A study was run to understand the sensitivity of classification accuracy to the 

feature vector order. Classification parameters were set to the values recorded in Table 

26, and classification metrics were computed for training data sets using feature vector 

orders of 30, 60, 90, 120, 150, 240, and 300. Since the down sampled frequency for the 

dataset was set to 1/minute, the feature vector orders in this study also equate to the 

number of minutes into the past from which data was drawn to assemble feature vectors. 

As Figure 49 shows, classification metrics improve rapidly up until roughly a feature order 

of 120. After this, gains in classification accuracy are small. Given that a larger feature 

vector order means longer feature vectors, there is a desire to limit the order so that the 

classification model does not become overly complex and computationally burdensome. 

Therefore, the results of this study indicate that, for this dataset, a feature vector order of 

around 120 strikes an appropriate balance between model accuracy and model simplicity. 

 

Table 26. Classification Parameters for the Feature Vector Order Study 

Dataset size (# feature vectors) 17,277 Training Data Size [Fraction of Data] 0.25 

Fraction of Underestimates in entire 
Dataset 

0.253 
Fraction of Underestimates in 
Training 

0.3 

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 [s] 2400 k for kNN 1 

𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 [s] 1800 Number of random samplings 3 

Down Sampled Frequency 1/minute Training Data Selection Method random 

Feature Vector Order varied   

 

 
Figure 49. Classification Metrics for the Feature Vector Order Study 
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9.3.7.10. Study 7: Sensitivity to 𝒕𝒘𝒊𝒏𝒅𝒐𝒘 

A study was conducted to assess the sensitivity of classification accuracy to the 

size of the sample window used for determining Weibull distribution fits (𝑡𝑤𝑖𝑛𝑑𝑜𝑤). 

Classification metrics were computed for models using the Weibull fit data generated for 

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 values of 300, 600, 1200, and 2400 seconds. The other classification parameters 

were set to the values reported in Table 27. Figure 50 plots the classification metrics 

against 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. Each metric decreases with increasing 𝑡𝑤𝑖𝑛𝑑𝑜𝑤. This result shows that 

the smoother Weibull fit data associated with larger 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 values lead to more reliable 

classification of over- and underestimates. 

 

Table 27. Classification Parameters used in the 𝒕𝒘𝒊𝒏𝒅𝒐𝒘 Sensitivity Study 

Dataset size (# feature vectors) Varies 
Training Data Size [Fraction of 
Data] 

0.25 

Fraction of Underestimates in entire 
Dataset 

Varies 
Fraction of Underestimates in 
Training 

0.3 

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 [s] varied k for kNN 1 

𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 [s] 1800 Number of random samplings 3 

Down Sampled Frequency 1/minute Training Data Selection Method random 

Feature Vector Order 
120 (2 
hours) 

  

 

 
Figure 50. Classification Metrics for the 𝒕𝒘𝒊𝒏𝒅𝒐𝒘 Sensitivity Study 
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9.3.7.11. Study 8: Sensitivity to 𝒕𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕 

A study was conducted to assess the sensitivity of classification accuracy to the 

duration of the forecast horizon (𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡). Classification metrics were computed for 

models using for 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 values of 300, 600, 1200, 1800, 2400, and 3600 seconds. The 

other classification parameters were set to the values reported in Table 28. Figure 51 

plots the classification metrics against 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. The FNR tends to increase with 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡, 

while the opposite holds for the FPR. The OFR initially decreases, but then plateaus for 

𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 values larger than 1800 seconds. 1800 seconds may therefore be considered an 

appropriate 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 value that balances the FPR and FNR. 

