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Nomenclature

= breadth of the panel, m

b

b. = effective width of plating, m
t thickness of the panel, mm

C

Constant depending on the plate material and location on
the ship
Head of sea water, feet

o
i

K = Factor depending on the aspect ratio of the panel

E = Young’s Modulus, N/mm?

oy = Yield Stress, N/mm?

A = Total cross-sectional area of the beam, cm?

Asy = Shear area, cm’

A, = Shear area along 'y’ axis, cm?

A, = Shear area along 'z’ axis, cm?
= Moment of Inertia, cm’

I
Iy, = Moment of Inertia about 'y’ axis, cm®
I

. = Moment of Inertia about. ’z’ axis, cm’

Yo = distance of neutral axis from plating, cm

¥e¢ = distance of neutrai axis from stiffener flange, cm
SM, = Sectional Modulus to the plating, cm?®

SM¢ = Sectional Modulus to the stiffener flange, cm®

J = St. Venant’s Torsional Constant, cm®

r radius of gyration, cm

Fuir = Ultimate Strength of the plating, N/mm?
Fer = Critical Buckling stress due to axial compression, N/mm®
Facr = Critical Buckling stress due to bending, N/mm?

Fscz = Critical Buckling stress due to shear, N/mm?
Oxx = Normal Stress in longitudinal direction, N/mm2
Oyy = Normal Stress in transverse direction, N/mm’
Ozz = Normal Stress in vertical direction, N/mm-
Gx = In-plane shear Stress, N/mm’

v



Ox. = Vertical shear Stress, N/mm’

o, = Vertical shear Stress, N/mm?
vm = Von Mises Stress, N/mm?

A x,yy = Initial Deformation at x and y, mm

L = Length ¢of Beam, m

s = stiffener spacing, m

dv = web depth, mm

t. = web thickness, mm

b: = flange width, mm

t¢ = flange thickness, mm

p = normal pressure, N/mm?

IL = moment of dnertia of the stiffened plate in the

longitudinal direction

IT = moment of inertia of the stiffened plate in the
transverse direction

iL = moment of inertia of the stiffened plate per longitudinal

iT = moment of inertia oflthe stiffened plate per transverse

(A/B) (iT/iL)®* = Virtual Aspect Ratio. (Measure of stiffness

of cross stiffened panels)

vi
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1.0 INTRODUCTION

1.1 Background

Due to the emphasis on increasing ship lengths and reducing
structural weight to increase cargo capacity, there has been
an increase in the use of high strength steels on commercial
vessels, especially tankers.- Recently, tankers constructed of
high strength steel have experienced damage to their side
shell and bottom structures. This damage is characterized by
the initiation of cracks in plating at the intersection of

transverses and longitudinal stiffeners.

The use of high strength materials has resulted in the design
of grillage structures that are lighter and more flexible.

But, even though the material's strength is greater, its
stiffness is the same. Therefore, reducing the area of the
stiffener increases its flexibility. The result of this
increased flexibility is an increase in secondary stresses due

to the increased deflection of supporting structure.

The stiffened plate panel, which is intended to provide

watertightness and contribute to a major portion of hull

girder longitudinal and transverse strength, must be designed

to withstand primary stresses due to hull girder bending,
secondary stresses due to bending from local loading of the
plate-stiffener combination and tertiary stresses due to
bending of the plate panel itself from local lateral loads.

Current design criteria for plate panels of grillage structure
are based upon a strength of materials approach using either
linear plate or Dbeam theory. Acceptance 1is based upon
comparing calculated stresses with allowable stress levels

(yielding or buckling). For high strength steel,



certification bodies (i.e. regulatory bodies and U.S. Navy)
have allowed higher levels for both primary and secondary
design stresses, which in turn means larger values of actual
cyclic as well as static stresses. Vertical shear (normal to
the plate panel), membrane and torsional stress components are
not accounted for in the selection of the plate panel

scantlings when using a strength of materials approach.

Based upon this, it ié assumed that the damage found in
stiffened plate panels is due to stress levels which either
exceed the yield stress of the material or induce fatigue
failure. In practice, fatigue failure is avoided through
guality control of welds, careful design of connection details
and limiting the allowable stress levels. The design of
plates based upon first principals approach does not take into
consideration the stresses induced by the flexibility of its
supporting structure. Therefore, the emphasis of this study
will be on determining the added stresses in plate panels due

to increased flexibility of grillage structure.

1.2 Objective

The objective of this task was to evaluate the combined
effects of vertical .shear (normal to the plate panel),
membrane stress and torsion on the total stress of a stiffened
plate panel as a result of the effects of the overall grillage
response. Specifically, the impact of the error introduced by
ignoring grillage behavior, such as the effects of vertical
shear and membrane stresses, was determined. In order to
quantify the additional stresses induced by grillage behavior
on stiffened plate panels, a series of finite element model

were developed and parametric studies performed varying key



design parameters for a typical grillage structure designed to
current industry recognized practice. For this task, the U.S.
Navy design practice was chosen since it is based upon a first

principals approach versus emprically based design equations.

1.3 Approach

The purpose of this study was to determine the effect of the
stiffness characteristics of the supporting members. of
grillage structures on the plate panel stress. The first step
of this process was to design a grillage using strength of
materials -~ first principals based approach. Grillage
scantlings designed were then analyzed using FEM techniques to
take into account the flexibility of the grillage stiffeners

and to quantify stress componenets.

Six grillage designs were developed, three of Ordinary
Strength Steel and three of High Strength Steel. The designs

represent the bottom structure between transverse bulkheads
fore and aft and longitudinal girders on either side. The
overall length of the grillage and the plate panel aspect
ratios were kept constant, and the breadth of the grillage was

varied to modify the stiffness characteristics.

Finite element analysis of the grillages were performed to
determine the stress components and variation of stress
through out the grillage structure. Two sensitivity studies
were performed to determine simplifications that would allow
for results that are within the acceptable level of accuracy
and the hardware resources and computational time available.

First the optimum mesh size was' determined. Second, a
comparison of the results of a grillage model using plate

elements to represent both plates and stiffeners to a grillage



model wusing plate elements to represent plates and beam
elements to represent stiffeners was accomplished. Finite
element models of the six grillages developed made use of the
results of these simplifications. In order to- quantify the
stress components, the following types ©of models were
developed:

Plate Models - wused as the base model for
comparison.

Brick Models - used to quantify the vertical shear

stress component

Plate Model with initial deflection - wused to
quantify the membrane effect.



2.0 DESIGN OF STIFFENED-PLATE STRUCTURE

Current U.S. Navy structural design practices [1,2,3]' were
used to calculate the scantlings for six (6) stiffened panel
structures. These stiffened panels are comprised of 3 0SS and
3 HSS systems. The overall length, A, of the grillage was
maintained at 15.24 m (50 ft), while the overall breadth, B,
was varied, e.g. 10.06 m (33 ft), 6.4 m (21 ft), and 2.74 n (9
ft) . The resulting geometrical grillage aspect ratio are 1.52,
2.38, and 5.56. The plate panel aspect raio remained the same,

namely 3.05 m x 0.9 m (10" x 3'), for all six systems.

The panel was loaded with an uniform lateral pressure of 0.107
N/mm’ (15.56 1b/in’), which is equivalent to a head of sea
water of 9.14 m (30 ft). The plate panel thickness was

selected using Navy formula [2] of:

1A

Ll ey
0

A
B

Where H is the head of sea water, in feet. C is a constant
which is a function of plate material and its location on the
ship. The C values takes into account the acceptable
deformation of the structure. ¢ values have been established

for the following locations:

a. Topside Plating
b. Lower shell and tank boundaries

C. Boundaries for the control of flooding.

! References in section 6.0
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And K is a factor that takes into consideration the aspect

ratio of the panel, b/a>0.5 (i.e., short panels) .

