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The following list defines the main symbols appearing in this report.

L = ship length
X = random variable
Uy = mean of X
Ox = standard deviation of X
fx(-) = probability density function of X
Fx() = distribution function of X
Ex = mean square value of X
A = parameter of exponential distribution
Lk =. parameters of Weibull distribution
® = wave frequency
H(w) = frequency response function
Sx(w) = wave spectrum
Sy(w) = response spectrum
N»n = number of records or encounters
Zn = random variable representing extreme amplitude of
total bending moment in n-records
ozp() = probability density function of Z,
pf = probability of failure
pfin=1 = probability of failure forn =1
[A1UA2] = union of two events A and Ag
Ki = complementary event of A;
[A1nAg] = intersection of the two events A; and Ay
Ccg = generalized cost
Ci = - initial cost of construction plus maintenance
C¢ = cost due to failure
M = safety margin
S = random variable representing strength
Z = random variable representing total bending moment
g2(-) = limit state function or performance function
x;" = coord.ie-ates of most likely failure point in original space
vi

—



coordinates of most likely failure point in reduced space

coefficient of variation of a random variable X

central safety factor

standard normal probability density and distribution

functions

correlation coefficient
direction cosine
safety index

partial safety factors associated with a random variable

l Metric Conversion Table
1ft = 0.3048 m

- lin. = 25.4 mm
1 psi = 6.894 kPa
1 ksi = 6.894MPa
1 1b-in. = 0.113 N-m
1 ton-ft = 0.309 tm
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1. INTRODUCTION AND SUMMARY

Structural reliability theory is concerned with the rational treatment of
uncertainties associated with design of structures and with assessing the safety
and serviceability of these structures. 'The subject has grown rapidly in the last
decade as can be seen from the many recent books and proceedings published on
the subject [1,2,3,4]. It has evolved from a research topic to procedures and
methodologies of wide range of practical applications and has been used in code
development.

There is a need for naval architects and structural engineers to develop an
understanding of structural reliability theory and its application to marine
structure. The aim of the application is usually to achieve economy together with
an appropriate degree of safety. However, like other tools, structural reliability
theory can be misused if not well understood. It cannot be thought of as the
solution to all safety problems and it cannot be applied in a mechanical fashion.
There are also several shortcomings that must be clearly identified and
examined.

The objective of this work is to provide an introduction and summary of the
state-of-the-art in structural reliability theory dir
mgrine industry. To this end, consideration is given to: (a) the kind and nature of
existing data on the design variables of a marine structure, and (b) the numerical
nature of the analvsis: of. complex structures that typically exist in the marine
environment. ‘

In order to define the role of reliability analysis in a genefal probabilistic
procedure for the design of marine structures, Figure 1.1 is introduced.

Starting with a configuration of the marine structure and using random
ocean waves as input, the wave loads acting on the structure can be determined
(please refer to Figure 1.1). Generally, for primary design analysis the most
important loads are the large ones. Extrapolation procedures are usually used to
determine the characteristics of these large loads. In the case of ocean-going

1
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vessels, for example, this is done either through the determination of a long-term
distribution of the wave loads [5,6,7] or through the evaluation of an extreme load
distribution [8,9,10,11] that may occur in a specific storm condition.

In general, wave loads acting on an ocean-going vessel include low-
frequency loads due to the motion of the vessel in waves as a rigid body. They also
include higher frequency loads (and response) due to slamming and springing
which can be determined by considering the ship as a flexible body. In principle,
these loads should be combined stochastically to determine the total wave load as,
for example, developed in [12,13].

Referring back to Figure 1.1, other loads beside wave loads occur on a
marine structure. These loads may be important in magnitude, though usually
less random in nature (except possibly for wind loads on offshore structures). For
example, in the case of ocean-going vessels, these loads consist mainly of
stillwater loads and thermal loads.

Following Figure 1.1, the response of the marine structure to the total
combined loads is determined and compared with the resistance or capability of
the structure. This comparison may be conducted through one of several
reliability methods. Based on these methods, safety indices or probabilities of
- failure are estimated and compared with acceptable ones. A new cycle may be
necessary if the estimated indices are below the acceptable ones.

12 ic Concept in Reliahili

In order to illustrate some aspects of the procedure described in figure 1.1
and to introduce the basic concept in the reliability analysis, the following
example is given. Consider a simple beam subjected to a loading induced by the
environment, e.g. wave load. Traditionally, in the design of such a beam,
practitioners and designers have used fixed deterministic values for the load
acting on the beam and for its strength. In reality these values are not unique
values but rather have probability distributions that reflect many uncertainties in
the load and the strength of the beam. Structural reliability theory deals mainly
with the assessment of these uncertainties and the methods of quantifying and

| 2.
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rationally including them in the design process. The load and the strength are
thus modelled as random variables.

Figure 1.2 shows the probability density functions of the load and the
strength of the beam in terms of applied bending moment and ultimate moment
capacity of the beam, respectively. Both, the load "Z" and the strength "S" are

assumed in this example to follow the normal (Gaussian) probability distribution
with mean values u,=20,000 ft-ton and pg=30,000 ft-ton, respectively, and standard
deviations of 6,=2,500 ft-ton and 63=3,000 ft-ton, respectively.

_ £
-~
o)

&
p

£

S"‘?

Figure 1.2. Load and Strength Probability Density Functions

We may now construct a simple function g(s,z), called the limit state
function, which describes the safety margin "M" between the strength of the beam
and the load acting on it, i.e.,

M = g(syz) = S'Z (1.1)
Both S énd Z are random variables and may assume several values.

Therefore, the following events or conditions describe the possible states of the
beam,



@) M =gz <0 represents a failure state since fhis means
that the load Z exceeds the strength S.

(i) M =gz >0 represents a safe state

(i) M =g(s,2) = 0 represents the limit state surface (line in
this case) or the border line between the safe
and failure states. '

The probability of failure implied in (i) above can be computed from -

pf = PIM=g(s,2)<0] = j j fo.z (s,z) ds dz (1.2)
g(s,z) <0

where fg 5 (s,2z) is the joint probability density function of S and Z and the

domain of integration is over all values of s and z where the margin M is not
positive, i.e., not in the safe state. If the applied load on the beam is statistically
independent from the beam strength the above equation can be simplified and
interpreted easily as:

(-]

P = J'Fs (z) fz(z)dz (1.3)
o}

where Fg (.) and f; (.) are the cumulative distribution function of S and the
probability density function of Z, respectively, both in this example, are Gaussian.

Equation (1.3) is the convolution integral with respect to z and can be
interpreted with reference to Figure 1.2. If Z=z, the conditional probability of
failure would be Fg(z). But since z<Z<z+dz is associated with probability fz(z)dz,

integration of all values of z results in equation (1.3).

In our exémple, S and Z are both statistically independent and normally
distributed. Equation (1.3) can be thus shown to reduce to:

1S



pr = O (-f) 1.4)

where @(-) is the standard normal cumulative distribution function and B is
called a safety index defined as:

ﬁ__LLS_ﬂ._

- | (15)
‘\] 02 + 052

Notice that as the safety index B increases the probability of failure pf as
given by (1.4) decreases. The safety of the beam as measured by the safety index B

can be thus increased (see equation 1.5) by increasing the difference between the
means pg-{z or decreasing the standard deviations 6g and o,.

Substituting in equation (1.5) the numerical values for ug, u, og and o,
given in our simple beam example results in a safety index p = 2.56. Equation
(1.4) can be then used in conjunction with tables of standard normal cumulative
distribution function to yield a probability of failure = 5.23 x 10-3.

13 _ Necessary Irformation for Reliability Analysis of Marine Structures

The preceding example and Figure 1.1 indicate that certain specific load
and strength information are necessary for performing reliability analysis of
marine structures. It is mostly in this area that reliability analysis of marine
structures differs from typical civil engineering structures. In this report
emphasis is placed on developing the required load and strength information for
marine structures.

Prior to estimating the loads acting on ships or marine structures a
statistical representation of the environment is necessary. This includes waves,
wind, ice, seismic and current. The last four items are more important for fixed
offshore structures than for floating vessels. The environmental information can
then be used as input to determine the loads acting on the structure. Typically, an
input/output spectral analysis procedure is used to determine the "short-term"
loads in a specific sea condition (stationary condition). The required transfer

16



function is determined from strip theory using the equations of motion of the
vessel or from a towing tank experiment. In offshore structures, Morison's
equation is usually used to determine the wave load transfer function.

Short term prediction of the loads is not sufficient for the reliability
analysis. Extreme values and long-term prediction of the maximum loads and
their statistics are more valuable. For this purpose order statistics and statistics
of extremes play a very important role. Gumbel's theory of asymptotic
distributions is often used in this regard. In the long-term prediction, the fatigue
loads, i.e., the cyclic repetitive loads which cause cumulative damage to the
structure must also be considered.

For complete description of this aspect of reliability analysis, methods of
combining the loads such as static and dynamic, including high and low
frequency loads, must be considered. In nature, many of these loads act
simultaneously, therefore, their combination must be evaluated for a meaningful
reliability analysis. The environment and load aspects are discussed in Chapter 2
of this report.

The second major component in the reliability analysis is the strength (or
resistance) of the marine structure and the evaluation of its modes of failure. In
. this regard several limit states may be defined such as the ultimate limit state,
fatigue limit state and éerviceability limit state. The first is related to the
maximum load carrying capacity of the structure, the second to the damaging
effect of repeated loading and the third to criteria governing normal use and
durability. Each of these limit states include several modes; for example, the
ultimate limit state includes excessive yielding (plastic mechanisms) and
instability (buckling failure).

Methods of analyzing uncertainties associated with the loads and the
strength of marine structures are important aspects of reliability analysis [14,15].
Generally, these uncertainties are quantified by coefficients of variation since in
most cases lack of data prevents the estimation of complete probability
distributions. Strength, modes of failure and uncertainty analysis of marine
structures are discussed in Chapter 3 of the report.

Il



Chapters 4, 5 and 6 present three different levels of reliability analysis based
on the load and strength information discussed in Chapters 2 and 3. Examples of
application to ships are also provided in these chapters. Chapter 7 introduces
simulation and Monte Carlo techniques as a tool for use in the reliability analysis.
System reliability, which deals with redundancy of structures and multiplicity of
failure modes is discussed in Chapter 8. Chapter 9 describes a procedure for
fatigue reliability which requires separate treatment from reliability under
extreme load. Several application examples to ships and offshore structures are
given in Chapter 10. The last chapter of the report discusses some shortcomings
and offers concluding remarks. Appendices are given at the end of the report one
of which includes some helpful information and another describes a computer
program for performing reliability analysis.

The reader of this report can get full benefit of the material presented if
he/she has a background (one course) in basic probability theory and statistics
including probability distributions, random variables, expectation of a random
variable, sampling theory, and estimation methods.
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2. LOAD INFORMATION REQUIRED IN RELIABILITY ANALYSIS OF
MARINE STRUCTURES

2.1 Probabilistic Representation of Environment

Prior to discussing the loads acting on a ship or a marine structure, a
discussion of a probabilistic representation of the environment is essential.
Information on the environment can be then used as input to determine the
loads acting on the structure. A complete description of the environment
entails description of waves, wind, ice, seismic and current. The last four
items are more important for fixed offshore structures than for floating
vessels. Since the main emphasis in this work is floating vessels, only waves
will be thoroughly investigated in this report.

The sea surface is irregular and never repeats itself. An exact
mathematical representation of it as function of time, wind speed, wind
direction, current, etc. is not possible. A representation, however, using a
probabilistic model is possible and more suitable. By means of the theory of
random processes one may represent the sea surface and determine certain
statistical averages and extreme values suitable for design.

Such a probabilistic representation of a random phenomenon has been
well developed in electrical engineering to analyze random noise (see
reference [2.1] ) and was used successfully in mechanical engineering to
investigate random vibration (e.g. [2.2]). It has been also used in civil
engineering for earthquake analysis. In the next section a few definitions
related to random processes and the associated probability distributions are
discussed.

2.1.1. Definitions:

Deterministic process: If an experiment is performed many times

under identical conditions and the records obtained are always alike,
the process is said to be deterministic. For example, sinusoidal or

11
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predominantly sinusoidal time history of a measured quantity are
records of a deterministic process [2.2].

Random process: If the experiment is performed many times when
all conditions under the control of the experimenter are kept the
same, but the records continually differ from each other, the process
is said to be random [2.2].

The degree of randomness in a process depends on: (1) the
understanding of effects of the factors involved in the eéxperiment,
and (2) the ability to control them.

As an example of a random process, consider a test is being
performed to determine the wave elevation as a function of time at a
given location in the ocean. Figure 2.1 is a record of the wave
elevation as recorded for a period of approximately 18 minutes.

WAVE ELEVATION RECORDS

1 (4]

i
-5

) 160 200 100 400 500 500 700 800 500 1600
TIME (sec)

Figure 2.1

The same test was repeated under identical conditions as far as
is known, that is, under the same wind speed and a record
as shown in Figure 2.2 was obtained. The striking feature is that the
two records are not identical. If the test is repeated several times
under identical conditions as far as is known, records will be
obtained that are not identical. This randomness in the records is
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due to factors beyond one's control and ability to measure. The
elevation of the water surface at any time is due to the entire history
of the meteorological conditions in that area and surrounding areas.
Therefore, under given macroscopic parameters such as wind
direction, speed, duration, etc., one cannot predict exactly the wave
surface at the given point. The wave elevation records cam be thus
treated as records of a random process.

%$2) (¢)

2 100 200 300 400 500 500 700 800 930 1000
TIME (sec)

Figure 2.2

Another example of a random process is an ensemble of time
history records of a_strain gage installed in a ferry boat operating
between, say, San Francisco and San Rafael. In any given day, a
record during each .trip between these two neighboring cities is
obtained.  The resulting ensemble of records can be treated as:
records of a random process.

As discussed above, the most important notion involved in the
concept of a random process X(i)(t) is that not just one time history is
described, but the whole family or ensemble of possible time
histories which might have been the outcome of the same test are
described. In the example of recording wave elevation at a given
point in the ocean, the end result is an ensemble of records of wave
variation as a function of time (see Figure 2.3).