Table 28. Classification Parameters used in the 𝒕𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕 Sensitivity Study 

Dataset size (# feature vectors) Varies 
Training Data Size [Fraction of 
Data] 

0.25 

Fraction of Underestimates in entire 
Dataset 

Varies 
Fraction of Underestimates in 
Training 

0.3 

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 [s] 2400 k for kNN 1 

𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 [s] varied Number of random samplings 3 

Down Sampled Frequency 1/minute Training Data Selection Method random 

Feature Vector Order 120 (2 hours)   

 

 
Figure 51. Classification Metrics for the 𝒕𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕 Sensitivity Study 
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9.3.7.12. Study 9: Sensitivity to Down Sampled Frequency 

A study was conducted to assess the sensitivity of classification accuracy to the 

down sampled frequency. Classification metrics were computed for models using down 

sampled frequency values of 1, ½, 1/3, and 1/5 samples per minute. For each down 

sampled rate, the feature order was adjusted, such that feature vectors contained 

sampled drawn from the previous 2 hours in the time history. The other classification 

parameters were set to the values reported in Table 29. Figure 52 plots the classification 

metrics against the down sampled period, i.e., the inverse of down sampled rate. All 

metrics tend to increase linearly with down sampled period. An explanation for this is that 

at higher sampling rates, the chronologically consecutive feature vectors will be more 

similar and more likely have the same label. A classifier using randomly sampled data 

would therefore have a stronger validation score, compared to one based on lower 

frequency data.  

Table 29. Classification Parameters for the Down sampled Frequency Study 

Dataset size (# feature vectors) Varies Training Data Size [Fraction of Data] 0.25 

Fraction of Underestimates in entire 
Dataset 

Varies 
Fraction of Underestimates in 
Training 

0.3 

𝑡𝑤𝑖𝑛𝑑𝑜𝑤 [s] 2400 k for kNN 1 

𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 [s] 1800 Number of random samplings 3 

Down Sampled Frequency varied Training Data Selection Method random 

Feature Vector Order 
2 
hours 

  

 

 
Figure 52. Classification Metrics for the Down Sampled Frequency Study 
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9.3.7.13. kNN Model Testing: Findings 

The single-parameter studies offered insights into the sensitivity of over- and 

underestimate classification models to the various parameters controlling the form of the 

training data. They suggested that strongly performing models could be obtained using: 

- k-nearest-neighbor algorithm with k=1 

- Randomly sampled training data 

- 30% positive (underestimate) class representation in the training data 

- Data frequency of 1/minute 

- 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡=1800 seconds 

- 𝑡𝑤𝑖𝑛𝑑𝑜𝑤= 2400 seconds 

- Feature Vector Order of 120 (equivalent to 2 hours) 

With these parameter settings, the resulting classification model could attain on 

average a FNR of 2.4%, a FPR of 11.6%, and an OFR of 4.7%. 

The studies were conducted using a training and validation data sets drawn from 

a single month of a vessel’s recorded HMS data. To further test the general predictive 

power of this classification model, additional HMS data from a different month was 

processed into the form necessary for generation of feature vectors for classification. A 

model was trained on the entirety of the first month’s data. It was then validated against 

the data from the second month. Table 30 shows the outcome of this validation test. The 

performance metrics were degraded compared to the validation tests within the original 

month. This change should have been expected given the results of the training data 

selection study: Training data taken from chronological chunks resulted in less predictive 

models than randomly sampled training data. The model has a high false positive rate of 

over 70%, meaning the model will tend to be conservative in its classifications. 

Nevertheless, the false negative rate is still over 20%.  
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Table 30. Confusion Matrix for Classification Model Validation 

 
Actual Class 

 
Negative Positive 

P
re

d
ic

te
d

 C
la

s
s
 

Negative 1655 443  FNR=0.211 

Positive 438 155  FPR=0.739 

  OFR=0.327 

 

Figure 53 and Figure 54 provide further insight into the classification results. Figure 

53 shows that the forecast deviation for the largest forecasted extreme loads was already 

close to 0. Thus, due to the nature of the dataset, the false negative classifications 

occurred for lower severity conditions, which would mitigate the risks of false forecasts. 

However, for a more rigorous assessment, a validation dataset including more examples 

of underestimates at the upper end of the load distribution should be assessed. Figure 54 

shows the distribution of the classified forecast deviations. For a perfect classifier, these 

distributions would be distinctly separated by the 𝛿=0 line. By contrast, the actual resulting 

distributions demonstrate significant overlap, thereby highlighting the weakness of the 

classification model.  