For these studies, C was taken as 350 for 0SS plating and 400
for HSS plating which corresponds to topside structure where
the minimum amount of deformation (no permanent set) is
allowed for and hence would result in a conservative design.
The resulting plate thicknesses were 15.88 mm {0.6250") and
14.29 mm (0.5625") for 0SS and HSS respectively.

The longitudinal beam stiffeners were designed as continuous
beams over non-deflecting supports, while the transverse
girders were designed as clamped beams. The following steps

were used to develop these designs:

1. Calculate plating thickness, t, for normal loads
due to a uniform pressure from a head of sea water

using the equation above.

2. Determine the effective width of plating, b., based

on shear lag approach (post-buckling response),

fE
bg=2t -
Ty

3. Select a beam size (i.e., a tee beam attached to
the plate).



10.

11.
12.

13.

Determine plate/beam section properties, including
the cross sectional area, A; shear area, As; moment
of inertia, I; distance of the neutral axis from
the plating, ys; distance of the neutral axis from
the stiffener flange, y:; sectional modulus to the
plating, SMp, sectional -modulus to the stiffener

flange, SM¢; and radius of gyration, r.

Determine the secondary bending moments and shear

forces.

Determine the shear stress at the supports and the
secondary bending stresses at two locations; one

at the support and the other at the mid span of the

beam. At each location, compute bending stresses

at the plate and at the flange of the stiffener.

Check plating for ultimate strength (Fypr) .

Check plating for buckling under in-plane

compression, bending and shear, (Fw, Faca, Fser) .

Check composite plate-tee beam for yielding in

tension/compression due to bending.

Check composite plate-tee beam for maximum web shear

stress.
Check tee stiffener for Tripping.
Check tee stiffener flange for local buckling.

Check tee stiffener web for local buckling.

~



The results of the above design procedures have been
summarized in Tables 2.1 and 2.2 for 0SS and HSS grillage
designs respectively. These scantlings were used to develop
the FEM models described in section 3.0. The symbols used in
the first column of tables 2.1 and 2.2 are listed below:

'AT = dimension of the stiffened panel in the loﬁg
direction

B! = dimension of the stiffened panel in the short
direction

ta' = dimension of the unsupported span of plating in the

long direction
b = dimension of the unsupported span of plating in the

short direction

'p' = uniform lateral pressure
Tt = plate thickness
'IL' = moment of inertia of the stiffened plate in the

longitudinal direction
'IT'" = moment of inertia of the stiffened plate in the

transverse direction

'"iL' = moment of inertia of the stiffened plate per
longitudinal

TiT' = moment of inertia of the stiffened plate per
transverse

'(A/B) (iT/iL)"0.25' = Virtual Aspect Ratio. (Measure of

stiffness of cross stiffened panels)

The virtual aspect ratio, (A/B) (i¢/ip)°*®, is derived from the
fact that the stiffness of an unstiffened gross panel, of
constant thickness, 1s usually a function of the length to
breadth ratio (i.e A/B). This ratio is commonly refered to as

8



the panel aspect ratio. Therefore A/B would represent the
ratio of the stiffness in one direction to the other
direction. If the panel is supported by mutually perpendicular
intersecting beams, whose stiffnesses are different, then the
ratio of the gross panel stiffness would have to be modified
to account for the stiffness provided by the moment of inertia
of those beams. When this is accomplished the quantity called
“virtual aspect ratio” is used. Hence, the virtual aspect
ratio is equal to (A/B) (ir/i.)%?®, assuming that the Young’s

Modulus, E, is the same in both directions.

Detail calculations for one grillage, are provided in Appendix
1.0 to illustrate the process used. It should be noted that
the original calculations were performed using the English
system, therefore the plate thickness selected in the appendix

is not a standard metric plate size.



TABLE 2.1 -

DIMENSIONS AND

SCANTLINGS OF 0SS GRILLAGE

Model No. 1 2 3
A (m) 15.24 15.24 15.24
B (m) 10.06 6.40 2.74
a (m} 3.05 3.05 3.05
b (m) 0.91 0.91 0.91
t (mm} 15.88 15.88 15.88

Long’l Size

Trans Size

WT 205x140x23
914%x457%15.9/28.6 T

WT 205x140x23
W-T 690x250x123.5

WT 205x140x2:
W-T 410X180X5

p (N/mn”) 0.107 0.107 0.107

TL (cm") 6984 .36 6984 .36 6984.36

IT (cm') 717,041.14 255,524.21 48,157.93
ASL {(cm?) 14.06 14.06 14,06
AST (cm®) 149.68 100.65 39.87
iL=IL/b{(cm'/cm) 76.36 76.36 76.36
iT=IT/a (cm*/cm) 2,352.53 838.36 157.97
A/B 1.52 2.38 5.56
(A/B) (iT/iL)~1/4 3.57 4.33 6.66

10



TABLE 2.2 -

DIMENSIONS AND

SCANTLINGS OF HSS GRILLAGE

Model No. 1 2 3
A (m) 15.24 15.24 15.24
B (m) 10.06 6.40 2.74
a {m) 3.05 3.05 3.05
b {m} 0.91 0.91 0.91
t (mm) 14.3 14.3 14.3

o

Long’1l Size

Trans Size

WT 180x130x19.5
W-T 920x305x167.5

WT 180x130x19.5
W-T 610x230x101

WT 180x130x189.
W-T 410x175x%3

p {(N/mm?) 0.107 0.107 0.107

IL (cm') 4,578.55 4,578.55 4,578.55

IT (cn') 444,701.66 156,461.39 34,630.45
ASL (cm®) 11.48 11.48 11.48
AST (cm?) 144 .58 80.77 30.19
iL=IL/b{cm'/cm) 49.98 49,98 49,98
iT=IT/a{cm'/cn) 1,458.94 513.41 113.56
A/B 1.52 2.38 5.56
(A/B) (iT/iL)"1/4 3.52 4.26 6.82

11



3.0 FINITE ELEMENT MODELS OF STIFFENED PLATE STRUCTURE

3.1 Introduction

-This section discusses the finite element analysis of the
stiffened-plate structures designed in section 2.0. The P.C.
based finite element software ALGOR was used to analyze the
plate and brick models using linear elastic theory. The VAX
based NASTRAN software was used to analyze the brick model
with an initial deformation., 2all analyses in this study were
originally performed using english units. The final results
presented in this document are in metric units, therefore
standard metric sizes were not selected. For each of the six
configurations designed in section 2.0, two models were
developed, one using plate elements and the other using brick
elements. Additional models were developed to; determine
optimum mesh size, study the effect of using offset beams,
study the response of single panels under uniform load with
clamped boundary conditions and study the effect of initial
deformation of the plating. The procedures adopted for each

of these studies are described in detail below.

3.2 Determination of Mesh Size.

It is a well known fact that the results of a finite element
analysis are predicated by the mesh size adopted in the
analysis. For accurate results finer mesh sizes are
desirable, But at times the price to be paid in terms of
hardware resources and computational time is too enormous to
justify such refinements. Therefore, to ascertain mesh sizes

which would yield results within established limits of

o
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accuracy without straining available computer resources, a

study was undertaken to determine the optimum mesh size.

The usual procedure is to study the convergence of finite
element results obtained wusing various mesh sizes to
available theoretical results. For a single unstiffened
panel that is part of a grillage, the edge fixity will depend
upon its location within the grillage and the stiffness of
its supporting structure. Currently, theoretical solutions
of stiffened-plate structures under normal pressure loads
with various edge fixities are not available. Hence, the
convergence study was performed using one single unsupported
panel with fully fixed end conditions for which theoretical

results exist.