13
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Each of the above records is called a "sample." Some of these
samples are more probable than others, and in order to describe the

random process further it is necessary to give probability
information.

It should be noted that a sinusoid in a deterministic process
can be characterized completely by its amplitude and frequency
(phase is unimportant in many cases). Similarly, the random
samples can be characterized by some average
amplitude (root mean square) and a decomposition in frequency
(spectral density) as will be discussed later.

WAVE ELEVATION RECORDS
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Figure 2.3.
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A designer given the record ensemble shown in Figure 2.3 may:

a. Select the largest value in the ensemble and use it for his
new design with a factor of safety. In this case he will make no use

of all information he is given except for one value, i.e., the maximum
value, or,

b. Try to obtain statistical information from all the records
and use such information in his new design.

If "b" is selected, a probability description of the random
process is necessary. '

First and Second Qrder Probability Distributions:

At a fixed value, t = t], (see Figure 2.3) the values of X(D(t1),

which represent wave elevation, can be described by a graph such as
in Figure 2.4. This graph shows the probability density function!
(pdf.) f[x (t1) ] or simply f(x) which has the following properties:

f(w

AT t.t,

|
|
|
|
! I
! |
| |
| |
d | |

L xR _Jldl L

PROBABILITY DENSITY FUNCTION

Figure 2.4.

1 First order probability distribution



1) The fraction of the ensemble members for which the wave
elevation X, treated as a random variable, lies between x and
x +dx is f(x) dx , i.e.,

Plx < X < x + dx] = f(x) dx

2)  The probability that a sample of wave elevation lies between a

and b is
b

Pla<X<b] = Jf(x) dx

a

3)  The probability that X lies between - and + <o is one, that is,
60
Pl-=<X <] = Jf(x)dx:l
-
4) Pl[x=a] = 0.

where "a" is a constant.

If, at two time instants t] and t3, the wave elevations treated
as random variables are denoted X(t]) and X(t2), or simply X] and
X2, the probability distribution2 of these (called joint probability
density function) is given by a surface f(x1,x2) and has the
properties (Figure 2.5):

1) Plx] < X1 £x1+dxj and x3 < X3 < x2 + dx2] = f(x1,x2) dx1dx?

| b
2) Pla;j <Xj<biandag <Xy <bh2] = j j f(x1,x2) dx1dx?
- ta oo o
- 1
3)  Ple<X] <+ < X) < +w] = J J f(x1,x2) dx1dx2 = 1
' - -®

2 Second order probability distribution.

1s
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Ensemble Averages:

For a given function g(x), it may be defined:

o
E[g(x)] = expected value of g(x) = J g(x)f(x)dx

JOINT FROBABILITY OENSITY FUNCTION

Figure 2.5.
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For a given p.d.f. f(x), the following definitions will be used for
the wave elevation treated as a random variable X. When g(x) is
simply x, then

+
Elx] = J xf(x)dx = mean or ensemble average (2.1)
i = expected value of X (analogous to
moment about origin or distance from origin to center of mass of a
rod of unit mass)

When g(x) = x2, then
+ o
E[x2] = szf(x)dx = mean square of the random variable X
(analogous to moment of inertia or square of radius of gyration about
origin)

Root mean square (r.m.s.) = ,‘ E[x2]

Setting g(x) = (x - E[x])2

oo
0'2 =E(x-E[x])2 = J (x-E[x])Zf(x)dx (2.3)
) -
= E[x2] - (E[x])2 = variance of the random variable X

(analogous to moment of inertia or square of radius of gyration about
center of mass)

¢ =/ o2 = standard deviation of the random variable X.

At two fixed values tj and tp, let x; and x7 denote x(t1) and
x(t2) respectively, then the autocorrelation and covariance functions
are defined by:

re0 +®

Autocorrelation = E[)tl,xz]:jr {xlxzf(xl,xz)dxldxz (2.4)

- -0
o

13
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(analogous to a product of inertia of a plate of unit mass about origin)

Covariance /AX L= E { [x1 - E[x1]1[x7 - E[x21] }

Pl X L +m

=J [ [x1 - E[x1]] [x2 - E[x2]] f(x1,x2)dx1dx3
-0 =09

= E[x1x2] - E[x1]E[x2] (2.5)

(analogous to the product of inertia of a plate of unit mass about the
center of mass)

It should be noted that the covariance is equal to the
autocorrelation minus the product of the means. Therefore, if one of

the means is zero then the covariance is equal to the autocorrelation.
The correlation coefficient »PX X can be defined as:
182,

pxlx = g (2-6)
1 .

that is, a non-dimensional covariance.

The two random variables Xj and X2 are said to be
independent if: '

f(x,, x,)= f(x,) f(xL) (2.7)

therefore, from the definition of the autocorrelation function, it is
easy to show, in this case, that

E [x|xL] =E [xl] E [x,] (2.8)
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2.1.2

and, thus, both the correlation coefficient p£, x, and the covariance
'h‘.*; are zero. This means that independent random variables must
necessarily be also uncorrelated (the converse is not necessarilv true).

Note that when t,= t, the covariance becomes identical with the
variance and the autocorrelation becomes identical with the mean
square.

It is interesting to notice that in rigid body dynamics we need
to know only the gross moments of inertia, but in vibration analysis
more detailed information on the inertia distribution is necessary.
Similarly, the average quantities derived above (mean,
autocorrelation, covariance, etc.) give only gross statistical estimates
of a random process. More refined estimates require more detailed
information about the probability distribution.

Stationary and Ergodic Processes:

A random process is an infinite ensemble of sample functions.
In the foregoing, the properties of the random process representing
the wave generation at fixed instants t,, t,, etc., have been examined.
Next, the variation of these properties when t,, t;are assumed to vary
is briefly discussed.

A random process is said to be stationary if its -distributions are
invariant under a shift of time scale, that is, independent of the
origin.

This implies that the first order p.d.f. f(x) becomes a universal
distribution independent of time and E(x) and ¢~ are also constants
independent of time.

In addition, the second order p.d.f. is invariant under

translation of time scale; therefore, it must be a function of the lag
between t, and t, only, and not t, and t, individually. This implies

20
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that the autocorrelation function is also a function of €= t,-t, only
(see definition of the autocorrelation function given by equation 2.4).

E [x, x;] = E [x(x(t +%) ] = R(¥) (2.9)

where R( ¥ ) will be used to denote the autocorrelation function of a

stationary random process. Note that R(0) = E[xz'(t)] = mean square of
the process.

R( T ) is an important function because it correlates the random
process at any instant of time with its past (or future). R (T ) has the
following properties (see figure 2.6):

i - R(0) = E[x.l' ] = mean square of the process
ii - R(+*) = R(-?) ie, an even function of T
iii- RO) > |R(®)| R@)

x

R(0) = mean square

VAR

/\
7 \\\/ \/ X

Figure 2.6. Autocorrelation function R( Z).

If changes in the statistical properties of a random process
occur slowly with time then it is possible to subdivide the process
into several processes of shorter duration, each of which may be
considered stationary. It is usuval to represent ocean waves as a

stationary random process over a period of about 30 minutes to two
hours.

The ergodic hypothesis states that a single sample function is
quite typical of all other sample functions; therefore, we can estimate

21



various statistics of interest by averaging over time instead of
averaging over the ensemble.
) £()

Figure 2.7. A sample function f(t).

If f(t) represents such a sample function (Fig.2.7), then the
following temporal averages can be determined.

The temporal mean is,

<€> = limit & [*T/2 £(t)qe (2.10)
T+w -T/2

The temporal autocorrelation function @ (T) is,

s .. L1 s+T/2
$(t) = limit = fF(EYE£(t + dt
eET fm v (2.11)

The temporal mean square is,

2, _ oy .1 4T/2 .2
<f%> = limit = £°(t)dt
i M (2.12)

An ergodic process implies that E[x] =¢<fyand R(t ) =¢( ¢ ). An
ergodic process is necessarily stationary since ¢ f is a constant while
E[x] is generally a function of the time t = t, at which the ensemble
average 1is performed except in the case of stationary process.
However, a random process can be stationary without being ergodic.
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For ocean waves, it may be necessary to assume the ergodic
hypothesis if there is only one sample function of the process.

2.1.3 Spectral Density of a Stationary Random Process:

In many engineering problems it is customary to conduct a
Fourier analysis of periodic functions. This simplifies the problem,
because linearity permits treating each single frequency Fourier
component separately and finally combining to obtain the total
response.

A frequency decomposition of the autocorrelation function
R( 7°) of the ocean waves can be made:

R(T) = f+m S(w)eledw -0 < T €

—w (2.13)

where S (w) is essentially the Fourier transform of R( T ) (except for
the factor 2 17 ) given by

|l-"l

Ty e <

s(w) = ="/ rR(D)e

|

“—‘

(2.14)

Relations (2.13) and (2.14) are known as Wiener-Khintchine - -
relations. It can be shown that S(w ) is a non-negative even function
of w [2.2). A physical meaning can be given to S(w ) by considering
the limiting case when ¢ =o.

o
R(0) = mean square = [Exl] = f S(w)dw ,
-t
that is, the mean square of the process = the sum over all frequencies

of S(w )dw , so that S(«' ) can be interpreted as a mean square spectral
density.
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The mean square (area under the spectral density curve) is the
average of the square of the wave elevation and the root mean
square (rms) is the square root of that value. Physically, the larger
the mean square (or the r.m.s. value), the larger is the wave
elevation and the higher is the sea state.

Since the spectral density is an important function in ocean
waves, the following remarks are made:

1)  The units of ocean waves' spectral density are [ft'z-sec] since
N & N
R (0) = Elx]= J S(w ) dw; [ft] ; therefore
S(w) = [ft;]/units of circular frequency = [ft Z—sec]
2) From the properties of a Fourier transform, it can be shown

that S (w ) is a real and even function ofw. It can be represented by a
curve as shown in Figure 2.8.

Slw)

- @ + @

Figure 2.8. Two-sided Spectral Density.
3) In practice, the negative frequency obviously has no
significance. It appeared in the mathematical model only to make

the sums easier. Because of the shape of S(w ), it is called a two-sided
spectrum.
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4) In practice, a "one-sided spectrum" can be defined by simply
folding the S(w ) curve about the w= 0 axis, that is,

o I- -] o +
JS(..u Mw = J;2S(w Mw = J S(w)dw = mean
“® square of the process, where °
+
S (w) = one-sided spectrum = 2S (W) wp
= 0 w< o
+
S (w ) is shown in Figure 2.9.
o
g
™~
- |
o ;
3
+
)
e \\
[l bw )

Figure 2.9. Energy Spectrum.
5) It can be shown that the area under the ocean waves' spectral
density, that is, the mean square is proportional to the total energy
per unit area of the waves' surface which is given by:
Total energy per unit area of the waves' surface =

3 Ls+(w) dw [Ib f/ft’]

‘l + - -
For this reason S (w ) is sometimes called the energy spectrum.
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The energy in an increment §,, of wave frequencies at a central
frequency «, is

+
PE S ("0) Se (2.15)

6) From simple gravity waves, the total energy which is composed
of half kinetic energy and half potential energy is,

2 .
- _ l - N
Energy per unit area = = £ sa , where ;a— wave amplitude.

It follows that the square of the amplitude of a wave having
the same energy as all the wave components in the band of
frequencies represented by §w is:3

1 2 . gt - 8

therefore,

A + ’ 4
$a = 28 (W) dw = double the incremental area under the S (& )
curve

7) For this reason, oceanographers define a ne\y‘_ -spectral density called
the amplitude spectral density obtained by doubling the S (w ) ordinates.
The incremental area will then represent component wave

amplitudes as§w—0. The area under the amplitude spectrum
[}

= 2 J S'(w) die= 2E[x]

v

= 2 mean square of the process. (2.16)
In this report the energy rather than the amplitude spectral density will
be used.
3 Valid only for the limiting case when dw —= 0.
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2.1.4

It should be noted that, both the spectral density and the
autocorrelation function are measurable quantities that can be
indeed determined from time history records of ocean waves.

Narrow and Wide Band Random Processes:

A random process is said to be a narrow-band process if S( w )
has significant values only in a band or range of frequencies whose
width is small compared with the magnitude of the center frequency
of the band W, . Figure 2.10 shows S (w ) of a narrow band process
and the corresponding time history of a sample function. It should
be noted that a narrow band of frequencies appears in the sample
and it is meaningful to speak of individual cycles.

StHw)

) ONE
CYCLE

Figure 2.10. Spectrum of a Narrow Band Process
(The sample shows a narrow band of frequencies.)

A random process is said to be a wide-band process if S(w ) has
significant values over a band range of frequencies which is roughly
the same order of magnitude as the center frequency W),. Figure 2.11
shows a typical S+( W ) and the corresponding sample function of a
wide-band process. Notice that a wide range of frequencies appears
in the sample function.
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Stiw)

Figure 2.11. Spectrum of a Wide Band Process.
(A broad range of frequencies are shown in the sample.)

2.1.5 Additional Statistics of a Random Process:

The rate of crossing a certain level of wave height or, in
general, a threshold is an important information in design. Similarly,
the probability distribution of the wave peaks can be useful in
estimating probabilities of exceedence of specified wave heights in a
given sea state. Because of their importance the rate of crossing a
threshold and the peak distribution of a random process will be
discussed in the next two sections:

a. Rate of Crossing a Threshold:

The problem of crossing a threshold was examined extensively
by Rice[2.1]. Some of the important results of his work will be given
here without proof. Consider a random process Jé")( E ) representing
wave heights and the process has a zero mean, i.e., E [x] = 0. The
mean rate of crossing a given level "a" denoted by ys with positive

slope, that is, from below (see figure 2.12) was derived by Rice [2.1]
as:

vi(t) = [ x £y 5 (a,%,t) dx (2.17)
o ¥
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()

a
VA / -
Figure 2.12. Crossing a Level "a"
wherei—j: and fys ( o+ . ) is the j.p.d.f. of £ and x

Similarly, the mean rate of crossing, that is, the average
number of crossmg per unit time with a negative slope (from above)
is .