 

 
Figure 53. Forecast Deviation vs. Forecasted Extreme Load, Colored by Classification 

Result 
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Figure 54. Distribution of classification results 

 

Overall, the validation study showed that although a kNN classifier appeared to 

work well on the original dataset, it failed to generalize to conditions. 
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10. Conclusion and Recommendations 

This report presents advancements to the digital twin methodologies for integrating 

data from hull monitoring systems with physics-based models. This report proposes 

ontology for the design and development of a structural digital twin (SDT) and proposes 

and investigates functional SDTs through practical examples. 

In section 3, this report presents the overarching design considerations for 

structural digital twins. The broader field recognizes the ample opportunities SDTs 

provide, such as: reducing maintenance costs, reducing risk, improving efficiency of 

operations, increasing availability, reliability, and resilience, optimizing re-usability, 

interoperability, interchangeability, etc. These vast goals, however, have the potential to 

create an un-tractable solution space, chasing after perfection. To form clear and 

actionable objectives, this report proposes that the objective for a structural digital twin 

be defined by a hierarchy of objectives comprised of the following levels: (1) Vision (high 

level goal), (2) Strategic (targeted mechanism for enabling goal to be met), and (3) 

Operational (lowest level, scoping of basic requirements and constraints)  

In section 4, the design of SDTs is discussed with respect to data and models. The 

breadth of research formulations and commercial products pertaining to SDTs 

demonstrates the current gap in defining what a digital twin is (or needs to be). This report 

identified the need to establish a useful ontology to help guide conversations for digital 

twins. While seemingly obvious, this report presented the need to clearly articulate what 

“physics-based models” and “data” requirements are when designing a practical 

instantiation of a digital twin. To help clarify conversations, this report suggested that one 

should first identify the type and fidelity of model needed, and the data category. In this 

way, the required accuracy of the data, accuracy of the model(s), and uncertainty 

propagation throughout the schema can be established and then designed to.   

Section 5 discusses the uncertainties inherent in the evaluations and decision-

making processes support by SDTs. The natural variabilities in the loads, strength, and 

failure mechanisms must be accounted for in an SDT. The errors and uncertainties in the 
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models must also be quantified and tracked. The inherent randomness in environment 

and ship maneuvers is also an uncertainty that is critical to map into an SDT. This report 

presents a review of current recommendations in class guidances. The class societies 

unilaterally identify the need to account for uncertainty but lack details on the specifics. 

This parallels the state of research for this area, and, as research continues to evolve, so 

too should the standards. This report identifies a gap in the current standards wherein 

there is a missing design consideration for inherent randomness (i.e., the ability to 

incorporate abrupt speed, heading, or environment changes). This omission may lead to 

SDTs being designed that provide invalid (i.e., false negative) assessments that provides 

operational guidance that puts the system at risk of being damaged, but relays the 

guidance to the operator as a safe choice. 

Section 6 highlights the current gaps in structural design criteria that supports the 

performance assessment of in-service assets. That is, most of the class design rules and 

some of the smart structure guidances invoke criteria that have safety factors on loads, 

strength, and risk tolerances baked in, with no clear way of isolating and updating or 

modifying said items based on available data and situational awareness. This report 

identifies this as a key feature inhibiting the fullest return on investment from the use of 

digital twins. As such, the report proposes the there is an essential need to establish clear 

performance-based assessment procedures for the naval and maritime industries. In 

addition, developing categories for consideration would be useful to help guide the design 

of digital twins to invoke the appropriate performance-based assessment procedures 

based on the type of vessel (such as unmanned small boats where there may be a high-

risk tolerance to large, manned vessels with lower risk tolerances). 