Performing a convergence study on a single panel has two
advantages. First, the results of a finite element analysis
of a panel under uniform pressure could be compared to
available theoretical solutions of rectangular plates with
all edges fixed under uniform pressure. Second, using a
single panel of unsupported plating for the mesh size

determination, enormously reduces the size of the model.

The single panel chosen for the mesh size determination was
the unsupported span of plating, 3.05m x 0.91m (10’x3’), from
the stiffened-plate structure designed in section 2.0. The
plating thickness used was as determined in section 2.0 for
0SS steel panels, which is 15.88mm (0.625"). The plating was
subjected to the same lateral pressure of 0.107 N/mm® (15.56
psi) as used in section 2.0 and clamped on all sides. For
this configuration, five models using plate elements were
developed having uniform square meshes. The element sizes
for the models were as follows: 304.8mm (12"), 152.4mm (6"),
13



76.2mm  (3"), 38.1mm (1.5"), and 19.05mm (0.75"). The

displacement and the two normal stresses, Oy and o,, , were
compared with theoretical results given in Reference [4]
based on elastic small deflection theory. These results are

summarised in Table 3.1 which also contains the in-plane

shear, 1Ty, Von-Mises and the maximum principal stresses. For
illustrative purpose, the time and the memory required to run
each model are also included in the table. In Figure 3.1,
results from Table 3.1 are plotted as percentage differences
between the finite element analysis and theory. As expected,
with a finer mesh, the results converge to the theoretical
values. For element sizes less than 152, 4mm (6™"),
displacement converge exactly to the theoretical wvalue while
for element

sizes less than 76.2mm (3"), stresses are within 10% of the
theoretical values. Each refinement produces results closer
to theory, but the amount of time and storage space (memory)
required increases. While model 5, with a mesh size of
19.05mm (0.75") produces results which are almost within 2.5%
of the theoretical result, it takes 75 times longer and about
70 times more memory than model 3 having a mesh size of
76.2mm (3"). Hence, for the present study models having

element sizes of 76.2mm (3") square were chosen.

3.3 Modeling of Longitudinals and Transverses.

Full 3-dimensional models of cross stiffened panels using
plate elements to model the plating as well as the
longitudinals and transverses are complex. As mentioned in
section 2.0, when designing stiffened-plate structure, the
longitudinals and transverses have been checked explicitly

for their various modes of failure. Therefore for the

14



TABLE 3.1. OPTIMUM MESH SIZE DETERMINATION USING PILATE

ELEMENTS '

Model 1 2 3 4 5 Elas.
Small
Defl.

Element Size | 304.8 152.4 76.2 38.1 19.05

(mm x mm) b4 X x| x X

304.8 152.4 76.2 38.1 19.05

Displ. (mm) 2.04 2.59 2.59 2.59 2.5% 2.57

(% Diff) -20.82 ] 0.45 0.45 0.45 0.45

O (N/1m’) 51 97 109 115 118 121

(% Diff) -58.13 [ -19.86 | -10.29 | -5.12 -2.41

Oyy (N/mm’) 119 149 164 171 175 178

(% Diff) -33.17 | -16.40 | -7.99 -3.78 -1.68

Tuy (N/mm?) 18 24 22 23 23

vm (N/mm"2) 119 1459 164 171 175

max. prin. 118 149 164 171 175

(N/mm?)

time (min) 0.23 0.42 1.51 11.03 117.28

memory (Mb) 0.024 0.095 1.001 8.8 71.3

Sux = Normal Stress in 'x' direction

Syy = Normal Stress in 'y' direction

Tuy = In-plane Shear Stress

vm = von mises Stress

max.prin. = maximum principal Stress

Note : % Differences are with respect to Elastic Small

Deflection Theory

-15
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present study, the area of interest was the behavior of the
plating in a cross stiffened structure under normal loads.

To economise on the size of the models and still maintain
accuracy, the longitudinal and transverse stiffeners were
modeled wusing beam elements. Since FEM grids combine
elements at their neutral axis, the beam elements were offset
from the plating by an amount equal to the distance of their
neutral axis from the plating. Sectional properties used to
represent the stiffeners include total cross-sectional area
(A), the shear areas (A, and A,), moment of inertias about the
strong and weak axes of bending (I, and I.) and the St.
Venant's torsional constant (J). The properties were

obtained by treating the longitudinals and transverses as

stand alone beams with no effective plating.

To validate the use of offset beams to represent the
longitudinal and transverse stiffeners, two finite element
models were developed. In one, the stiffeners were modeled
using discrete plate elements, in the other offset beam
elements were used. For this comparative study, the second
ordinary strength steel (0SS) stiffened-plate model, 15.24m x
6.4m (50" X 21'), designed in section 2.0 was used. For the
model in which the stiffeners were represented by discrete
plate elements, the webs of the longitudinals were two
elements deep and those of the transverses were four elements
deep. The flanges of both the longitudinals and transverses
were two elements wide. In both models, the plating was
represented by 152.4mm (6") square elements. Due to symmetry
in loading and boundary conditions, only a quarter of the
structure was modeled. Results of the comparison are shown
in Table 3.2. In addition to displacement, Table 3.2 also
contains the computational time taken and the memory required
for analyzing each of the models. Table 3.2 indicates that

17



TABLE 3.2. COMPARISON OF STIFFENER MODELS USING PLATES AND OFFSET

BEAMS, (PLATING MODELED USING PLATE ELEMENTS)
MODEL STIFFENERS | STIFFENERS %
AS PLATES AS BEAMS DIFFERENCE
Displacement (mm) 9.73 9.99 2.69
Gy (N/mm?) 140.53 139.85 -0.48
Gy (N/mm?) 190.34 192.92 1.36
Ty (N/mm?) 54.28 55.55 2.34
v.mises (N/mm’) 169.31 171.87 1.51
Time (min) 21 4 -81.00
Memory (Mb) 25 6 -76.00
Oxx = Normal Stress in 'x' direction

Oyy = Normal Stress in 'y' direction

Txy = In-plane Shear Stress

. v.mises = von mises Stress

Note : % Differences are with respect to the model in which the

stiffeners are modeled using plates.

18



while the differences in the displacements and stresses
between the two models are less than 3%, the saving in time
and storage (memory) is as high as 75%. '

3.4 Modeling of Plating using Plate Elements

Six stiffened-plate structures, three made of ordinary
strength steel (0SS) and three of high strength steel (HSS)
were designed in section 2.0. To study the effect of
deflection of the supports (longitudinals and transverses) on
the plate panels of a stiffened-plate structure, linear
elastic finite element models were developed for each of the
above six structures using 76.2mm (3") square plate elements
to model the plating and offset beams to represent the
longitudinals and the transverses. The beam elements used to
model the stiffeners were offset at the connection points to
the plating by an amount equal to the distance of the neutral
axis of the stiffeners from the bottom of the plate surface.
The thicknesses of the plating used were 15.88mm (0.625")
for the 0SS models and 14.29mm (0.563") for the HSS. The
sectional area properties for the longitudinals and
transverses used for the six models are summarised in Table
3.3 and 3.4. For all six models, Yoﬁng's modulus, E, of
206,850 N/mm® (30 X 10° psi) and Poisson's ratio of 0.3 were
used as material constants, an uniform pressure load of
0.107 N/mm® (15.56 psi) was applied normal to the plane of
the plating, in the direction of the stiffeners. Due to
symmetry of the structure and the load, only a quarter of the
structure was modeled. These stiffened-plate models
represent bottom structures between transverse bulkheads on

the forward and aft ends and longitudinal girders on either
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TABLE 3.3, SECTIONAL PROPERTIES OF LONGITUDINALS AND TRANSVERSES (0S8S)
MODEL 1 MODEL 2 MODEL 3
LONGL. TRANSV. LONGL. TRANSV. LONGL. TRANSV.