0

va(’t).= l_m'xl fX,)’{ (a.,x,t-)dx (2.18)

If the threshold level "a" is zero, the corresponding mean rate of
crossing (from above and below) is

() = [ |R] £y 4(0,%,t) ai (2.19)

-

+ - 3
If the process is stationary- and narrow band, then M, or M, is the
apparent (mean) frequency of the process and from the stationarity
property they are constant, i.e., independent of time.
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b. Peak distribution of a stationary narrow band random process:

For a narrow band random process (e.g. ocean waves) every
zero crossing from below is followed by a positive peak (crest), and
every zero crossing from above is followed by a negative peak
(trough). Therefore, the proportion of the positive zero crossings that
also cross the level "a" with a positive slope represents the
probability that the positive peak is larger than "a", that is,

+
v
P{p>a) = 1 - P[psa] = 1 - Fp(a) = : (2.20)

v
Q

where Ff (a) is the cumulative probability distribution function of the
peak values. The corresponding p.d. f. "fy(a)" is obtained as:

dF_(a) dot
- P " _ _ 1 a 2.21
fp(a) - da - ¥ da ( )

Yo

As will be discussed later, ocean waves can be considered as a
stationary narrow band Gaussian process with zero mean. It can be
shown that for such a process %« and 2 are statistically independent,
1.e., the slope X s independent of the magnitude ¢ . Therefore, the
J.p.d.f. is given by:

l(sz:'c \
. oy -.: 1 -7 gz ' -~
fX,X(x'X)' fX(x)'fX(x) 2z oy Oy € X ai (2.22)

2

where the individual variances 9}’“ and 0‘,?{ are given in terms of the
wave spectral densit)fl S(w ) - by

[-<]

[ S(e) da 0 (2.23)

0

%

and
‘I wzs(m) dae
0 (2.24)

qQ
H

4, § (w) represents the one-sided energy spectral density. The "+"
superscript will be dropped to simplify the notation.
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Thus, from equation (2.17) and (2.22) the mean rate of positive
crossing of an amplitude of level "a" is

. ! a 2
v = 1 °x 2 ( o )
(2.26)
and e s 1 o,
0 o~ 2x oy

Since a wave spectral density is a relatively narrow-banded

spectrum, its apparent (mean) circular frequency "we' is
, 1

-] 2

[ 0 S(e) de
o, oz 21 vl = 2 = 2 (2.27)
I S{e) da

| |
Furthermore, the p.d.f. of the peaks from equations (2.21) and (2.26)
is given by

(2.28)

which is the Rayleigh distribution with a parameter = ay

Both equation (2.25) and (2.28) are important results for ocean
waves.  Equation (2.25) gives the average number per unit time
(mean rate) of crossing a wave amplitude of level "a" and equation
(2.28) gives the p.d.f. of the peaks. In general, the following
important result was obtained: The peaks of a stationary,
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2.1.6

narrowband Gaussian process - (e.g. ocean waves) follow a Rayleigh
distribution with parameter "Ex" given by
og = E [X'] = [ S(e) da
0

area under the emergy (mean square) spectral density  (2.29)

Ey

Typical Wave Data

From sea data, oceanographers found that:

1)~ Over a short period of time (one hour) the wave records can be
assumed to be stationary, relatively narrow-band random process.

2) At any time "t" the elevation of the wave surface from the

mean follows a normal (i.e., Gaussian) distribution given by (see
Figure 2.13).

l,x 2
£(x) = 22— . 730G
qv2T

(2.30)

where Ox = standard deviation

cr:' = f+w %2 f(x)dx = E[x2]

Notice that the variance is equal to the mean square since the mean
of the wave elevation E[x] is taken equal to zero.

3) The peak amplitude is found to follow closely the Rayleigh
distribution given by

2
a
f?(a) = %x- e—ﬁx a>o (2.31)

where Eyis a parameter (see figure 2.14).
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It has been shown in the previous section that for a narrow-band
normal process, with zero mean, the distribution of the peaks follows
a Rayleigh distribution with parameter

A

w
Ey E [x'] = 0, = mean square of the process

= area under the energy spectrum
£(x)

AR\

x »

X

Figure 2.13. Probability Density Function of Wave Elevation

This shows the importance of these spectra. Several wave
statistics regarding wave amplitudes can be derived from the
Rayleigh distribution. For example:

1.25 [Ex

2.5 [E,

Average wave amplitude

Average wave height

1l

Average of 1/3 highest waves (significant wave height) = 4.0E;

Average of 1/10 highest waves 5.1@ (double amplitude)

Average of 1/1000 highest waves = 7.7,’?,( (double amplitude)
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f(a)
.P

Aa

Figure 2.14. Rayleigh Distribution of the Peaks.

2.1.7 Typical Wave Spectra

It is useful for design purposes to obtain many representative
spectra for different wind velocities or significant wave heights. A
number of formulations are presented next.

1. Pierson-Moskowitz (1964)

Moskowitz [2.4] selected spectra from available data in the
North Atlantic and grouped them in a family of five wind speeds
equal to 20, 25, 30, 35, and 40.

Pierson arrived at the following analytical formulation to fit
these spectra (see Figure 2.15).

R A (2.32)
where:
S (w) = spectral density (energy spectrum)
w = frequency, rad/sec
34
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. -3
A = 8.1 x 10
= 0.74

acceleration of gravity, ft/sec

< oo Twm
]

= wind speed, ft/sec

Any other consistent units could be used in (2.32)

S (w)

T

Figure 2.15. Pierson-Moskowitz Spectrum.

2. Bretschneider Spectrum

The proposed wave spectrum developed by Bretschneider [2.5]
can describe developing and decaying seas, unlike Pierson-
Moskowitz spectrum which describes fully developed seas.
Bretschneider spectrum can be written in the form

-

-5 -fa (2.33)

S{w) = a o e
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where x and IB are given by

__5 5

a = 16 up ( H‘/'3 )
- 5 +

A = % up

It should be noted that Pierson-Moskowitz spectrum is
completely specified by wind velocity (ome parameter) while
Bretschneider spectrum is specified by two parameters; the
significant wave height ﬁ’, . and the peak frequency W,

3. The International Ship Structure Congress Spectrum (1967)

The ISSC [2.6] adopted a two parameter spectrum given by

-

S(a) = AB o ° e B® (2.34)

where

A =0.25 (d, )*

2n ) +
B T
T = mean wave period

= ( 0.817

il
il

Wy~

significant wave height

This spectrum is intended to be used in conjunction with
observed wave heights and periods.

In general, the shape of the wave spectrum depends on:
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1) Wind speed (most important parameter)

2) Wind duration

3)' Fetch (distance over_which the wind blows)

4) Location of other storm areas from which swell may travel

It should be noted that waves may attain their fully developed
state for winds up to 32 knots. Beyond that, it is unlikely for waves
to attain their fully developed state. For example, according to
Pierson, a fully developed sea would result if a wind of 52 knots
blew for 80 hours over a fetch of 1800 n. miles. Such conditions are
not common.

Directional Spectra:

So far the so-called point spectrum (1-D) has been discussed.
This is obtained from records taken at a fixed point with no
indication of the direction of wave components, that is, no indication
of how much each of the components of the wave in different
directions contributes to the energy (spectrum). Such a
representation is adequate for long-created seas, but a more
complete representation is given by a 2-D spectrum S (w,r) where
[* = angle between wave components' direction and prevailing
wind direction (see Figure 2.16).

20"

(M}

Q.5

WIND
DIRECTION

0.5

o Figure 2.16. Directional Spectrum

37

oy



2.1.9

The angular integration of this spectrum will yield the same
one-directional spectrum as would be obtained from a record taken
at a fixed point.

The 2-D spectrumm is much more difficult to obtain and
sometimes it is assumed that a directional spectrum can be
approximated by two independent functions.

S (w,u) =8 (w) - £(w (2.35)

where f ( ) ) is called the "spreading function” and S(w ) is the one

directional spectrum. The spreading function f( J+ ) can be assumed to
be:

2
fF(u) = (2/7) cos ¥ (2.36)

Thus,
f+"/2 fm S (w,u) dwdu = [ S (w)dw fn/z f(u)du
-1/2 0 0 ~n/2
=[5 (u)dw - f+ﬂ/2 (2/m) coszudu = [T 5 (w)dw
0 -n/2 0
that is, integration of the directional spectrum with respect to w and
[ = integration of point spectrum with respect tow.

Peak Distribution of a General Stationary Gaussian Random Process:

In a few cases of °~ wave spectra (and vessel response) the
narrow band assumption may not be adequate. Therefore in this
section the probability distribution of the peaks of a stationary
Gaussian (normal) random process with zero mean that is not
necessarily narrow-banded is presented. The following results were
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first obtained by Rice [2.1] and then used by Cartwright and
Longuet-Higgins [2.7] and their proof is given in reference [2.1].

Instead of the Rayleigh distribution obtained earlier (equations
(2.28) or (2.31) ), the p.d.f. for the peaks is given by:

. 2¢ n, 3 a 2nu
fp(a,t) = T e + 1-¢ o e
s | (237)
T

and, by integration, the corresponding cumulative distribution
function of the peaks is given by

- ad =
a 2 2m 1-«¢ a
F (a,c} = & - -rl-te a ., ¢ _ 2 2.
plare [‘ = ] [ N (2.38)
where

m?
¢’ = bandwidth parameter = 1 - :
m_ m

o, = I «" 8(w) de = nth moment of the apectrum n=0,2,4

[+]

It should be noted that m, is equal to the mean square or
variance of the process o' .

As t approaches zero the process approaches the ideal narrow
band process and both equations (2.37) and (2.38) reduce to the
p.df. and cumulative distribution function (c.d.f.) of the Rayleigh
probability law. On the other hand, as £ approaches one the two
equations reduce to the Gaussian (Normal) probability law, that is,
the peak distribution reduces to the distribution of the surface itself.
It should be noted that both positive maxima and negative maxima

are included in equations (2.37) and (2.38) as can be seen from
figure 2.17.

39

49



positive £,(a,8)
maxima

negative
maxima
£=0 (Rayleigh
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a

Figure 2.17. P.D.F. of the Peaks of a General Gaussian Process

2.2 Dynamic Loads and Response of a Floating Vessel Considered as a

Rigid Bodz:

The objective now is to determine a floating vessel response
(output) for a given state of ocean waves (input) probabilistically
described as discussed in the previous sections. In order to do this,
some preliminary definitions are necessary. .

A fixed parameter or time invariant system means that if a
deterministic input x(t) produces an output y(t) then x(t+ ' ) produces
y(t+ ¥ ) where ¥ is a time shift. A linear system means that if xj(t)
produces yi(t), then x(t) = a, x, (t) + a,x,,(t) produces y(t) = ayy,(t) +
a,y,(t) where a, and a, are constants. Such a system is governed
by a set of linear differential equations with constant coefficients.

Some of the properties of such a linear system include:

If the input x(t) = ei®t then y(t) = Aeiwt

where A does not depend on time t. If the input has an
amplitude X(w) dependent on the frequency ®, then the output
amplitude Y(w) will also depend on o, i.e.

If x(t) = X(w) elot

then y(1) = Y(w) eiot
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where Y(@) = H(o) (2.39)
X(w)

H(w) is called the transfer function or frequency response
function or Response Amplitude Operator (RAO). The last
terminology usually refers to the modulus IH(w)l. The transfer
function is thus an output measure of unit input amplitude.

2.2.1 Random Input- Output Relations for Floating Vessels:

OCEAN WAVES VESSEL - SYSTEM SHIP RESPONSE Y(e)
X(t) —— ASSUMED —— or
or
INPUT LINEAR (OUTPULT)
Sx(w) ( ) SSCUJ)

Figure 2.18. Input/Output System.

We will proceed now to determine the ship response (output)
for a given state of ocean waves (input). Since the input X(t) is
random, we expect to get a random output Y(t) (see Figure 2.18).
Some statistics of the random output may then be useful for design.
A floating vessel ,response could be vessel motions such as pitch,
heave, roll, etc., the corresponding velocities and accelerations,
bending moments (vertical and horizontal), torque or shear forces.

In order to determine the vessel response, the following
assumption is made (introduced first by St. Dennis and Pierson [2.8]).
The ship is assumed to behave linearly so that the response can be
described by the superposition of the response to all regular wave
components that make up the irregular sea.

It should be noted that in very severe seas certain responses
may not be linear and non-linear analysis must be conducted.

Using the linearity assumption, the following conclusions will
be stated and the proof can be found in [2.2):
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1. If the excitation (wave input) is a stationary random
process, the response (output) is also a stationary random
process.

2. If the input is a normally distributed random process, the
output is also a normally distributed random process.

3. If the mean of the input process is zero, the mean of the
output process is also zero.

4, If the input is an ergodic process, the output is also an
ergodic process.

Notice that if the input process is narrow band, the output is
not necessarily a narrow band process. For ocean waves, we have
assumed over a short period of time a stationary normal random
process with zero mean. The process could be completely
characterized by the spectral density Sx(w). The area under the
spectrum is related to the mean square of the process, therefore
certain averages such as average wave height, average of 1/3
highest waves, etc., can be determined. (The subscript x in the wave
spectrum Sx(w) is used in order to distinguish it from the output
(response) spectrum Sy(®) ).

Using 1, 2 and 3 above, it can be concluded that a floating
vessel response is a normally distributed, stationary random process
with zero mean over a short period of time. Again, just as in the
input waves, if the spectral density of the vessel response is
obtained, the mean square value, certain averages and other
statistics of the vessel response can be determined.

It is thus important now to find the relationship between the
wave spectrum and the response spectrum. For linear systems, it
can be shown [2.2] that this relation is generally given in the form

LI

Sy (W) =H(w)! Sx (w) (2.40)

where H (w ) is the "frequency response function” or the "transfer

function” and its modulus IH (W )! is the Response Amplitude Operator
(RAQ) - see also equation (2.39).
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Equation (2.40) gives the input-output-relation in a frequency
domain, i.e., between the spectra of the input (waves) and the output
(vessel response). Similar relation can be obtained in the time
domain between the response time history y(t) and the wave time
history x(t). This relation as well as other relations in the time and
frequency domains are developed in [2.2]. The important results are
given here as follows,

The response of a vessel y(t) (time domain) for any arbitrary -
known wave excitation x(t) is
[- -]

y(t) = J x(t - 6) h(0) do (2.41)
D
and the mean of the response E[y(t)] in terms of the mean of the
stationary excitation E[x(t)] (if different from zero) is

Efy()] = E[x()] | h(6) do | (2.42)
[+]

where h(®) is called the impulse response function which is the
response of the vessel due to unit excitation. Notice that E[y(t)] is
actually independent of time since E[x(t)] is independent of time if
the process is stationary.