Section 7 of this report proposed a logic tree framework to enable the integration 

of performance based-assessment techniques with uncertainty considerations into the 

design of SDTs. First and foremost, the SDT must be developed to be able to place itself 

in its correct operational state (i.e., branch) considering if its operations are (a) routine or 

under duress, (b) manned or unmanned, and (c) in normal or heavy weather. This branch 

identification is used to assign the correct risk tolerance for use. Secondly, the SDT must 
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be developed with a robust probabilistic solver that can account for steady state, gradual 

changes in state, and abrupt changes in state, so as to avoid false negatives (and putting 

the vessel at risk). This proposed framework provides the basis for development of an 

SDT but needs further work to establish how to incorporate system-level assessments. 

The logic tree formulation also presents a unique opportunity to capitalize on Artificial 

Intelligence (AI) and Machine Learning (ML) solutions for use in SDTs. 

 Section 8 takes a step back from the design aspects of SDTs and focuses 

on the validation process. At the end of the day, the SDT is a product; its primary use is 

for decision support, and thus, it must be demonstrated that the SDT provides valid 

decision support. This report emphasis the need to validate on all levels. That is, if an 

SDT, simply put, is an integrated collection of data driven and physics-based models to 

support decisions, there are validation needs for all three: the data, the model, and the 

design support process. The class societies have started to document the expectations 

for validation and testing. However, this report has identified that further work is needed 

to clarify the validation requirements and codify the testing methods necessary for 

validation.  

Section 9 does a deep dive into different examples of digital twins developed for 

surface ships. Three approaches are presented, each targeting a different feature of 

digital twins. These included surrogate modeling, advanced FE modeling techniques, and 

predictive assessments.  

Approach A (section 9.1) focused on the use of surrogate models in the SDT. Both 

surrogates were developed using hydrodynamic simulations to capture the physics-based 

response along the length of the ship. The first method proposed in this report uses 

surrogate established with the vertical bending moment envelope. This method was found 

to be computationally fast, explicitly conservative, but potentially overly conservative for 

broad use. The second uses a lagged regressive model that capitalizes on the temporal 

and spatial relationships in structural response. This method was also computationally 

efficient, can be optimized to support use over a broad set of conditions, and is not 

inherently conservative. 
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Approach B (section 9.2) focused on advanced FE modeling techniques geared at 

reducing the epistemic uncertainties that arise from estimating structural loads from strain 

measurements. This report proposed a method for the systematic formulation of a load 

basis for conversion matrices. The proposed method capitalized on the natural vibration 

mode shapes for the structure. It has the advantage of being systematic and repeatable, 

but requires information on weight, as well as stiffness. Additionally, this investigation 

identified a viable path to improve loads estimation: invoke principles of structural 

vibrations and use the developed modes to identify the modal participations factors as a 

function of time. Further work on this topic is recommended.  

Approach C (section 9.3) focused on predictive methods. Three methods were 

proposed for use. First, a basic approach that statistically characterized the current data 

and used a prediction window to probabilistically estimate loads in that window. This 

approach was simple to implement, fast to execute, but (inconsistently) under- or over- 

predicted future loads during times of rapid changes. Thus, this report identified a critical 

challenge to predictive metrics: an underlining weakness of extrapolation-based methods 

in handling non-stationary conditions. A second method attempted to compensate for this 

weakness by using time-series forecasting methods to anticipate the advent of a condition 

change and obtain better future loads predictions. This method only achieved modest 

gains over the first method. Finally, a third method relied on classification modeling with 

the idea that when forecasts are classified as overpredictions they could also be scaled 

down. Overall, the study showed that although a kNN classifier appeared to work well on 

the original dataset, it failed to generalize to conditions. 

Again, this report presents advancements to digital twin methodologies through 

the establishment of SDT ontology for the design and development, and through the 

practical examples of SDTs developed and applied to real datasets. Whether Digital Twin 

is viewed as its own topic or as a ‘compilation of capabilities’, this report identifies three 

things: (1) there is a need to enhance the requirements, design processes, and validation 

requirements for digital twins,  (2) there are technical gaps in each of the fundamental 

capabilities that need to be addressed, and (3) there are technical gaps in the 
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characterization and propagation of uncertainties throughout all fundamental capabilities 

in the digital twin. All these items are essential to address before the value of SDTs can 

be realized. 
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