A (cm?) 29.006 271.270 29.006 157.322 29.006 67.058
Ay(cmz) 14.090 145.161 14.090 100.322 14,090 39.864
Az(cmz) 14.816 126.109 14.916 57.000 14.916 27.183
Iy(cm4) 258.65 22,787.01 258.65 3,310.95 258.65 775.23
I, (em?) 1,136.35| 233,612.22{ 1,136.35| 80,869.90| 1,136.35| 12,041.53
J(em?) 8.70 473.71 8.70 180.10 8.70 36.42
Yra {(cm) 14.983 66.309 14.983 46.772 14.983 28.698%

A = Total Area

A, = Area along ‘y' axis

A; = Area along 'z' axis

I, = Moment of Inertia about 'y' axis

I; = Moment of Inertia about 'z' axis

J = St.Venant's Torsional Constant

Yns = Distance of the neutral axis from the plating
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TABLE 3.4. SECTIONAL PROPERTIES OF LONGITUDINALS AND TRANSVERSES (HSS)
MODEL 1 MODEL 2 MODEL 3
LONGL. TRANSV. LONGL. TRANSV. | LONGL. TRANSV.

A (cmz) 24.387 214,445 24,387 129.387 24,387 48.761
Ay(cmz) 11.452 145.671 11.452 81.458 11.452 30.187
A, (cm?) 12.935 68.774 12.935 47.929 12.935 18.574
Iy(cnf) 185.76 5,622.23 185.76 2,255.60 185.76 510.76
IZ(Cm4) 718.50 | 192,408.89 718.50 52,509.55 718.50 8,495.36
J(cmh) 6.66 259.02 6.66 128.45 6.66 13.19
Yna (cm) 13.246 59.731 13.246 41.849 13.246 27.607

A = Total Area

Ay = Area along 'y' axis

A, = Area along 'z' axis

I, = Moment of Inertia about 'y' axis

I. = Moment of Inertia about 'z' axis

J = 5t.Venant's Torsional Constant

Yna = Distance of neutral axis from plating
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side. For the quarter models, two of the edges are fully
fixed representing fixities at the transverse bulkhead and
longitudinal girder. On the other two edges, symmetry
boundary conditions are applied. A schematic of the

structure is shown in Figure 3.2.

Figure 3.3, shows the ‘actual finite element model of the
first 0SS plate-stiffened structure, 15.24m X 10.06m (50' X
33') designed in section 2.0. ' The other five models are

similar except for their overall dimensions and scantlings.

3.5 Modeling of Plating using Brick Elements

To study the effect of vertical shear on the plate panels
of a stiffened-plate structure, 1linear elastic finite
element models were developed by substituting the plate
elements used in the previous sub-section with 76.2mm - (3")
square brick elements to model the plating. One layer of
brick elements was used through the thickness, therefore
the thickness of the brick elements was the same as the
thickness of the plating. The thicknesses of the plating
used were 15.88mm (0.625") for the 0SS models and 14.2%mm
(0.563") for the HSS model. As in the previous sub-
section, offset beams were used to represent the
longitudinal and the transverse stiffeners. The sectiocnal
area properties for the stiffeners, material properties,
load and boundary conditions were the same as those used in
the plate models,'see Table 3.3 and 3.4.

3.6 Modeling of Plating with Initial Deformation

It has been observed that in stiffened-plate structures,

due to the shrinkage of welds at the attachment of the

22
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stiffeners to the plating, the unsupported span of the
plating bounded by the stiffeners develops an initial
deformation. As mentioned in [4] depending on the amount
of initial deformation present in the plating and the
degree to which the edges are restrained from pulling in,
the plating under normal (lateral) loads, develops membrane
tension. This membrane effect which, is absent when the
plate is perfectly flat, produces a normal (or lateral)
component of membrane tension which can carry a portion of
the normal pressure load and hence can be beneficial. To
study such membrane effects on stiffened-plate structure
with deflecting supports (longitudinals and transverses),
two finite element models of the third stiffened-plate
structure 15.24m x 2.74m (50' X 9') designed in section 2.0
were developed. For both, the 0SS and HSS models, brick
elements were used to model the plating and as before
offset beam elements were used to represent the stiffeners.

The initial deformation in the unsupported span of the
plating between the stiffeners was defined by a double

sine function as given below

Aud):tSinﬂzzJSi -ZX)
a b
where
Aix,yy = Initial deformation
t = thickness of the plating
a,b = length and breadth of the unsupported span
of plating

Using this expression the maximum deflection always occurs at
the middle of the panel. The deflection value was chosen to
be equal to one plate thickness. For this study, 38.1lmm

(1.5") square brick elements were used and as before their
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thicknesses were the same as that of the plate. The same
material constants, loading and boundary conditions were used

as in sub-section 3.4 and 3.5.
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4.0 RESULTS QF FINITE ELEMENT ANALYSIS
4.1 Comparison of Stresses using Plate Elements

Tables 4.1 and 4.2 summarize the results of the analysis
performed using plate elements to represent plate panels of

the six stiffened-plate models designed in section 2.0. The
output includes maximum displacement, normal stresses &, and
Oyys in-plane shear stresst,, and Von-Mises stress for the 0SS

and HSS models respectively. The normal stress, 6., is in the

longitudinal direction or the long direction of the structure

while o,, is the normal stress in the transverse direction.

The Von-Mises stress represents the Hecky - Von-Mises failure
criteria and takes - into account all the normal stress
components as well as the the shear stresses. In the tables,
locations of the maximum values of displacements and stresses

are given in parenthesis below each quantity.

For comparison, the last column of Tables 4.1 and 4.2 (with
the heading 'SP') contains results of a single panel with
fully fixed edges. This single panel is the same as an
unsupported panel of plating of models 1, 2, and 3. This
panel has the same thickness as that of the stiffened-panel
(15.88mm) (0.625") for 0SS structures and 14.3mm (0.563") for
HSS structures). This single panel represents a case where
the longitudinals and transverses are excessively stiff and

hence are undeflecting.

Figures 4.1 to 4.12 show the stress patterns of the normal,

Oy, and the Von-Mises stresses for models 1, 2 and 3. Stress
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15.88 mm: oy__ = 235 N/mm’)

TABLE 4.1. MAXIMUM DISPLACEMENT AND STRESSES AT THE BOTTOM SURFACE OF 0SS MODELS
{USING PLATE ELEMENTS; t =

TABLE 4.2.

MODEL 1 MODEL 2 MODEL 3 S.P.
(15.24x%10.06) | (15.24x6.40) (15.24x2.74) (3.05x0.91)
Disp. (mm) 14.45 10.42 7.44 2.59
(em, cm) (457,503) (457,320) (457,137) (152, 46)
Oy (N/mm2) 157.28 151.97 151.94 108.57
(cm, em) (0,137) (0,137) (610,137) (0,46)
Syy (N/mm2) 241,70 209.13 195,92 163.76
(cm, cm) (610,0.0) (518,0.0) (457,0.0) (122,0.0)
ey (N/mm2) 60.99 53.26 37.54 22.48
(cm, cm) (587,107) (587,99) (587, 99) (23,15)
v.mises (N/mm2) 230.64 189.87 184.05 145.55
(cm, cm) (610,0.0) (610,0.0) (457,0.0) (122,0.0)
MAXIMUM DISPLACEMENT AND STRESSES AT THE BOTTOM SURFACE OF HSS MODELS
(USING PLATE ELEMENTS; t = 14.29 mm; o,_ = 350 N/mm")
MODEL 1 MODEL 2 MODEL 3 S.P.
(15.24x10.06) | (15.24x%6.40) (15.24x2.74) (3.05x0.91)
Disp. (mm) . 18,68 14.46 10.32 3.55
(cm, cm) (457,503) (457, 320) (457,137) (152, 46)
oxx  (N/mm?) 192.31 187.65 188.01 134.03
(cm, cm) (0,137) (0,137) (610,137) (0,46)
‘cyy (N/mm?) 281.23 258.09 241.85 202.18
(cm, cm) (610,0.0) (518,0.0) (457,0.0) (122,0.0)
Ty (N/mm?) 73.54 67.07 46.51 27.76
(em, cm) (587,107) (587, 99) (587,99) (23,15)
v.mises (N/mm?) 250.50 232.66 227,43 179.70
(cm, cm) (610,0.0) (610,0.0) (457,0.0) (122,0.0)
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patterns of the other two components, o.. and T, are not
included since in all cases the magnitude of 6., is less than

Oy and Ty, is very small. As the figures indicate, the maximum
stresses occur at the two fixed edges and along the
intersection of the stiffeners with the plate. The two
fixed edges are those which are closer to the right and top
edges of the paper respectively. 1In each of the figures, the
stress distribution has been repfesented by five ranges,
values of which are shown at the top. The 0SS and HSS models
have the same stress patterns although their magnitudes are
different due to the difference in plate thicknesses and

grillage beam sizes.