The relation (time domain) between the autocorrelation
functions of the response Ry( %) and the wave Rx(2") is given by

[2.2]. 0 +x

Ry (T) =j KRX (#+01-82)h(01)h(B2)dO1 d62 (2.43)
-y =D
The impulse response function h(t) and the - transfer function
H( w ) are not independent. In fact, together they form a Fourier
pair.

)
Lwt
h(t) = -;? H(w)e dw (2.44)
and e ik
H(w) = Jh(t)e dt (2.45)

Load and response determination for floating vessels is usually
done in frequency domain. Therefore emphasis will be given on this
in the following sections.

The frequency response function H( W ) or the RAO's are
functions that give the vessel response to a regular wave of unit
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amplitude. For example, if the response under consideration is the
bending moment, then the bending moment can be calculated for the
vessel in regular waves of different frequencies and for different

vessel speeds. The RAO curves would appear as shown in Figure
2.19.

[ Heo|= (°

DIFFERKRENT
SHIP SPEELCD

Figure 2.19. Response Amplitude Operator
Notice that the ordinate of [H (w)I2 is the square of the bending

moment per unit wave amplitude " [4 ".  This can be given in the
nondimensional form

IH(w )2 —[M/Z? 12

FeL
where
g = water mass density
g = acceleration of gravity
B = - vessel beam
L = vessel length

The RAO of other responses such as shear force could be
obtained in the form H(wl2 = (V/{)2  or the nondimensional form

Hw)l = (Y4 gBL)
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where V is the shear force.
In general the RAO's can be obtained either from:

a)  Calculations using the equations of motion of the ship
b) Towing tank experiments

Each of these will be discussed briefly in the following.

The general dynamic equations of motion of a vessel in regular
waves can be obtained by applying Newton's Law of Motion for a

rigid body. If the origin is taken at the center of gravity of the body,
then

i)

—
—_—

(m, V)
and

4
it
d
dt

£l
;

I.&)
where
velocity vector .

force vector '

mass

moment acting on the body

angular velocity vector

moment of inertia about the coordinates axes

— € gla <)
LU | N T T |

The first of these equations give the three force equations in
the x, y, and z directions (surge, sway, and heave equations). The
second gives the three moment equations about the x, y, and z axes
(roll, pitch and yaw equations).

These general six coupled differential equations for the six
degrees of freedom are highly nonlinear and difficult to solve
exactly. However, approximate solutions after decoupling some of
the motions from each other and going through a linearization
procedure are available, for example, in [2.9] and [2.10]. The
decoupling of the equations is usually done by decoupling the
motions in a vertical plane (surge, heave, and pitch) from the rest
and neglecting the surge degree of freedom. The solution of these
equations permits the calculation of  the vessel motions and
accelerations in regular waves of different frequencies. For further
information on this subject, see references [2.11, 2.12, 2.13, 2.14,
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2.15]. Once the vessel motions and accelerations are determined, the
shear force and bending moment (or any other loads) can be
computed. The values of these responses (including loads) due to
waves of unit amplitude and different frequencies give the required
RAQ's. There are several computer programs to perform these rather
lengthy computations, for example, [2.16, 2.17, 2.18, 2.19].

The RAO's can also be determined by simply running a model
in regular waves at various speeds, headings and wave frequencies.
The model has to be scaled properly to represent the ship mass
distribution and structural geometry. The model motion, velocities,
accelerations, shear forces, bending moment, etc., are then measured
and plotted versus the wave frequency [2.20]. If the bending
moment needs to be measured at the midship section only, then one
may use a rigid wooden model jointed at the midship section with a
dynamometer calibrated to read the bending moment acting on a bar
connecting the two parts. If the bending moment is desired at more
than one location, then a segmented model is usually used with a bar
equipped with several strain gauges ([2.21].

With the RAO determined, equation (2.40) can be applied
to determine the energy spectrum of the response in long-crested
seas. This is usually represented graphically, as shown in Figure
2.20, for the bending moment case taken as an example. -

a
S ) IH ()| Syla@
= -M_ !
, =
T S ——— P A

BEOR A GIVEN SEA FOR A QIVEN FOR A GIVEN SEA

CONDITION SHIP SPEED , CONDITION, SHIP
HEADING ANGL.E SPEED, HEADING
AND LOADING CONDiTiaN. ANGLE, AND LoADING

CONDITION .

Figure 2.20. Response Spectrum.
Equation (2.40) indicates that ordinates of the bending moment
spectrum are obtained by multiplying the ordinates of the wave

spectrum by the square of the ordinate of the response amplitude
operator.. Since over a short period of time the response is a
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stationary normal process, then the response spectrum characterizes
the process completely. If the resulting wave bending moment
spectrum is narrow-band as is the case usually, then the amplitudes
of the wave bending moment follow the Rayleigh distribution
(equation 2.28) with a parameter Ey related to the area under the
bending moment spectrum.

Ey = area under the energy spectrum of the bending
® moment o

| syw)iH(w)dw

0

Some statistics of the bending moment can be thus obtained:
average amplitude of bending moment = 1.25 /E;

average of 1/3 highest amplitude of bending moment = 2.0 fE—}:
average of 1/10 highest amplitude of bending moment = 2.55 f Ey

In general if the response spectrum is not narrow-band, then
the peaks (including negative maxima) will follow Rice distribution
given by equations (2.37) and (2.38) with the band width parameter

€ determined from the moments of the response spectrum. It
shouldbhe noted that the assumption of a narrow-band spectrum
produces more conservative results and simplifies the analysis
considerably.

-

2.2.2 Frequency Mapping:.

The response spectrum discussed, Sy (w ), is not the spectrum

that would be obtained by records taken of bending moment aboard

a vessel and analyzing them. This is because, when the vessel is
moving, the waves are encountered at different frequencies to their
absolute frequencies. Consider a vessel moving with velocity V  and
heading © in regular waves of frequency w (see Figure 2.21).
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Figure 2.21. Heading Angle in Regular Waves.

The wave velocity C in the x-direction = w/k, where k = wave
number = 277/ A . The relative velocity between waves and the ship =
C - V cos 8 = encountered wave velocity. Therefore, the encountered

wave frequency we= (C - V cos 0) k or we = - kV cos 6. For gravity
waves

m2=&2—-3- = kg

where N is the wave length
then, we = - ®2 V cos 6 (2.46)
g
Now the wave spectrum can be plotted to a base of the encountered
frequency rather than the wave frequency. However, a change in

the base will necessitate a change in the ordinate of the spectrum
such that [2.10]: :

Sy (w)dw= Sy (ue) dwe (2.47)
Therefore, on integration

-] @®

Ey = J Sy (w)dw= j Sy (wc)du.)e
0 c
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2.2.3

But from equation (2.46) Swe= [1 - 22V cos®] Sw
substituting in equation (2.47) g

1
S, () = Sy (W (2.48)
§0 = Sy @) [4- &gﬂ.vmoj

Thus, for a given Sy (w ) and vessel velocity V, Sy (Ws) can be
obtained from equation (2.48).

The input-output relation in the frequency of encounter
domain becomes:

2
Sy (W) = 1fp(W)l Sy (up)
where f (0e) is the response amplitude operator obtained as a
function of the frequency of encounter, and the response spectrum
Sy (We) rtelates to records taken on board the vessel.

_ © ~0
It should be noticed that Ey = f Sy (w) dw= _] Sy (w,) duwe
[4] o

Response Spectrum in Short-Crested Seas:

In short-crested seas, when two-dimensional wave spectrum
S(w, I ) is used, the input-output relation becomes:

2 .
Sy @,p) = Ip@, X - Pl Sx (w,pm) (2.49)

where p = angle between wave component under

consideration and the prevailing wind
direction.

o -u = angle between the vessel velocity vector and
wave component (see Figure 2.22).

The response of the vessel for all wave components can be then
obtained by integration over pu

+ T/

S,(w) = J ACHILT

7

49



2,3

VESSEL VELOCITY VECTOR

‘//

WAVE COMPONENT

&-p

A PREYAILING WIND
-« DIRECTION .

Figure 2.22. Angle Between Wave Component and Prevailing Wind
Direction.

It should be noted that several computer programs are
available to determine the response spectrum of a vessel based on
the above or similar analysis. Such computer programs include
Scores  [2.16], SPRINGSEA [2.17], arna MIT Ship Motion Proaram [2.18].

Long-Term Prediction of Wave Loads:

In the previous discussion, one of the major restrictions has
been the assumption of stationarity which limits the validity of the
analysis to short periods of time. This leads to Rayleigh distribution
of the peaks for narrow band spectra. For design purposes,
however, it may be important to determine the distribution of the
wave load peaks over long periods of time (years) in order to
determine design values of the load.

The long term distribution can be determined by adding
statistically several short-term (Rayleigh) distributions, or, by taking
records of wave loads and determining what probability distribution
gives the best fit of the data. Several statistical methods can be used
to estimate the parameters of the candidate distributions and tests
are available to examine the goodness-of-fit and to determine which
distribution fits the data best.

Several investigators, [2.22, 2.23, 2.24, 2.25, 2.26] examined
long-term wave loads data with the aim of determining the long-
term distribution of the peaks. It was found that the Weibull
distribution is general enough and fits well the wave bending
moment data on ships. The p.df. and c.df. of the Weibull

. distribution are given by:

] ' - (% k)
)= (£) (&) e x20  (2.50)
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and t
Fx)=1-¢e ()

x>0 (2.51)
where { and k are parameters to be determined from the wave load
data (e.g. strain gages installed on deck of a ship). :

It should be noted that the Weibull distribution is a generalized
Rayleigh distribution and if one inserts € = 2 and k =/§f in equations
(2.50) and (2.51) one obtains directly the Rayleigh distribution p.d.f.
and c.d.f. (see equation (2.31) ).

It has also been shown that in many cases of long-term wave
load data, the parameter £ of the Weibull distribution is
approximately equal to one. When { = 1, the Weibull distribution
reduces to the Exponential distribution given by:

{ e‘(”‘/ﬂ)

FO
F=1-e /N x>0 (2.53)

f(x) = x>0 (2.52)

where A = k = mean or expected value of the wave load amplitude.
Section Al.1 of Appendix 1 describes how to determine the parameters k and 1
and how to construct and use a probability paper.

2.4 Prediction of Extreme Wave Loads:

If the wave loads acting on a marine structure can be
represented as a stationary Gaussian process (short period), then at
least four methods are available to predict the distribution of the
maximum load. These methods are developed for application to
marine structures and are given in more detail in [2.27]. In the first
method the peaks are assumed to be statistically independent and
identically distributed, and the extreme value distribution of the .
largest in N-peaks is determined using classical order statistics. In
the second, a discrete point process is assumed in order to determine
the asymptotic type-I distribution based on Rice's [2.1] initial
distribution. Cramer's procedure [2.28, 2.29] can be used for
determining the resulting aysmptotic distribution. Conventional
upcrossing analysis may be used in the third method for determining
the extreme value distribution. Finally a two-stage description of the

51



random process which leads to an extreme distribution derived by
Vanmarcke [2.30] is the basis for the fourth method.

Each one of these methods will be described briefly in the
following sections, “

A. Distribution of the largest peak in a sequence of N peaks using
order statistics

The distribution of the largest peak in a sequence of N peaks
can be determined using standard order statistics. Consider a
sequence of random variables Z1,Z2, .. .Zn representing the peaks of
a load on a marine structure. Assuming that these peaks are
identically distributed and statistically independent, the cumulative
distribution function (cdf) of the largest one using order statistics is
given by [2.31]:

N
FZN(z) = P [ max (ZI’ZZ’ ,ZN) < z] = [Fz(z,e)] (2.54)
where FZ (z,e) is the initial cumulative distribution function of the
load peaks (maxima) and & is the spectral width parameter defined
as:

2
82 =1 = -_m_z_..
M, m,
+@ ‘
mp = j ol S(o) do , n=024 (2.55)
-—rd

The probability density function (pdf) of the largest peak is
determined by differentiating equation (2.54) with respect to z, thus:

CaN=-1
5 @ = N[Feo] - geo (2.56)

where fZ (z,a) is the initial p.d.f. of the load peaks. For any band-
width load process, Rice's distribution should be used as the initial
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distribution, thus equations (2.37) and (2.38) hold for fZ (z,g) and F7
(z,€), respectively.

Based on the above analysis, the expected value of the
maximum load peak in a sequence of N-peaks was determined by
Cartwright and Longuet-Higgins and is approximated by:

E[max (21,22,,..2n)] =[21n(/1-e2N)1y"
VT | o
+ C [21n(/1-.e.2N)] A (2.57)

where C = 0.5772 = Euler's constant .

The extreme load peak with a probability of exceedence & is given by
(2.32]:

1

z_ = [2mo(1n N + ln [ 1/ 1ln (—_li_ﬂ.__) ]}]_2_ (2.58)
which is independent of § (for smalla ). .

(B) Asymptotic type I distribution

It is known that as the number of peaks N increases without
bound a  limiting or asymptotic form of the extreme value
distribution (equations (2.54) and (2.56))is reached. The asymptotic
form of an extreme value distribution does not depend, in general, on
the exact form of the initial distribution; it depends only on the tail
behavior of the initial distribution. The parameters of the
asymptotic distribution depend however on the exact form of the
initial distribution.

In reference [2.27], Cramer's method was used to derive the
asymptotic distribution based on Rice's distribution as an initial
distribution. The derived extreme value c.d.f. is
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Y —
me—2z m,
FZN(z,e) = exp {—-N[CD( > )+41 -2 e }

Lo =]}

that is, the asymptotic form is double exponential and the cumulative
distribution itself depends on N. myg is the mean value of the load
if different from zero.

(2.59)

- D

Several years after the appearance of Cramer's book Gumbel
[2.31] classified the asymptotic distribution of extremes in three
types: (type I) a double exponential form, (type II) an exponential
form, and (type III) an exponential form with an upper bound.
Convergence of an initial distribution to one of the three types
depends largely on the tail behavior of the initial distribution. An
initial  distribution with an exponentially decaying tail in direction of
the extreme will converge to type I asymptotic distribution, i.e., the
double exponential form.

Gumbel's analysis and classification provide another method
for deriving the asymptotic distribution and may be in a form easier
to handle than that given by equation (2.59). The cdf of type I
asymptotic form as given by Gumbel is: A

—on(z— uN)]

FZN(z) = exp[- e (2.60)

where uy is the characteristic largest value of the initial variate Z
and oly is an inverse measure of dispersion of Z . These parameters,
uy and &y , have to be determined and depend on the form of the
initial distribution.

The corresponding pdf is given by:

f (z)=aNe -exp[-e

- Oy _(z - uN)]
Zy

(2.61)

54

4



The mean and standard deviation of the extreme  value ZN are given,
respectively, by:

A N %y (2.62)
o, = =&
z J; oy (2.63)

The parameters uy and &y were determined in [2.27] for Rice's
distribution given by equations (2.37) and (2.38) as an initial
distribution.

The results for u N and oy are:

U, = m
N S 0 ]
- - O
o) (2.64)
_.gi _‘_1...2.52
Ne 2 Neg 2
o, = LI - D (p) (2.65)
27tm0 \/mo
where
Uy — my
O = =-—————
e fmy
and

(2.66)
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The plus sign in equation (2.64) should be used if the mean value m,
is positive in order to obtain the larger characteristic value. It
should be noted that both X and p contain uy as defined in (2.66);
therefore, an iterative procedure must be used for determining u .
To start the iterative procedure an initial value for u N is necessary
and may be taken as u = mﬁtﬁmoan . The corresponding values of « , B,

® (- o) and ® (B ) can then be determined. Equation (2.64) is
then checked to see if the right side is equal to the left side,
otherwise a new value of uy equals the right side of equation (2.64)
should be used in the second step of the iterative procedure. Three
or four steps are usually sufficient for convergence.

(C) __Extreme value distribution based on upcrossing analysis

The distribution of the largest peak can be determined from
upcrossing analysis of a time history of a stationary random process
instead of the peak analysis presented above. For example, the
number of N peaks can be changed to a time interval T in the
upcrossing analysis and the problem of determining the
characteristics of the largest peak in N peaks becomes that of
evaluating the characteristics of the maximum crest of a stationary
ergodic Gaussian random process X(t) during a period T. The
assumption of the statistical independence of the peaks is usually
replaced by the assumption that upcrossing of a level x by X(t) are
statistically independent. This leads to the Poisson's upcrossing -
process which is true only in the asymptotic sense (as X ~» e ; T—> e ),

From upcrossing analysis it can be shown (see for example
{2.1]) that the probability that the largest valueis less thar a certain
level x during a period T is given by:

-vi T

P[max(X(t);OstST)sx] =€ (2.67)

where
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2
-1 X - Mmg
E{E) (2.68)

v = -1 i 1/sec
0 x m, (2.69)

Therefore the cdf of the largest X is

and

l(x—ms2
2 ‘/;
(2.70)

that is, it has a double exponential form although quite different
from equation (2.60) with u n and Xy given by (2.64) and (2.65).

(D) __Extreme value distribution based on a two-state description of
a_random_process '

Vanmarcke [2.30] estimated the probability distribution of the
time to first passage across a specified barrier for a Gaussian
stationary random process. In his analysis he considered a two-state: -
description of the time history X(t) relative to the specified barrier.
Based on his results the distribution of the extreme value may be
determined from:
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] (,-ms)w ,
- 21tq r— 1 x-ms
™ -
1-€ I 2 ( f’“_°)
Fy(x) = exp| -v T |- €
O l X"'ms
T2 JE) (2.71)
1-¢€ J
L d
where q is a band width parameter defined as
m2
1 (2.72)
q=+f1-=—= 0<qgs1
m, m, 9

Distributions given in (A), (B), (C) and (D) above, are valid for a
load process represented by a stationary Gaussian process of any
band width. Reference [2.33] shows the corresponding equations for
the special cases of a narrow-band process (€ = o0 or ¢ = 0) and a
wide-band process ( € =1 or ¢ = 1). It should be roted that the
narrow-band case gives a conservative estimate of the extreme wave
load distribution and the resulting equations may be used for values
of ¢ upto 0.60 since they are insensitive to € in the range 0 to 0.60.

Application Example and Comparisons:

The extreme value distributions of the wave loads discussed .
above differ from each other in their basic derivation and underlying
assumptions. The forms of their equations are drastically different
as can be seen by comparing equations (2.54), (2.59), (2.60), (2.70)
and (2.71). It would be interesting now to compare some typical
results obtained from the different methods when applied to a
marine structure. For this. purpose a tanker of length = 763 feet,
breadth = 125 feet and depth = 54.5 feet is considered. We will
compare the distribution of the extreme wave bending moment
acting on the tanker under a storm condition specified by a
significant wave height of 38.75feet and an average wave period of
11.5 seconds. The storm is assumed to be stationary under these
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conditions for a period of one hour. The following parameters were
computed for an earlier application given in [2.33]:

Still water bending moment (full load)

mg 669,037 ft-tons

RMS of wave bending moment .
y m, = 286,300 ft-tons
Average wave moment period = 13.0seconds

Band width parameter of wave moment spectral
density & = 0,364

Number of wave moment peaks in one hour

60 x 60
130

= 276.9

The application given in reference [2.33] shows that if & is
assumed to be zero (ideal narrow-band) instead of the 0.364 given
above, the resulting error in the expected maximum wave bending
moment in N peaks is less than 0.5 percent. This gives an indication
that for & = 0,364, it is sufficiently accurate to use the ideal narrow-
band equations for our comparison.

Using this assumption and the above values for m ,{mo and N,
a comparison is made of the distribution functions of the four

extreme value distributions as given in the preceding sections (A),
(B), (C) and (D).

The results of the comparison are shown and plotted on a
standard extremal probability paper and on a regular graph paper in
figures 2.23, 2.24 and 2.25.
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Based on these results, one surprising conclusion can be drawn.
All extreme value distributions of the wave loads considered produce
similar results even though their basic assumptions and derivations
differ drastically. In fact, if one inspects the equations representing
the cumulative distribution functions of these distributions one sees
that these equations are not similar in form and may conclude
erroneously that they would produce very different results.

The extreme distributions based on the largest peak in N peaks
(distribution A), upcrossing analysis (distribution C ) and a two-state
description (distribution D) produce almost identical results as far as
the probability of exceedence is concerned as can be seen by
inspecting figures 2.23 and 2.24, The asymptotic type I distribution
(distribution B) results in slightly higher values of probability of
exceedence. This is to be expected since the asymptotic distribution
is an upper bound extreme distribution and becomes more accurate
as the number of load peaks approaches infinity. In the example
shown for the tanker, the number of wave bending moment peaks N
is approximately 277,

As an example of the differences between the asymptotic
distribution and the other distributions, the probability of
exceedence of a total bending moment of 2,069,000 ft-ton (including
still water bending moment of 669,000 ft-ton) is 0.006 according to
the asymptotic distribution (B) and 0.002 according to the other
three distributions (A, C, and D).
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Figure 2.25. Probability Density Function of Extreme Total Bending
Moment on a Tanker

Return Periods of Extreme Events and Non-Encounter Probabilities:

The probability that an extreme value of an event (say wave
height x) will not be encountered during the life "L" of a marine
structure is called non-encounter probability "NE(x)". This, in
general, is given by [2.34]:

NE(x) = P [ no exceedence of x occurs during life L]
| = PlXmax <x]=[Fx®]L
' (2.73)
where Xmax = maximum value during life L
L = life in years
FX (x) = distribution function of annual maximum.

The waiting or return. period, R, is the average length of time
between exceedence. Thus one may speak of a 100 year wave height
or 50 year wind velocity.

The waiting period in years has a probability law given by
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P[W=w] = Fx %1(x) [1-Fx (x) ]

and therefore, the average waiting period, i.e., the return
period "R" is

R = E[W] = [1-Fx )]l (2.74)

The relation between the non-encounter probability "NE(x)"
and the return period "R" can be determined by eliminating Fx (x)
from equations (2.73) and (2.74) , thus,

NEG) = P[Xmax £x1=[1-K] (2.75)
If R = L, then NE(x) Ze-1

The probability of exceedence in this case = 1 - el = 0.632,
that is, there is a high probability (0.632) of exceeding the event
with a return period L during the "L" life years of the structure.

In selecting return periods, one must distinguish between an
annual interruption of operation of the structure (I. = one year) and
ultimate failuré during life time ( L = 20 to 30 years). In the former
case a return period: R = 10 years may be adequate. Using equation
(2.75) with L =1 and R = 10 we obtain a nonencounter probability of
90%. If R is increased to 100, the non-encounter probability becomes - -
99%.

In the latter case where failure during life of, say 20 years, is
considered, and the return period is 100 years, then the non-
encounter probability, from (2.75) is 81.8%. If the return period is

increased to 1000 years,- the non-encounter probability becomes
98.0%.
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2.6

tochastic mbination oads on a Mari tryctur

Undoubtedly, there are certain similarities between
decomposing ship response records of full-scale measurements into
their basic components and combining analytically calculated
components to obtain the total response. Since decomposing full
scale measurements can be done with a certain degree of success, it
is possible to invert the procedure in order to compute the combined
response from the analytically determined components.

In this section, a brief discussion is given of the decomposition
of full-scale records into their basic components. In the following
section, a method is presented to combine analytically-determined
response components.

A, Decompositions of measured records into their basic
components

A typical measured stress time history of a bulk carrier is
shown in figure 2.26 (from reference [2.35] ). Usually, such a record
consists of a rapidly varying time history of random amialitude and
frequency, oscillating about a mean value. The mean value itself is a
weakly time-dependent function and may shift from positive to
negative (sagging to hogging). The two dominant factors which affect
the mean value are:

| The stillwater loads which can be accurately determined
from the loading condition of the ship floating in
stillwater.

2 The thermal loads which arise due to variations in
ambient temperatures and differences in water and air

temperatures.

A closer look at the rapidly varying part shows that it also can
be decomposed into components. Figures 2.27 and 2.28 illustrate
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records taken over shorter periods of time (larger scale). Two main
central frequencies appear in these records. The smaller central
frequency is associated with the loads resulting from the motion of
the ship as a rigid body (primarily heave and pitch motions). This
lower central frequency is, therefore, close in magnitude to the wave
encounter frequencies for wave length nearly equal to ship length.
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Fig. 2.26 Typical voyage variation of midship vertical bending stress
for a bulk carrier. From reference [2.35]
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Figure 2.27. Decomposition of a stress time history of a Great Lakes
vessel into low and high frequency components.
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Figure 2.28. Decomposition of a stress time history of an ocean going
bulk carrier.

The higher central frequency is associated with loads resulting
from the two-node mode response of the ship when it vibrates as a
flexible body. This higher central frequency is thus close to the two-
node mode natural frequency of the ship. The high frequency
response itself can be due to "springing" of the flexible ship when
excited by the energy present in the high-frequency wave
components as shown in figure 2.27. It can be due, also to the
impact of the ship bow on the water as the ship moves into the
waves, 1.e., slamming (possibly together with low-speed machinery-
induced vibrations), see figure 2.28. Though springing and
slamming may occur simultaneously, it is unusual to see records
which exhibit both clearly. These two responses can be distinguished
from each other by inspecting the records' envelope. In general, a
decaying envelope (see figure 2.28) indicates a slamming response
whereas a continuous envelope of varying amplitude, as shown in
figure 2.27, indicates a springing response.

The rigid body and the high frequency responses do not always
occur simultaneously in the same record. Quite often only the rigid
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body response appears in a record; particularly, in that of a smaller
ship which has a high two-node mode frequency. Occasionally, only
the high frequency springing response appears in a record when a
ship is moving or resting in relatively calm water. In particular, long
flexible ships with low natural frequencies as those operating in the
Great Lakes do occasionally exhibit such records when operating in
calm water or in a low sea state composed mainly of short waves.
Under these conditions, a long ship will not respond as a rigid body
to the short waves, but the two-node mode frequency of the hull can
be sufficiently low to be excited by the energy content of these short
waves. Figure 2.29 (from reference [2.36]) shows a measured
response spectrum of a large Great Lakes vessel where the response
is purely in the two-node modeS and higher frequencies with no
rigid body response appearing in the spectrum. The figure shows
that response at higher modes than the two-node mode can be
measured, although small and relatively unimportant in most cases.

Slamming response on the other hand never occurs separately
without rigid body response since, obviously, it is a result of the rigid
motion of the ship in the waves. '
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Figure 2.29 Stress response spectrum of a large
Great Lakes vessel. [2.36].

5 The two-node mode is labeled in the figure as the first mode.
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B. Combining Analytically Determined Response Components

Two main steps should be used in the procedure for combining
primary responses of a vessel.

Step 1
Step 2
Step 1;

To combine the low frequency wave-induced
responses (rigid body) with the high-frequency
responses  (springing or slamming).

To add the mean value to the response resulting from
Step 1. The mean value consists of the stillwater and
the thermal responses.

Consider an input-output system in which the input is common
to several components of the system; it is required to determine the
sum of the individual outputs. Here, the input represents the waves
which can be in the form of a time history if a time-domain analysis
is sought, or in the form of a sea spectrum if a frequency-domain
evaluation is preferred.
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Figure 2.30 Schematic representation of a multiple system with

common input.
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The components of the system represent the components of the
load response of the ship to waves, e.g., the low-frequency wave-
induced responses which consist of vertical, horizontal and torsional
moments, the high frequency responses such as the springing loads .
It is required now to determine the sum of these component
responses, i.e., to determine the output taking into consideration the

proper relations or the appropriate correlation of the response
components.