Figures 4.13 and 4.14 provide a direct comparison of the

stress components. The maximum values of four stress
components, two normal stress components o.. and 0y, , in-plane

shear Ty and von-mises, are plotted with respect to the
virtual aspect ratio defined in section 2.0. For comparison,
the values of these stresses for the single panel model
described above have also been plotted. For each value of
virtual aspect ratio, the percentage differences in the
stresses of the stiffened-plate and the single panel model

are shown in the plots.

4.2 Comparison of Stresses using Brick Elements

Tables 4.3 and 4.4 provide maximum values of the normal

atrreas .. =anNnd vertiral esheaotr ot rmocao T - I, [N, B S T
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TABLE 4.3. MAXIMUM DISPLACEMENT AND STRESSES OF 0SS MODELS

(USING BRICK ELEMENTS; t = 15.88 mm; ¢,__= 235 N/mm’)

MODEL 1 MODEL 2 MODEL 3
(15.24%10.06) (15.24%6.40) (15.24x%2.74)
Disp. (mm) 14.12 10.14 7.27
(cm, cm, cm) (457,503,0.000) (457,320, 0.000) (457,137,0.000)
Gwx  (N/mm?) 140.44 130.32 130.15
(em, cm, cm) (0,457,0.000) (0,274,0.000) (610,137,0.000)
Oyy (N/mm?) 255,51 204.55 164.11
(¢m, cm, cm) (610,0,0.000) (610,0,0.000) (457,0,0.000)
Gzr (N/mm?) 87.45 68.94 39.26
(cm, em, cm) (610,0,1.588) (610,0,1.588) (610,0,1.588)
ey (N/mm’) 63.03 54.50 36.70
(cm, cm, cm) (594,99,1.588) (594,99,1.588) (587,99,1.588)
1y, (N/mm?) 29,31 23.59 15.71
(cm, c¢m, cm) (610,0,0.000) (610,0,0.000) (610,0,0.000)
Txz (N/mm?) 16.58 14.96 13.11
(em, cm, cm) (0,457,0.000) (0,274,0.000) {0,91,0.000)
v.mises (N/mm%) 202.55 162.47 153.86
(cm, cm, cm) (610,8,0.000) (610,8,0.000) (457,0,1.588)




(USING PLATE ELEMENTS;

TABLE 4.4. MAXIMUM DISPLACEMENT AND STRESSES OF HSS MODELS

14.29 mm; 6y_ = 350 N/mm")

MODEL 1 MODEL 2 MODEL 3
(15.24x10.06) (15.24x6.40) (15.24x2.74)
Disp. (mm) 18.20 14.02 10.02

{cm, cm, cm)

(457,503,0,000)

(457,320,0.000)

(457,137,0.000)

Oxx (N/Hmﬁ)
(cm, cm, cm)

167.47
(0,457,0.000)

159.07
(0,274,0.000)

15%.81
(610,137,0.000)

Oyy (N/mm’)
(cm, cm, cm)

279.77
(610,0,0.000)

253.56
(610,0,0.000)

202.67
(457,0,0.000)

6z, (N/mm?)
(cm, ¢cm, cm)

100.04
(610,0,1.430)

86.80
(610,0,1.430)

46,34
(610,0,1.430)

Ty (N/mm?)

(cm, cm, cm) -

74.99
(594,99,1.430)

67.98
(594,99,1.430)

44.98
(587,99,1.430)

Ty, (N/mm?) 25.48 26.16 18.04
(cm, cm, ¢m) (610,0,0.000) (610,0,0.000) (610,0,0.000)
T (N/mm?) 17.20 15.76 13.73
(cm, cm, cm) (0,457,0.000) (0,274,0.000) (0,91,0.000)
v.mises (N/mm?) 228.49 203,92 190.14
(cm, cm, cm) (610,8,0.000) {(610,8,0.000) (457,0.0,1.430)




stress T., and Von-Mises stress for the 0SS and HSS models
respectively. The normal stresses g.. and 0, are in the same
direction as described in sub-section 4.1. The normal stress
C.. acts vertically upwards. The two additional shear stresses

T, and 7,, act vertically on the two faces perpendicular to the
longitudinal and transverse directions of the panel. The
Von-Mises stress represents the Hecky - Von- mises failure
criteria and takes into account all the normal stress
components as well as the shear stresses. As in the previous
sub-section in the tables, locations of the maximum values of
displacements and stresses are given in parenthesis below
each quantity. Figures 4.15 to 4.38 show the stress patterns
of the normal stress G,, von-mises stress and the vertical
shear stresses 1., and Ty for models 1, 2 and 3. As before,

only Oy, Whose magnitude is greater than the other two normal

stresses, are shown. For all the models, maximum o, and von
mises occur at the two fixed edges and along the intersection
of the plate with the stiffeners. The two fixed edges are
those which are closer to the right and top edges of the

paper respectively. Maximum vertical shear stress 1,, occurs

along the transverses while the maximum 1., occurs along the
longitudinals. In each of the figures, the total stress
distribution has been divided into five ranges, values of
which are shown at the top. The 0SS and HSS models have the
same stress patterns although their magnitudes are different
because of the difference in plate thicknesses and grillage

beam sizes.

In Figures 4.39 and 4.40, the maximum values of four stress
components, two normal stress components ¢.. and 6,,, in-plane

shear t., and von-}nises, are plotted with respect to the

46
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FIGURE 4.22 HSS BRICK MODEL 1; ty, STRESS (VIEW FROM THE BOTTOM)
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FIGURE 4.26 0SS BRICK MODEL 2; Ty, STRESS (VIEW FROM THE BOTTOM)
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FIGURE 4.40 COMPARRISION OF STRESSES IN HSS BRICK MODEL WITH HSS PLATE MODEL




virtual aspect ratio defined in section 2.0. For comparison,
the values of these stresses obtained using plate elements have
also been plotted. For each value of the virtual aspect ratio,
the percentage differences in the stresses of the stiffened-
plate structures using brick elements and plate elements are

shown.

4.3 Comparison of Stresses with Initial Deflection in the
Plating

Results of the finite element analyses of the third model,
15.24m x 2.74m (50'x8'), with 1initial deflection, are presented

in Table 4.5. The same six stress components, G, Oy, Gzzr Txyr Txzs

Ty. and von-mises have been considered. For comparison, another
model without any initial deflection and having the same mesh
size was also analysed for both the 0SS and HSS materials.

Results of which are also presented in the Table 4.5. In the
table, the location of these maximum stress values are presented

in parenthesis.

4.4 Discussion of Results

The results of the FEM analyses of the cross-stiffened plate
panels, using plate elements, are shown in Tables 4.1 and 4.2
for 0SS and HSS material respectively. It can be observed from
Figures 4.13 and 4.14, that the plate bending, shear stresses
and deflections are much higher in a grillage panel than in a
single plate panel. The bending stresses, which are usually
used to select plate thicknesses, can be as much as 50% higher.