Schematically, the procedure is represented by figure 2.30. In
this figure, "n" parallel linear components are considered which have
common input X (t) and are summed up at the output to form ?(t).
The output of each system is multiplied by a constant aj (i = 1, 2, ....n)
Before summing up all the components at a common node to form
y(). These constants aj give additional flexibility in the application
of the model and can be used to “weigh" the contribution of each
linear system to the sum.

In a time domain, the output S;“ (t) 1s given by the sum of the
convolution integral of each system.

a; [f hy (1) (t - T)dT)

§203)
E l [

]
It 123

i
= [ h (T)X(t -T)ar
[+}

(2.76)

where

n

h_ (1) =] a.h, (1)

c . 11
=l (2.77)

hi (r) is the impulse response function of each linear system, i.e., the

response of each linear system to unit excitation multiplied by time
(response to the Dirac delta function). h¢ (t) is a composite impulse

response function which sums the responses of the individual
components.
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It should be noted that the impulse response functions of the
individual  components "hj (t)" may or may not be easy to obtain
depending on the complexity of the system. With suitable
instrumentation, it is sometimes possible to obtain a good
approximation to hj () experimentally. For the ship system, hj (t)
can be determined for most load components.

In a frequency domain analysis, a similar procedure can be
used. In fact, since the system function Hj (w) is simply the Fourier
transform of hj (t), i.e.,

o

Hitw) = [ ho(e)e”I%qe

0 (2.78)

therefore, we can define a composite system function H¢ (o) as

(2.79)

It should be noted that for a single system, the relation
between the input spectrum and the output spectrum is given by the
usual relation:

1}

(Syy CIR 8,y (WIHY; (W) H; ()

2
sxx(u)lﬂi(m)l

(2.80)

where Sxx(w) is the sea spectrum which represents a common input,
[Syy (@) }i is a response spectrum of an individual load component ,
H* j (0) is the complex conjugate of the system function of a response
component.

The modulus of the individual system function | Hj (o) | is the
response amplitude operator of the individual response components,

1.e.,
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[R.A.o.li = [o(w)]i = lHi(m)J

and, therefore, equation (2.80) represents the familiar relation
between the input and the output spectra of a single linear system.

For our composite system, an equation similar to the equation
(2.80) can be determined for the n-response components and the
"weight" factors "aj" as follows

Sy () Sxx(m)ﬂ*c(w)ﬂ;:(m)

n

e ()] )j L 2idF B W (2,8])

i=1 j=1

The double sum in equation (2.81) can be expanded such that a final
expression for the total response spectrum Syy (w), which combines
the individual response spectra, may be written in the form:

n
= 2 2
Sy (W) i(zlai i () 1218, (w)

* I-}-:l leaz.aJH (WIHY ()18, (2.82)
(i#3)

It should be noted that the first term in equation (2.82)
represents simply the algebraic sum of the individual response
spectra, each modified by the factor aj . The second term, which can
be either positive or negative, represents a corrective term which
depends on the correlation between the load components as can be
seen from the multiplication of Hj (w) by the complex conjugate of
Hj (0).

If the system functions Hj (@) do not overlap on a frequency
axis (i.e., disjoint systems), that is, if

(2.83)

Hi(m)H*j(u) = 0
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then the second term in equation (2.82) becomes zero and the load
components are uncorrelated. In this case, the total spectrum is
simply the algebraic sum of the individual spectra of the load
components, modified by the factors aj . Furthermore, if the wave
input is considered to be a normal random process with zero mean,
as usually is the case, then the respective output load responses are
jointly mormal and are independent. Thus, the total response, in this
special case, is a zero mean normal process with a mean square value
given by: ‘

S . (w)duw

2
% vy

/
o
= £laiz £lHi(w)lzsxx(m)dw

i (2.84)

In the more general ( and more realistic) case where some or
all of the response components are correlated, the mean square is
given by

n n

* a.a,fH, *
L jgl 13501 WIS s, (w1 dw
(i%3)

(2.85)

It should be noted that in equations (2.84) and (2.85) the mean
square is equal to the variance of the combined response since the
mean value of the wave responses is usually very small. As noted
earlier, the other responses which consist mainly of the stillwater,
and the thermal loads will be added later in the second step of the
analysis to form a mean value for step 1 combined responses.
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In connection with equations (2.84) and (2.85) it should be
emphasized that the usual Rayleigh multiplier used to estimate certain
average quantities, such as average of the highest one third,one tenth
response, etc., are not generally applicable in the case of the
combined response, since these multipliers are associated with a
narrow-band spectrum for which the amplitudes can be represented
by a Rayleigh distribution. It is only in the case where each of the
load component responses is narrow-band and each happen to be
closely concentrated around a common central frequency "w,, that it
would be reasonable to conclude the combined response Syy (w) is,
itself, a narrow-band process.

In the more general case, where the combined response
spectrum is not a narrow-band spectrum, the various  statistical
quantities can be determined from a more general distribution (Rice)
which includes the Rayleigh distribution as a special case. The
general distribution is given by equations (2.37) and (2.38).

Equation (2.85) can be written in a different form which is
more convenient to use in applications, and which makes it easier to
define the correlation coefficients between the different response
components. ‘

n .
o f = 1 379 +1 2 aiaj"ij 1%

Y 1 1 =
=t R (2.86)
where
o, IIH W) [*s, (wdw = variances
Or mean squares of the response spectra of the
individual load components. (2.87)
‘?‘J =  correlation coefficients of individual load

components defined by,
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1 w0
Pis = ¥io / Hy (W H*y (w)S, , (Wdw

173 0 (2.88)

Equation (2.86) with definitions (2.87) and (2.88) form the
basis for combining the step 1 responses of a ship hull girder in a
frequency domain analysis taking into consideration the correlation
between the response components. If the response components are
uncorrelated, i.e., if p ij = O, the second term in equation (2.86) drops
out and the variance of the combined responses (output) is simply
the algebraic sum of the individual variances modified by the factors
aj. As discussed earlier, this occurs when the system function of the
various components do not overlap in frequency or overlap in a
frequency range where the individual responses are small. On the
other hand, if the individual components are perfectly correlated, p ij
may approach plus or minus unity and the effect of the second term
of equation (2.86) on the combined load variance 02y can be
substantial.

The physical significance of the correlation coefficient can be
further illustrated by considering only two response components for
simplicity. If pys is large and positive (i.e., approaching +1), the
values of the two response components tend to be both large or both
small at the same time, whereas if pj9 is large and negative (i.e.,
approaching -1), the value of one response component tends to be
large when the other is small, and vice versa. If p12 is small or zero,
there 1is little or no relationship between the two response
components. Intermediate values of p12 between O and +1 depend

on how strongly the two responses are related. For example, the
correlation coefficient p12 of the vertical and horizontal bending

moments acting on a ship is expected to be higher than of the
vertical and springing moments since the overlap of the system
functions in the latter case is smaller than in the former case.

In a time domain analysis, the convolution integral represented
by equation (2.76) with the composite impulse response function as

74

g4



given by equation (2.77) form the basis for determining the
combined load response. The question of whether the time or the
frequency domain analysis should be used depends primarily on
what form the required input data is available. In general, most
wave data and practical analysis are done in a frequency domain,
although in some cases where slamming loads are a dominant factor,
it may be advisable to perform the analysis in time domain.

Step_2:

In this step, the stillwater and the thermal responses should be
combined to form the mean value for the rigid body motion and
higher frequency responses. The stillwater and thermal responses
are weakly time-dependent variables so that in a given design
extreme load condition they can be considered constants, say over
the duration of a design storm. Therefore, theses two responses can
be treated as static cases and can be combined for one or several
postulated design conditions without difficulty. Alternately, if
statistical data are available for each of these responses, the mean
and variances of the combined response can be easily determined.

The stillwater response can be accurately determined for all
loading conditions uging computer programs such as the Ship Hull
Characteristics Pragram. Several postulated, extreme but realistic,
weight distributions can be assumed in the final stages of design, and . .
the corresponding stillwater response can be computed.

If a statistical description of the stillwater bending moment is
adopted, data have shown that the general trend assumes a normal
distribution for the conventional types of ships. A sample histogram
based on actual ship operations data for a containership from
reference [2.37] is shown in figure 2.31. A mean value of the
stillwater bending moment can be estimated based on this histogram
for all voyages, or for a specific route such as inbound or outbound
voyages.
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These mean values together with a set of standard deviations,
which can also be estimated from the histogram, can be utilized to
determine the extreme total moment using a statistical approach.

Since the stillwater response, the rigid body motion response,
and the higher frequency responses are all functions of the ship
weight and its distribution, it is preferred that the combined
response be calculated for a group of selected loading conditions (and
selected temperature profiles).

Primary thermal response is usually induced by differences in
water/air temperatures and by variations in ambient temperatures.
A study of full-scale stress data measured on a larger tanker
indicates that the diurnal stress variations correlate well, as shown in
figure 2.32 with temperature differentials between air and sea.

Taking the North Atlantic route as an example, the average
diurnal change of air temperature is about 10 °F. The total diurnal
change of deck plating temperatures may vary from 10° to 50° F,
depending upon the cloud cover conditions and the color of the deck
plating. For estimating the thermal loads on a ship hull, the sea
temperature may be assumed as constant. Once the temperature
differential along a ship hull is determined, the thermal stresses can
be calculated, using either a general purpose finite element computer
program or a simplified two-dimensional approach. The maximum
thermal response may be then added to the stillwater response for
certain postulated design conditions to form the mean value for the
low and high frequency dynamic responses.

Although high thermal responses may not happen in high seas,
a heavy swell may possibly occur under a clear sky. Therefore,

several temperature conditions are to be taken into consideration in
determining the combined design response.

77

§ 1]



Application Examples:

Generally, large tankers travelling in oblique seas may
encounter horizontal bending moments of the same order of
magnitude of the vertical bending moments. Therefore, the
combined effect of the vertical and horizontal moments can be
critical under certain conditions. The distribution of the primary
stress in the deck as a result of the combined effect becomes non-

uniform and assumes a maximum value at one edge. The combined
stress at the deck edge, &g is given: by

S T I )

et E,T TS, (2.89)
where,
” -
Sc = combined edge stress
3 .
My (t) = the vertical bending moment component
N - .
Mn(t) = the horizontal bending moment component
Sv,Sh = the vertical or the horizontal section modulus,

respectively.

Defining the combined moment as the combined edge stress

multiplied by the vertical section modulus and using equation (2.89),
we can write,

Mo (6) = T (008, = Bo(0) + Ky (e

(2.90)

where,

|
<
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Applying equations (2.86), (2.87) and (2.88) and extending the
results for the case of a two-dimensional sea spectrum, the mean
square value of the combined response Gi’IC can be written as (see

equation (2.86)):

2 2 2. 2
cMc = on + K %Mh + ZothaHvth

(2.91)

where G’I'VIV and ozl(dh are the mean square values of the vertical and

horizontal bending moments, respectively, given by equation (2.87)
as 6 -

I e

GMVZ = !" f Sxx(“rU),Hv(N)lz dwdy
(2.92)
LA ;
) = S . (w,u) A (w)]|? duwdy
Mh x h
lno ¥ (2.93)

Using equation (2.88) the correlation coefficient is defined as:

S S
v
h v

+
. f'rr g Sxx(w,u)Hv(m)H*h(m)dwdu
-7

(2.94)

6 For simplicity of notation, the dependence of the RAO's |Hy(w)l and
IHh(w)! on the ship heading with respect to wave components is
dropped from the notation.
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The Response Amplitude Operators |[Hy(w)l and [Hp(w) and
more generally, the system functions Hy(w) and Hh(w) can be
determined from any typical rigid-body ship motion computer
program.

It should be noted that in equation (2.86), the coefficient aj
was taken as unity and ap was taken equal to

w0

v
az-—K-

=

(see equation (2.90)) in determining equation (2.91). It should be
also noted that the integrand in equation (2.94) contains the
information regarding the phase between the horizontal and vertical
moments and that the integration of such information with respect to
frequency and the angle p between a wave component and the
prevailing wave system leads to the determination of the correlation
coefficient as given by equation (2.94). Finally, the root-mean-
square (r.m.s.) of the combined edge stress is given by

(2.95)

where oM, is the r.m.s. of the combined moment given by equation
(2.91).

The r.m.s. of the combined moment and the correlation coefficient
as given by equations (2.91) and (2.94), respectively, were computed
in reference [2.38] for a large tanker of DWT 327,000 tons. The r.m.s.
values of vertical and horizontal moments were computed using a
rigid body_ ship motion computer program and combined using
equation (2.91) to obtain the r.m.s. of the combined moment. The

results of the calculations are plotted in figures 2.33 and 2.34 versus
the heading angle. Several significant wave heights
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were considered in order to examine the general behavior of
the responses in low, moderate and high sea states. These results
show that the horizontal bending moments is not small compared
with the vertical bending moment (see figure 2.34)., In severe seas,
the maximum response of the combined moment (and the vertical
moment) is in head and following seas. Figure 2.35 shows the
variation of the combined bending moment with the sea state as
obtained by three different methods. The first is based on equation
(2.91) with G"Mv, 0"Mh and fvh given by equations (2.92), (2.93)
and (2.94) respectively. The second method is based on equations
(2.91), (2.92) and (2.93), also, but with a correlation coefficient P vh
equal to 0.32 obtained from the 1973 ISSC Proceedings (determined
empirically). The third method is based on P v h = 0.53 as
determined by averaging the responses in short crested seas as
determined from equation (2.91) for all headings and for the three
representative sea states. The mean value of f vh obtained in this
manner was 0.53, significantly higher than the ISSC value. However,
the effect of f yvh on the r.m.s. combined moment is small, as can be
seen from figure 2.35.