However, the difference decreases as the virtual aspect ratio,
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TABLE 4.5. MAXIMUM STRESSES IN MODEL 3 WITH INITIAL DEFORMATION

( 15.24 m. X 2.24 m)

(OS5 AND HSS3)

(cm, cm, cm)

(457,0,0.000)

(610,0,0.000)

(457,0,0.000)

STRESS 0SS 0SS HSS HSS
(UNDEFORMED) (DEFORMED) (UNDEFORMED) (DEFORMED)
Oy (N/mm?) 148.04 155.83 181.89 191.75
(em, cm, cm) (0,91,0.000) (0,91,0.000) (0,91,0.000) (0,91,0.000)
Gy (N/mm?) 185.75 160.66 229.40 196.65

(610,0,0.000)

Ozz (N/mmz)

(cm, cm, cm)

45.22

(610,0,0.000)

46.86

(610,0,0.000)

54.08

(610,0,0.000)

56.15

(610,0,0.000)

Tey (N/mm*)

(cm, cm, cm)

37.40

(587,103,1.588)

33.74

(591,85,1.628)

45.98

(587,103,1.430)

41.34

(591,95,1.466)

Ty, (N/mm)

{cm, cm, cm)

39.44

(610,0,0.000)

39.41

(610,0,0.000)

47.23

(610,0,0.000)

47.20

(610,0,0.000)

(cm, cm, cm)

(457,0,1.588)

(610,91,0.0)

(457,0,1.430)

T (N/mm’) 34.41 34.08 33,58 39.16
(cm, cm, cm) (0,91,0.000) (0,91,0.000) (0,91,0.000) (0,91,0.000)
vm (N/mm°) 173.13 176,31 213.88 216.09

(610,91,0.0)
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(A/B) (11/11) V%, decreases. Even at the higher virtual aspect
ratios the significant bending stress is 17% and 19% higher than
the single plate panel for the 0SS and HSS gillages
respectively. It can also be observed that the plate bending
stress is greater than the yield stress for the 0SS system and
is approaching the vyield stress for the HSS system as the
virtual aspect ratio is approximately equal to 3. Hence, it is
possible that ship structures will experience higher stresses
than calculated using a first principals approach, resulting in
failure and/or fractures. Therefore the stiffness of grillage
supporting structure should be accounted for in the plate
selection process. The results of the FEM analyses using brick
elements are shown in Tables 4.3 and 4.4 for the 0SS and HSS

system respectively. Comparison of stress distributions (oyy and
Von-Mises) produced by the plate element models and the brick
element models reveal similarity in the location of the high
stress regions although comparisons of the maximum values of the
stresses in Figures 4.39 and Figure 4.40 show that the bending
stresses from the brick models are lower than those of the plate
by about 16% and the shear stresses are about 2%, This
discrepancy can bé attributed to the mesh size chosen for brick
models. Table 4.6 presénts results of two additional finite
elément analysis done on the smaliest 058 model 15.24m x 2.74m
(50"%9’), designed in section 2.0 with brick elements. These
two models had mesh sizes of 50.8mm (2”) and 38.1mm (1.5")
square. Comparison of the results show that as the mesh size is
made smaller, results. of the brick model approaches those of the

plate model.

A comparison of the through the thickness shear stresses shows

that the c¢ritical locations are at the intersection of the
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TABLE 4.6. EFFECT OF VARYING ELEMENT SIZE ON THE RESULTS OF BRICK MODEL 3
(0SS MATERIAL)
Model 1 2 3 PLATE
MODEL
Element Size |76.2 x 76.2|50.8 x 50.8|38.1 x 38.1(76.2 x 76.2
(mm 3 mm)
Displ. (mm) 7.06 7.09 7.11 7.30
(% Diff) -3.24 -2.78 -2.61
Oxx (N/TOIn?) 130.15 142.38 148.63 151.94
(% Diff) -14,34 -6.29 -2.18
oyy (N/mm?) 164.11 178.39 185.77 195.92
(% Diff) -16.24 -8.95 -5.18
Tyy (N/mm’) 36.70 37.30 37.72 37.54
(% Diff) -2.24 -0.64 0.46
vm (N/mm?) 153.86 166.55 173.10 184,05
(% Diff) -16.40 ~-9.51 -5.95
time (min) 0.225 0.422 1.51
memory  (Mb) 0.024 0.095 1.001
Crx = Normal Stress in 'X' direction
Cyy = Normal Stress in 'y' direction
Txy = 1In-plane Shear Stress
v.mises = von mises Stress
Note 2 Differences are with respect to plate model.
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longitudinal and transverse stiffeners. However, these shear
Stresses are only 10% of the plate bending stresses. The use of
sophisticated FEM analyses, using multi-noded elements, is not
warranted because they will not significantly change the results
for selecting the required plating thicknesses for ship

structure subjected to normal loads.

The results of FEM analyses with initial deflection in the
plating, using brick elements, are shown in Table 4.5 for both
the 0S5 and HSS material systems. It is observed that the plate
bending stresses in the x-x direction are only 5% higher than
comparable stresses of the FEM analysis with no initial
deflection in the plating, and that the plate bending stresses
in the y-y direction are 13% less. Hence, the use of initial
deflections, of the order of one plate thickness, in the
analysis of plate bending stresses will not change the
requirements for selecting plate thicknesses needed to resist

normal loads.
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5.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORKS

The primary objective of this task was to evaluate the effect of

overall grillage behavior on the total stress of a stiffened-

plate panel. Overall grillage behavior is defined as the
deflection of the supporting structure (transverses and
longitudinals) due to an applied loading. This deflection

induces additional stresses on the plate panel which are not
accounted for in the selection of the plating thickness. In
order to quantify the impact of these additional stresses in a
stiffened plate structure, finite element models were developed
representing typical grillage structures designed to current
industry recognized practice. The results of these finite
element analyses are presented in section 4.0 and the fdollowing

conclusions are based on those results.

1. As evident from Figure 4.13 and Figure 4.14, stresses
induced in the plating of a stiffened panel due to the
deflection of the stiffeners are significantly higher than those
where the stiffeners are assumed to be fairly rigid and hence
unyielding. The differences are as high as ©50%. The
differences in stresses depend on the virtual aspect ratio of
the panel. The differences seem to attain a maximum at virtual
aspect ratio of three. They then tend to decrease and become

constant at higher values of virtual aspect ratio.

2. From Table 4.3 and 4.4, a comparison of the maximum values
of the normal stresses ¢.. and 6,, with the vertical shear

stresses, T.. and t,. show that the vertical shear stresses are

about 10% of the normal stresses and hence would not play a
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significant part in selection of plating thicknesses based on

static stress design.

3. © Figures 5.1 and 5.2 show the vertical shear stress

distributions, 1. and T, of a rectangular panel 3.05m x 0.91m
(10x3’) fully fixed on all sides and under normal pressure load
of 0.107 N/mm® (15.56 psi). While these figures indicate that
the maximum tends to occur at the middle of the boundaries of
the panel, Tables 4.3 and 4.4 indicates that for a stiffened-
plate structure, the location of maximum vertical shear stresses
are at the intersection of the transverses and longitudinals.

Therefore these regions in a stiffened-plate structure may be

more prone to cracking.

4, From the limited data produced in this study, it appears
that initial plate deflection does not significantly affect the
behavior of stiffened plate structures. This could be due to
the flexibility of the stiffening members (longitudinals and
transverses) since they do not restrain the edges of the

unsupported panel.