As a second application example, the combined vertical and
springing moment will be considered next. Using frequency domain
analysis and using eduations (2.86), (2.87) and (2.88) with aj = ay =
l, we obtained the .mean square value of the combined response

vs2" in long-crested seas as

ovs2 = ovZ t* og2 * 2PysOvas (2.96)
where, |
oy2 = mean square of vertical bending moment
= r Syx(®) | Hy (0) 12 do (2.97)
°
052 = mean square of the springing moment
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&0

= f Sxx(@) | Hg (w) 12 do (2.98)
o]
j’vs = correlation coefficient
1

T f Sy (@) Hy(@)H*s(@)dw  (2.99)

and Hy(w) and Hg(w) are the complex system functions of the vertical

wave moment and springing moment respectively. The system
response functions can be computed using computer programs which
take into consideration the effects of ship flexibility in the response,
such as the springing-seakeeping program "SPRINGSEA", [2.39].
Applications of equations (2.97), (2.98) and (2.99) to several Great
Lakes Vessels where springing is important is given in references
[2.38] and [2.39]. These equations together with equations (2.76) and
(2.77) for the time-domain analysis have a wide range of
applicability to any two or more dynamic random responses
including, combining primary and secondary? responses [2.38],
vertical and torsional moments for ships where torsion is important,
high frequency loads with vertical and horizontal moments, etc. In
all of the cases, the coefficient aj must be appropriately determined.
When determining the various statistical averages from the
combined r.m.s. values, the more general distribution given by Rice
for the peaks should be used instead of the wusual Rayleigh
distribution,

The above procedure for combining loads is not generally
applicable for combining slamming with wave induced loads.
Reference [2.40] describes a procedure for combining loads on a ship
when slamming is involved as one of the loads.

7 Such as primary inplane loads on grillages due to overall bending
of the hull and secondary lateral pressure arising from the randomly
varying water surface.

82

qz



g 20

g [

W

&

=18

=

g8

g

gnu- 10 hv a3 3FT7

3 e

2 =

3 Saunp
5

v

= i

3 - nNel9.2FT,
. #2__\_’_ é;;;t N T AFT,

gead ) 45 90 135 180
eas HEADING (DEGREES)

Figure 2.33. Variation of vertical and combined wave bending
moments with heading in long-crested seas.

LOW SEAS
12 ]
H ¢T4FT

fa10' FT.-TONS)
o)

A-AVERAGE A M 3. FULL SCALE
VEATICAL MOMENT

0 L L

A i N
MODERATE SEAS
W32

(x10° FT.-TONS)

R.M.S, BENDING MOMENT RESPONSE

K0° FT-TONS)
o
L)

(

N

w

) &

w

bl

tn

L L

Head 0 A I n
Seas 0 30 60 90 120 150 180
HEADING (DEGREES)

Figure 2.34. Variation of vertical, horizontal and combined moments
with heading in short-crested seas.

83

93



12 F
] A
S —a— K1 METHOD
- === SECOND WETwDD,155¢ v
- B Y B1) .
L O T ) i
"o # .03 ] ’
- 8
z
[77)
3
3 6f
=)
w
<
g
o r
o
7
=
e °f
o { : N L A
0 {o] 20 30 40

SIGNIFICANT WAVE MEIGHT (FT)

Figure 2.35. Comparison of combined bending moment responses as
computed by three methods.

84



2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

REFERENCES

Rice, S.0., "Mathematical Analysis of Random Noise," Bell
System Technical Journal, Vol. 23, 1944; Vol. 24, 1945,
Reprinted in N. Wax, "Selected Papers on Noise and Stochastic
Processes,” Dover, New York, 1954,

Crandall, S. and Mark, W., Random Vibration in Mechanical
Systems, Academic Press, 1963.

Davenport, W.B. and Root, W.L., An Introduction to the Theory
of Random Signals and Noise, McGraw-Hill, New York, 1958.

Pierson, W.J. and Moskowitz, L., "A Proposed Spectral Form for
Fully Developed Wind Seas Based on the Similarity Theory of
S.A. Kitaigorodiskii," Journal of Geophysical Research, Vol. 69,
December 1964.

Bretschneider, C.L., "Wave Variability and Wave Spectra for
Wind-Generated Gravity Waves," Beach Erosion Board, U.S.

Army Corps of Engineers, Technical Memorandum No. 118,
1952.

International Ship Structures Congress, Report of Committee 10,
Vol. 2, 1967.

Cartwright, D.E. and Longuet-Higgins, M;S., "The Statistical
Distribution of the Maxima of a Random Function, "Proc. R. Soc.

of London, Ser. A 237, pp. 212-232, 1956.

St. Denis and Pierson, "On the Motion of Ships in Confused
Seas,"Trans. SNAME, 1955, p. 280.

Salves-en, N., Tuck, E. and Faltinsen, O., "Ship Motions and Sea
Loads,” Trans. SNAME, 1970, p.250.

85



2.10

2.11

2.12

2.13

2.14

2.15

216

2.17

2.18

2.19

Abkowitz, M., Stability and Motion Control of Ocean Vehicles,
M.LT. Press, Cambridge, Mass., 1969.

Korvin-Kronkovsky, B., "Theory of Seakeeping,” SNAME, New
York, 1961.

Jacobs, W. "The Analytical Calculation of Ship Bending Moment
in Regular Waves,” Journal of Ship Research, Vol. 2, No.1, June
1958.

Tasai, F., "Ship Motions in Beams Seas,” Research Institute for
Applied Mechanics, Vol. XIII, No. 45, 1965.

Tasai, F., "On the Swaying, Yawing and Rolling Motions of Ships
in Oblique Waves," International Shipbuilding Progress, Vol. 14,
No. 153, 1967.

Smith, W.E., "Computation of Pitch and Heaving Motions for

Arbitrary Ship Forms,” International Shipbuilding Progress,
Vol. 14, No. 155, 1967. '

Raff, A.I, "Program SCORES - Ship Structural Response in
Waves." Ship Structures Committee Report SSC-320, 1972,

"SPRINGSEA II - Springing and Seakeeping (Program)."
American Bureau of Shipping, New York. Also see "SPRINGSEA
II, Program Listing and User's Manual," Mansour Engineering,
Inc., Berkeley, California, 1974.

Loukakis, T., "Computer-Aided Prediction of Seakeeping
Performance in Ship Design." M.I.T. Department of Ocean
Engineering, Report No. 70-3, August 1970.

Meyers, W.G., Sheridan, D.J. and Salvesen, N., "Manual -NSRDC

Ship Motion and Seaload Computer Program.” NSRDC Report No.
3376, February 1975.

86

96



2.20

2.21

2.22

2,23

2.24

2.25

2.26

2.27

2.28

2.29

Wahab, R., "Amidships Forces and Moments an a CB = 0.8 Series
60 in Waves from Various Directions, "Netherlands Ship
Research Center TND Report No. 1065, 1967.

Dinsenbacher, A. and Andrew, J. "Vertical and Transverse
Loads and Motions of a Segmented Model in Regular Waves,"
NSRDC Report No. 3151, 1969.

Lewis, E., "Predicting Long-Term Distributions of Wave-Induced
Bending Moment on Ship Hulls," Spring Meeting, SNAME, 1967.

Fukuda, J., "Long-Term Predictions of Wave Bending Moment,"
Part I and Part II, Journal of the Society of Naval Architects of
Japan, Vol. 120, 1966; Vol. 123, 1968.

Hoffman, D. and Lewis, E., "Analysis and Interpretation of Full
Scale Data on Midship Bending Stresses of Dry Cargo Ships,”
Ship Structure Committee, Report SSC-196, June 1969.

Bennet, R., "Determination of Wave Bending Moment for Ship
Design.," Paper -presented to the Scandinavian Ship Technical
Conference, Finland, 1964.

Band, E., "Long Term Trends of Hull bending Moments,"
American Bureau of Shipping, 1966.

Mansour, A.E., "Extreme Value Distributions of Wave Loads and
their Application to Marine Structures.” Marine structural

Reliability Symposium, Arlington, Virginia, October 1987.

Ang, H.-S. and Tang, W.H., Probability Concepts in Engineering
Planning and Design, Vol. II, John Wiley and Sons, 1984.

Cramer, H., Mathematical Methods of Statistics. Princeton
University Press, 1946.

87

91



2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

Vanmarcke, E.H., "On the Distribution of the First-Passage Time
for Normal Stationary Random Process," Journal of Applied
Mechanics, Trans. ASME, March 1975, pp. 215-220.

Gumbel, E., Statistics of Extremes, Columbia University Press,
New York, 1958.

Silveria, W.A. and Brillinger, D.R., "On Maximum Wave Heights
of Severe Seas," Proceedings of the Offshore Technology
Conference, paper #3232, Houston 1978.

Mansour, A.E., "A Note on the Extreme Wave Load and the
Associated Probability of Failure," Journal of Ship Research, Vol.
30, no. 2, June 1986, pp. 123-126.

Borgman, L.E., "Extreme Statistics, Risk, and Reliability," Report,
University of Wyoming.

Little, R.S., Lewis, E.V. and Bailey, F.C., "A Statistical Studv of
Wave Induced Bending Moments on Large Oceangoing Tanker
and Bulk Carriers," Trans. SNAME, 1971.

Critchfield, M., "Evaluation of Hull Vibratory (Springing)
Response of Great Lakes Ore Carrier M/V Stewart J. Cort,” DTMB
Report 4225, Nov. 1973.

Stiansen, S.G., Mansour, A.E., Jan, H.Y. and Thayamballi, A.,
"Reliability Methods in Ship Structures,” The Naval Architect,
Journal of RINA, July 1980.

Stiansen, S.G., Mansour, A.E., "Ship Primary Strength Based on
Statistical Data Analysis," Trans. SNAME, 1975.

88



2.39 Stiansen, S.G., Mansour, A.E. and Chen, Y.N., "Dynamic Response

of Large Great Lakes Carriers to Wave-Excited Loads," Trans.
SNAME, 1978.

2.40 Ferro, G. and Mansour, A., "Probabilistic Analysis of the
Combined Slamming and Wave-Induced Responses,” Journal of
Ship Research, Vol. 29, No. 3, Sept. 1985, p.170.

89

1



3. STRENGTH INFORMATION REQUIRED FOR RELIABILITY
ANALYSIS OF MARINE STRUCTURES:

n Aabili M 1

Because of limitation on control of properties of steel and other
materials used in marine structures and because of limitations on
production and fabrication of their components, the strength of apparently
identical marine structures will not be, in general, identical. In addition,
uncertainties associated with residual stresses arising from welding, the
presence of small holes, etc. may affect the strength of the marine
structure. These limitations and uncertainties indicate that a certain
variability in strength or hull capacity about some mean value will result.
This will in turn introduce an element of uncertainty as to what is the
actual strength of the marine structure that should be compared with the
loads obtained in the previous section.

Additional uncertainties in the strength will arise due to
uncertainties associated with the assumptions and methods of analysis
used to calculate the strength. Further uncertainties are associated with
possible numerical errors in the analysis. These errors may accumulate in
one direction or possibly tend to cancel each other. Whatever the case may
be, the above uncertainties have to be reflected in any reliability or failure
analysis. |

Designers and naval architects are aware of the presence of these
uncertainties. However, they are usually treated in a qualitative sense and
very few attempts have been made to quantify them. The qualitative
assessment of the uncertainties does not lend itself to systematic
improvement of design procedures based on previous experience. Full
advantage of that "experience” can be obtained by attempting to quantify
them.

It is convenient to divide and recognize two types of uncertainties
(Ang [3.1, 3.2]):
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1. Objective uncertainties. @ These are uncertainties associated
with random variables for which statistical data can be collected and
examined. They can be quantified by a coefficient of variation
derived from available statistical information. The variability in the
yield strength of steel is an example.

2.  Subjective uncertainties, These are uncertainties associated
with the lack of information and knowledge. They can be
determined only on the basis of the engineers previous experience
and judgment. Examples of these include assumptions of the
analysis, error in the design model, and empirical formulas.

Variability in failure load that will cause yielding of a cross

section or buckling of plating results from uncertainties in the
following factors:

1. Uncertainties associated with the material yield strength and
Young's modulus of elasticity of different components of the section
such as plates, girders and stiffeners.

2. Uncertainties associated with scantlings of components such as
plate thicknesses, stiffeners, girders, and face plate dimensions.

3. Uncertainties associated with - the distribution of residual
stresses due to welding.

4. Uncertainties associated with major dimensions such as the
beam and depth of a cross section.

5. Uncertainties associated with manufacturing imperfections,
flaws, plate fairness, etc.

In addition to the above objective uncertainties, the following
subjective uncertainties cause a variability in the strength or
capacity of the marine structure: ‘
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1 Uncertainties associated with the degree of effectiveness of plating
due to shear lag effects [3.3, 3.4].

2 Uncertainties associated with the usual Navier hypothesis of plane
section remain plane and perpendicular to the neutral axis
(modelling assumptions).

3. Uncertainties related to the presence of small holes and cutouts that
may exist in the deck plating.

4, Uncertainties associated with the residual strength after buckling
[3.5] and the effect of initial deformation on the buckling loads [3.6].

As more information and more knowledge is accumulated, some of
the factors identified under subjective uncertainties can be classified under
objective uncertainties.

Other classification of uncertainties are also possible and will be
discussed later.

A physical reasoning may be used in the choice of strength or
capacity distribution. Two limiting cases are widely used to represent the

strength of a marine structure:

1. The Gaussian (Normal) Distribution:

The central-limit theorem is often used to justify the use of the
normal distribution. It is known that under very general conditions this
distribution arises (or is approached asymptotically) in many
practical problems. A sufficient condition for this is the possibility
of considering the deviation of the given random variable from its mean
value as the sum of a large number of independent random variables
with different probability laws but none of which has large
variance compared with the others. This condition is satisfied in random
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quantities such as resistance of materials, weight of materials, and
geometric parameters of a section.

Thus in general the strength distribution of any structure
whose strength is a linear function of a number of independent
random variables may be considered to approach the normal
distribution. The rate at which the sum tends to normality depends
on the presence of dominant non-normal component [3.7]. The
normal strength model will be adopted in this report.

2.  The Lognormal Distribution:

The lognormal distribution arises as a limiting distribution
when a random variable is a product of a number of independent
and identically- distributed random variables. In modelling the
strength of a component by lognormal distribution, the advantage of
precluding non positive values is obtained. However, the strength or
resistance of the member should be regarded as the product of a
number of random variables.