Based on the above conclusions, the following recommendations

are being provided for future work:

1. Figures 4.13 and 4.14 indicate that for virtual aspect
ratio greater than 6.5, the maximum values of the normal and
Von-Mises stresses seem to become constant. But, for wirtual
aspect ratios less than 3.5, thése values seem to increase.
Therefore it is suggested that further finite element analysis
be performed on models of aspect ratios less than 3.5 to

ascertain the trend.
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The design of a stiffened-plate panel is influenced by a
number of factors including the loading, the overall
dimensions of the panel, the scantlings of the plating and the
stiffeners and the spacing of the stiffeners. Interaction of
all these factors result in complex stress patterns for which
there are no closed-form solutions. Hence, parametric studies
should be performed taking into account these variables to
develop methods to calculate stresses in terms of these

variables.

Methods for selection of plate thickness subject to normal
loads should be modified to take into account the deflection
of the stiffeners and the orthotropic stiffeness of the
grillage, i.e. (A/B) (iT/iL)Y*. ABS rules in “Safe Hull” are

currently doing this for in-plane loads.

The use of non-linear finite element methods should be persued
as well as larde scale testing of grillage structure to aid in
verification of panel stress calculation methods described
above. The analysis should account for geometrical and
material non-linearity, Existing test data of structural

grillages should be gathered and re-evaluated.
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APPENDIX 1

Following calculations illustrate the procedure used to
design the 0SS grillage having an overall dimension of
15.24m X 2.74m. The formulae and criterion used are those
available in Structural Design Manual [2] and DDS-100-4 [3].
The same procedure is followed for the remaining five

grillage structures designed in section 2.0.

(a) Determination of Plate thickness:

The minimum plate thickness required is determined using the

following equation

c

K- JH

where for this study, C = 350 and the head of water, H = 35

=

o

ft. The panel dimensions are, a = 10’ and b = 3. Therefore K
= 1. Substituting these values of C, H and K in the above
equation, we get,

b
—<59.156
t
or tz=0,608
The nearest available plate size is 0.625"7. Since the

constants C and K and the variables b, t and H are in english
units, therefore the thickness is derived in english units and

converted to metric units to yield a thickness of 15,88mm.
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(b) Determination of Transverse Girder:

The procedure mentioned in section 2.0 has been followed to

determine the scantlings required for the transverse girder.

Given: Length of beam, I = 2.74 m (9.0")
Spacing of beam, s = 3050.0 mm (10.07)
Uniform Pressure, p = 0.107 N/mm’ (15.56 psi)
Thickness of Plate, t = 15.88 mm (0.625%)

Beam Size: W-T 410 % 53.0 (16 x 7 1/8 x 50# I-T)
Web depth, d. = 397 mm (15.63")
Web thickness, tw 9.65 mm (0.38")
Flange width, b: = 180.0 mm (7.077)
16.0 mm (0.63")

Flange thickness t¢

Yield stress, o,= 235 N/mm’ (34,000 psi)
Allowable stress, o, = 195 N/mm~ (28,000 psi)
Proportional Limit, _op = 176 N/mm- (25,000 psi)

Young’s Modulus, E = 206,850 N/mm” (30 x 10° psi)

Poissons’ ratio, v = 0.3

Section Properties of Combined Plate-Beam Section:.
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dw' > K t.,
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Effective Width of Plating, Db.:

Shear lag approach:

Post-~buckling approach:

b, = L/4 = 2740/4 = 685 mm (27%)

be = 60t = 60x15.88 953 mm
(37.5")
Spacing of beam, s = 3050 mm (1207)
The effective width of plating is the lesser of the
above 3 values. Therefore,
be = 685 mm (27”)
Computation of section properties:
Element |Area y A.y A,y Io~0
Plate 10,878 7.94 86,371 685,788 228,596
Web 3,831 214.38 842727 180,663,982 | 50,316,673
Flange 2,880 420.88 1,212,134 510,163,126 | 61,440
17,589 2,141,232 691,512,896 50,606,709

A = 17,589 mm®
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ZA.y = 2,141,232 mm?
Yo =XA.Y/XA = 2,141,232/17,589 = 121.74 mm
Ve = tptdAtey= 15.884397+16-121.74 = 307.14 mm
Ix-x =2A.y2 +ZTo-0 = 691,512,896 + 50,606,709
| | = 742,119, 605 mm*
CORR = y,.ZA.y = 121.74 x 2,141,232=260, 673,584 mm*

Moment of Inertia, Iy = Ix-x - CORR
742,119,605 - 260,673,584
481,446,021 mm’

H

Section Modulus, Plate, SM; = Iw/V,
481,446,021/121.74
3,954,707 mm’

Section Modulus, Flange, SM; = Ina/ Vs
481,446,021/307.14
1,567,513 mmm®

Shear Area, Agy = (to+d.,+t:)t. -
(15.88+397+16)9.65 = 4,139 mm?

Radius of Gyration,r =V(Iu/A)

=v481,446,021/17,589=165.4 mm

Secondary Bending Moments and Shear (Assuming Fixed Supports)

Bending Moment at middle span, BM, = wL°/24

I

Bending Moment at Support, BM, = wL /12
where w = b.p = (3050) (0.107) = 326.25 N-mm
Therefore, BM, = (326.,25) (2740)-/24 = 102,087,719 N-mm

BM, = (326.25) (2740)7/12 = 204,175, 438 N-mm
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Shear Force, V = wL/2 = (326.25) (2740)/2 = 447,099 N

Secondary Bending and Shear Stresses

Bending Stresses;

Middle: Flange of Stiffener, fgus = BM,/SM;
= 102,087,719/1, 567,513
= 65.1 N/mm’
At the Plating, fame = BM./SM,
' = 102,087,719/3,954,707
= 25,8 N/mm’ '

Support: Flange of Stiffener, fgs = BM./SM.
= 204,175,438/1,567,513
= 130.3 N/mm’
At the Plating, faer = BM./SM,
= 204,175,438/3,954,707
= 51.6 N/mm’

Shear Stresses; f, = V/A,

Il

447,099/4,139
= 108.0 N/mm’

Column Buckling Strength; F.

Fo = oy; Cc< 1.4
Fo =0,(1.235 -~ 0.168C); 1.4 < C< 4.8
F. =0,(9.87/C%) ; C > 4.8

where C =L/rV(o, /E) = 2740/162.5V(235/206850)
= 0.57 '

Since C is less than 1.4,

Therefore, F, =g, = 235 N/mm’
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Ultimate Strength of Plating; F,

F. = o, B< 1.25
F. =oy[ 2.25/B - 1.25/B* ] B > 1.25
where, B = b/tV(o,/E) .

Since b = s = 3050 mm, t = 15.88 mm, therefore

B =b/tV(oc, /E) = (3050/15.88) (235/206850) =

6.47

Sincef > 1.25, F, = 235[ 2.25/6.47 -1.25/6.47% ]

= 74.71 N/mm’

Critrical Buckling Strength; Fp

7’E - 1

F =K P 5
12 (1-u)(a/t)y

cr

where, K= [ 1 + (a/b)? ]?

Since a = L/3 = 913.33 mm and b = s = 3050 mm,

K= [1+ (913/3050)% 1> = 1.2.
Fp = Fcr FchO-PL
a,
Fp = L 3 Fex >0pL
Oy
1+0.1824 [——j
CR

Now a/t = 913/15.88 = 57.49, Therefore,

F oy 09072'3(206850) 1 616N/
=1. 5 - =61. mm-
o 12(1-0.3%) (57.49)
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Maximum Tripping Length, L.

1.283b,

Fe o) 2]

d=ds+ tg =397 + 16 = 413 mm

L, =

T f—

d/bs = 413/180 = 2,2944

t./te = 9.65/16 = 0.6031

te/d = 16/413 = 0.0387

E/oy = 206850/235 = 880,21
(1.283)(180)

ZT =

\/ 8031 [1+.333(2.2944)(0.6031)-(0.128)(0.0387 ) (880. 71)]

= 6027.42 mm ; Ip2 L ; 6027.4 > 3050 0O.K.

Local Buckling of Flange and Web

b/t 180/16 = 11.25< 29.0 0.K.

I

dw/ tw 397/9.65 = 41.14< 64,0 0.K.

Strength Assessment

" Tension:
Stiffener Flange; faws/C, = 65.1/195 = 0.33< 1.0 0O.K.

Plate ; feee/ O = 51.6/195 = 0.26< 1.0 0.K.
Compression:

Ultimate Strength of Panel:;
F
S onm SO0.8)(Fy )=
Fy

25.8< 0.8(74.7) (235)/(235)
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or 25.8< 59.76 O0.K.

Buckling Strength of Panel; faup< Fer
25,85 67.9 0O.K.
Stiffener; fBES S_Gb

130.3< 195 O.K.

(c) Determination of Longitudinal Stiffeners:

The procedure mentioned in section 2.0 has been followed to
determine the scantlings required for the longitudinal

stiffeners.

Given: Length of beam, L = 3.05m (10.0")
Spacing of beam, s = 914.4 mm (3.0’)
Uniform Pressure,p 0.107 N/mm” (15.56 psi)
Thickness of Plate, t = 15.88 mm (0.625")

Beam Size: WT 205 x 23.0 (8 x & 1/2 x 15.5% I-T)

Web depth, d, = 190.5 mm (7.5%)
Web thickness, tw = 7.0 mm (0.275")
Flange width, o be = 140.5 mm (5.53")

Flange thickness t: = 11.2 mm (0.44")

Yield stress, o,= 235 N/mm" (34,000 psi)
Allowable stress, o, = 195 N/mm~ (28,000 psi)
Proportional Limit, o, = 176 N/mm® (25,000 psi)

Young’s Modulus, E = 206,850 N/mm” (30 x 10° psi)

Poissons’ ratio, v = 0.3
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Section Properties of Combined Plate-Beam Section:

i be
|
/l l
-
tp T 1
dw -%H <t
te C |
Ch A
be
Effective Width of Plating, b.:
Shear lag approach: b, = = 3050/4 762.5 mm
(307)
Post-buckling approach: b, = 60t = 00x15.88 = 953 mm
(37.5")
Spacing of beam, s = 914 mm (36”)
The effective width of plating is the lesser of the
above 3 values. Therefore,
be = 762.5 mm (30”)
Computation of section properties:
Element Area \% A,y A.y- Io-o
Plate 12,109 7.94 96,146 763,399 254,454
Web 1,334 111.13 148,247 16,474,689 4,032,754
Flange 1,574 211.98 333,657 70,728,611 16,449
s 15,017 578,050 87,966,700 4,303,657

A = 15,017 mm?

ZA.y = 578,050 mm®
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Yo =ZA.Y/IA = 578,050/15,017 = 38.49 mm
Y= tptdutte-ye= 15.88+190.5+11.2-38.49 = 179.09 mm

Ix-x =ZA.y2 +ZIo-o = 87,966,700 + 4,303,657
= 92,270,357 mm

CORR = yp.XA.y = 38.49 x 578,050 = 22,249,145 mm®

Moment of Inertia, Iy, = IxX~X - CORR

92,270,357 - 22,249,145
70,021,212 mm’

Section Modulus, Plate, SM, = ILw/y,
70,021,212/38.49
1,819,205 mm®

Section Modulus, Flange, SM: = Twa/ Ye
= 70,021,212/179.09
= 390,983 mm®

Shear Area, Asy = (tp+d.+t:)t,

(15.88+190.5+11.2)7.0 = 1,523 mm®

Radius of Gyration,r =V (I/A)

=470, 021,212/15, 017
= 68.3 mm

Secondary Bending Moments and Shear (Assuming Fixed Supports)

Bending Moment at middle span, BM, = wL-/24

. Bending Moment at Support, BM, wL~ /12
where w = s.p = (914) (0.107) = 97.8 N-mm
Therefore, BM, = (97.8) (3050)°/24 = 37,906,912 N-mm

BMs; = (97.8) (3050)-/12 = 75,813,824 N-mm
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Shear Force, V = wL/2 = (97.8) (3050)/2 = 149,145 N

Secondary Bending and Shear Stresses

Bending Stresses;

Middle: Flange°of Stiffener, faws = BM./SM;
= 37,906,912/390, 983
= 96.95 N/mm’
*At the Plating, fave = BM./SM,
= 37,906,912/1,819,205
= 20.84 N/mm?

Support: Flange of Stiffener, fgs = BM./SM:
= 75,813,824/390,983
= 193,91 N/mm’
At the Plating, feer = BM./SM,
75,813.824/1,819,205
41.67 N/mm’

fl

Shear Stresses; f, = V/Agy = 149,145/1,523
= 97.93 N/mm

Column Buckling Strength; F-

Fo = 0oy c< 1.4
Fo =0,(1.235 - 0.168C); 1.4 < C< 4.8
F. =6,(9.87/C%) ; C > 4.8

where C =L/rV(0,/E) = 3050/68.3V(235/206850)
= 1.51

Since C 1s greater than 1.4 but less than 4.8,
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Therefore, F. = (1.235-0.168x1.51)235
‘ = 230.6 N/mm?

Ultimate Strength of Plating; F

u

F. = oy B< 1.25

Fu =0y[ 2.25/B - 1.25/p* 1 B > 1.25

where, B = b/tV(c,/E) .

Since b = s = 914 mm, t = 15.88 mm, therefore

B =b/tN(c, /E) = (914/15.88) V(235/206850) = 1.94

Sincef > 1.25, F, = 235[ 2.25/1.94 - 1.25/1.96%)
= 194.5 N/mm®

Critical Buckling Strength; Fp

F _ 7'[2E l
T 12(1- gy (a/t)y

where, K = [ 1+ (a/b)? 12

Since‘a = 3050 mm and b = s = 914 mm, therefore

a/b = 3050/914 = 3.34, then

K=4.0
Fp = Fcr Ff:r = OF1,
a,
Fp = . 3 Fer > 0pL
Oy
1+01824[——J
CR

Now a/t = 914/15.88 = 57.56. Therefore,

F _4772(206850) 1
T T12(1-0.3) (57.56)

=225.7N/mm"

Since 225.7 » 176, therefore
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235 ,
Fors = )2 =196.2N/ mm®

1+0 1824( 239
) 225.7

Maximum Tripping Length, L.

1.283b,
2y e ) onds) B

d = dut te = 190.5 + 11.2 = 201.7 mm

9] —

d/bs = 201.7/140.5 = 1.44

tw/t: = 7.0/11.2 = 0.625

te/d = 11.2/201.7 = 0.0555
E/G, = 206850/235 = 880.21

(1.283)(140.5)
Lr=

\/ 880.21 [7+.333(1.44)(0.625)-(0.128)(0.0555 (880.21))?

= 5479.33 mm; ILy2 L ; 5479.3 > 3050 0O.K.

Local Buckling of Flange and Web

be/te = 140.5/11.2 = 12.55< 29.0 0.K.

d./tw = 190.5/7.0 = 27.21< 64.0 0.K.

Srength Assessment

Tension:
Stiffener Flange; faus/0, = 96.95/195 = 0.50< 1.0 O.K.

Plate ; feee/ _Go = 41.67/195 = 0.21< 1.0 O.K.
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Compression:

F
Ultimate Strength of Panel; fBMFS(O.S)(JU)—C
Oy

20.84< 0.8(194.5) (235)/(235)
or 20.84< 147.6 O0.K.
Buckling Strength of Panel; fge< F.,
20.84< 196.2 0O.K.

Stiffener; fas< oy
193.91< 195 0.K.
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