3,2 Limit States Associated with Marine Structures:
Several limit states may be defined for a marine structure.
These include: ’

1 Ultimate strength limit state (extreme load)
2. Fatigue limit state
3. Serviceability limit state

The ultimate strength limit state can be further decomposed
into two modes of failure: °

a. Failure due to spread of plastic deformation, as can be
predicted by plastic limit analysis and fully plastic moment for
beams (initial yield and shake down moments can be also classified
under this category) [3.26].
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3.3

b. Failure due to instability or buckling of a panel longitudinal
stiffeners (flexural or tripping) or overall buckling of transverse and
longitudinal stiffeners of a grillage.

Each of the above two modes require separate methods of
analysis and are discussed thoroughly in reference [3.25, 3.26 and
3.8] for ships.

The fatigue limit state is associated with the damaging effect of
repeated loading which may lead to a loss of a specific function or to
ultimate collapse. This particular limit state requires independent

type of analysis and is treated in a reliability framework in
Chapter 9.

The serviceability limit state is associated with constraints on
the marine structure in terms of functional requirements such as
maximum deflection of a member or critical buckling loads that
cause elastic buckling of a plate,

Analysis of uncertainty:

As discussed earlier uncertainties can also be classified under
objective and subjective uncertainties. They can also be classified
under inherent and model uncertainties. The former is associated
with physical phenomena that are inherently random such as height
of ocean waves. The latter is associated with models for estimation
or prediction of reality such as theoretical models for predicting
ultimate strength of a marine structure or imperfection of sampling
of yield stress tests.

Uncertainties, both inherent and model, can be expressed in
terms of a full probability distribution or more simply by coefficient
of variation (c.o.v.). The method of quantification depends on the
form of available data [3.9].
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a. Sample Data Available [3.9].

Consider a set of sample data (x, , X ,.00c-,% ). The mean X and
standard deviation G"x can be estimated from

n
e )
X = — X.
n i
i=1
n

and

thus the inherent uncertainty as given by a c.o.v. is

ax
8 =
X X

The estimated mean value may not be totally accurate in
comparison to the true mean value because of the sample size n. The
sampling or model error in estimating ¥ is

O
X

x
\Jn

Therefore the uncertainty associated with the sampling (model)

error is o
A = X
X

b. Range of Values Known

In estimating uncertainties that require judgement, it is often
convenient and more realistic to express each in the form of a range,
i.e., upper and lower bounds (e.g. ultimate strength of a member).
Consider now a random variable X with lower and upper bounds

X, and 4C, , respectively. The mean and c.o.v. can be determined
depending on the assumed distribution. Ang and Tang in reference

(3.9]1 give these values for several representative distributions as
follows:

If a uniform distribution is prescribed between Xy and X, then
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and N U *nw ~ *1 )
Bx_ b4 + X
43 1
£(x)
1 — —
Xu'-Xl
X
X1 Xy

Figure 3.1. Uniform p.d.f.

If a symmetric triangle distribution is assumed, then

1 u
5 = 1 ( Xu - x]_ )
X f_ﬁ x, * 1

f(x)
2
X, ~X1 - T
X
X1 xu

Figure 3.2. Symmetric Triangular p.d.f.
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If there is a bias towards higher values then the upper triangle
distribution shown in Fig. 3.3 is more appropriate, and in this case

= _ 1

X = — ( X, + 2xu )
6 = 1 ( xu - xl |
X J?T_ 2xu + X

f(xf

Upper
Triangle

X

Figure 3.3. Upper and Lower Triangle p.d.f.

If there is a bias towards the lower range, then a lower
triangular distribution may be used (see Fig. 3.3), thus,

= 1
X = = 2x1 +x, )

and

If a normal distribution is assumed (Fig. 3.4) with specified
limits of £ k standard deviation, then

- _ 1
X = =5 Xpo¥ Xy, )
and
.1 *u T X
6x Tk ( X + x )
1
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f(x)

X1 Xu

Figure 3.4. Normal Distribution.

3.4 Random Error Analysis:

In the calculation of the strength parameters, use is usually
made of the theory of error. This theory can be found in applied
statistics books such as [3.10], and its application to ships has been
discussed in [3.11] and to other structures [3.12, papers (i), (ii) and
(iii)]; therefore, it will not be repeated here. It is shown in
references [3.10] and [3.11] that if the strength, S, has a functional
relationship with its constituent parts8 ,§ ,¢, ---€, ,in the form

S =fle e, ...e¢) (3.1)

and if &; are independent, then, the approximate estimate of the
: . v .
mean K and variance § of S are given by® :

M &f(é-:, Ez, ces Eu)

(3.2)

8 &; are the random variables which affect the strength " S" such as
yield stress, plate thickness, stiffeners’ dimensions, etc.

9 The random variables, €; are assumed to be closely distributed
about their mean; S and its derivatives are assumed to be
continuous.
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Z: (aS/ae,)* 7.

l-]

(3.3)

where E and 0 .bare the mean and the variance of the random variable

€: . The pamal derivatives in equation (3.3) are to be evaluated
at the mean value eL . Equation (3.3) can be normalized and written
in terms of the coefficient of variations (COV):

6:’ = (‘:"/‘-")2 = E (-§ e_‘) -6,‘-:

ta | bf( M (3.4‘)

fn/
where 9, = —;4— is the strength COV, and 3;;= ;. /¢, are the COV of &; and
the partial derivatives are to be evaluated at the mean values.

If the variables &; are correlated and the correlation
coefficients §; i between & and & A are known, then equation (3.2)
still gives the mean of the swength S in terms of the means of &; but
the c.o.v. of § becomes

as )
de . 05 ¢
J

45
(37— ) . .
. J (3.3)

where the partial derivatives are evaluated at the mean values.

3.5 Uncertainties associated with ship strength:

The strength or a limit state associated with a ship is a function
of several variables. In order to determine the mean and c.o.v. of the
strength, information must be obtained on those variables affecting
it.  With that purpose in mind the following variables were
evaluated: material yield strength, material ultimate strength,
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Young's modulus, ship steel plate thickness, ship steel corrosion
rates, residual stresses, and fabrication tolerance.

Computerized on-line periodical searching was used [3.13] to
cover efficiently as much ground as possible for three of the
variables. Several data bases, available from the DIALOG system and
representing several million citations of journal articles, symposia,
conference papers and U.S. Government technical reports, were
searched.  This yielded about 300 citations which were further
reviewed for suitability and included as appropriate. The striking
result from these broadly based searches was the lack of statistical
data on the appropriate variables, even though extensive literature
exists on the subjects in general.

Yield strength, ultimate strength, and Young's modulus The
measurement of yield and ultimate strength is the most basic test

that can be made in materials research, yet most papers will include
only one or two tests to show the relative merits of a new process or
alloy. [Even when statistics are reported, another difficulty arises,
namely, lack of uniformity in the test method and results reported.
Under the general category of yielding, there are measurements of
proportional limit, elastic limit, yield strength (0.2 percent offset),
yield stress level, upper yield point, and lower yield point. Alpsten
[3.14] discusses the weakness of each one of these measurements
and points out that all of them are affected by the strain rate and or .
residual stresses in the sample. He recommends use of the 0.2
percent offset measurement because it compares well with static
strain tests. Measurement of yield points is particularly sensitive to
strain rate, but most of the older data do not report this value.

Table 1 provides a summary of more than 60,000 samples of
various steel types and test methods. Galambos [3.15] in reviewing
much the same data suggests that any numerical analysis is probably
worthless since the measurements are so varied. His judgment is
that for rolled shapes the mean yield stress be taken as 1.05 F, in
flanges and 1.10 F: in webs with COV’'s of 0.10 and 0.11, respectively.
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Fg is the specified yield stress for the steel grade used. The
weighted average of the COV's for the data presented in Table 3.1 is
0.089.

The results for ultimate strength are safer to compare - since
this measurement is not particularly affected by strain rate. Table
3.2 presents results for about 4200 samples but representing several

different types of steel. Here the weighted average of the COV's is
0.068. '

Finally, Table 3.3 gives the results of 300 samples measuring
Young's modulus. Overall, the weighted average of the mean value is
30.07 x 10 ksi and the weighted average of the COV's is 0.031.

Ship steel plate dimensions: A careful literature review
revealed only limited statistical data on the thickness of ship steel
plate [3.16]. There is an extensive body of literature on the detail of
manufacturing plates and how to improve the quality, but no specific
numbers as to the variations that typically occur. Informal contacts
with one major steel producer tend to confirm that whatever data
are collected in the mills are considered proprietary.

In [3.17] Basar did obtain such data from one manufacturer,
but he did not report any statistics.

Corrosion: This is another topic where there is a lot of
literature, but few statistical data. Only one paper [3.18] giving
actual shipboard corrosion rates has been found, but the data are
based on observations of a single tanker only. Two other papers
were found which have statistics on rates, but they were for
unprotected steel samples [3.19, 3.20], thus any comparisons are of
limited value. Table 3.4 presents a summary of this information.

Residual stress: Statistical data on residual stress are
extremely difficult to find; in fact, this search revealed very little.
While this subject has received considerable study, the testing
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method is prohibitively expensive, which precludes gathering
statistically significant amounts of data. Alpsten [3.14], for example,
reports that surveying a single plate for residual stress took 140
hours, not man-hours, but the time it took a team to collect the data.
Two representative papers which give results and empirical methods
for predicting residual stress are included in the list of references
[3.21, 3.22].

Fabrication tolerances and imperfections While no extensive
search was conducted on this subject, it seems safe to say that the

literature on the subject is limited. Basar [3.17] in his survey of
structural tolerances in the U.S. shipbuilding industry, states that

"The quantity of structural deviations data obtained was rather
limited partly due to the fact that the yards did not maintain a
statistical record and partly due to the fact that actual measurements
proved to be difficult to carry out in that it interfered with the yard's
work in progress.”

As far as "in service" deviations are concerned, again not
enough data were available due to the fact that such data are not
being recorded and sometimes not even reported.

This led the International Ship Structures Congress in their
1976 report to recommend for future research the establishment of a
comprehensive "Damage Recording System.” The report cites the
need for all parties concerned-that is, the classification societies, ship
owners, and ship repairers-to "take a more liberal view of the
subject and to release information of this type for the benefit of the
industry."

Two other related papers were located: [3.23], which gives
statistical data and distributions for steel-plated highway bridges,

~and [3.24], ‘which discusses fabrication errors in a Japanese high-rise
building.
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Table 3.1 Yieid sirength data

No. of Mean,
Test Samples psi cov Distribution Remarks
Yield stress 66 000 0.091  assumed lognormal  mill teat | containment veasel SA537 Gri3
Yield stresx . 19 600 0.10 assumed lognormal  mill test 1 containment vessel SA36
Yield streas 9 A5 021 0.042  extreme Type | cold straightened shape HE2008
Yield atresn 32 36 583 0.0922 extreme Type ] cold straightened shape HE200B
Yield stress 19 857 40073 0.103  extreme Typel mill tests
Yield streas 19217 41475 0.099  extreme Typel mill tests -
Yield streas 11170 57616 0.057  extreme Type | mill teata
Yield streas 2447 63 336 0.054  extreme Type | mill testa
Upper ves mill tests
yield poimt 1974 40 000 0.087  lognormal implys log normal, refers to Freudenthal,
ASCE, Vol. 121, 1956
Yield stress 400 44 000 0.11
Yield stress .33 36 091 0.059 1948 tests, ABS Class A plates ¥, and Y in,
Yield point 79 34 782 0.116 IQfg teg/:s,lsA,BS Class B plates %¢. % 'Vig, ¥,
16 M e, 1 i,
Yield point 13 33831 0.081 19:%" tesll;l. ABS Class C plates 15, 1%¢. 1Y,
.1 k in.
Yield strength 39 34 850 0.044  normal Yi-in. ABS B Steel
Yield strength 36 35 000 0.069 e 1'4-in. ABS C Steel
Yield point 3124 19 360 0.078 ASTM mill tests
Yie;g puint 35 42 900 0.103 mill test § = 1000 uin./in./sec
Yie
stress level 15 41 200 0.102 same specimens as above, sunulated mill test
Yield stress level 35 34 000 0.121 same specimens as abuve, stub column test,
static strain rate
Yield stress 0.2% 50 61 780 0.034  not normal cold-rolled rods
not lognormal
Yield stress 0.2% 38 40 530 0.045 not normal hot-rolled rods
not lpgnormal :
Lower yield 22 30923 0.110 vee mrborll structural ¥- and I-in. plate and 4-in.
angle
Lower yield 20 42675 0.079 low-alloy - and 1-in. plate
Lower yield 10 50 290 0.068 low-alloy ¥;-in. plate
Yield point 120 35080 0.038 ASTM A7.55T WF beams, (langes
Yield point 58 39079 0.044 ASTM A7-55T, WF beams, webs
Yield point 54 38 000 0.0261 cen ASTM A7-55T, WF beams, cover plates
Yield stress 41 800 0.10 lognormal Mill test, 4 difierent containment vessels,
assumed SA516 GR70
Yield stress 0.066 lognormal Mill test. 1 containment vessel, SA516 GR70
assumed
Table 3.LUttimate strength data
No. of
Teat Samples Mean, ksi COV  Distribution Remarks
Tension 8 58.291 0.043 cold straightened shape
Tension 32 57.909 0.089 cold straightened shape
Tension 9 84.039 0.1124 annealed, alloy steel
Tension 9 124.9 0.1796 quenched, alloy steel
Tension 22 60.405 0.0719 nominal maximum streas, various plates. structural steei
Tension 20 73.525 0.074 nominal maximum stress, various plates, low-alloy steel
Tension 10 80.39 Q.109 nominal maximum stress, various plates, low-alloy steel
Tension 120 6264  0.0226 . ASTM A7-55T, WF beams, flanges
Tension 58 64.33  0.0341 v ASTM A7-55T, WF beams, webs
Tension 54 60.64  0.0241 cee ASTM A7-55T, cover plates
Tension 3982 66.27 0.0703 mill tests
Tenaile strength 33 59.27  0.044 1948 tests ABS Class A plates, g, b in.
Tenasile strength 79 60.99  0.091 1948 tests ABS Class B plates, ¢, %, Wie, %, s, %, %16, 1 in.
Tensile strength 13 60.25  0.051 e 1948 tests ABS Class C plates, 1Yi¢, 1%, 1%, 13%. 114 in.
Tension 39 6257  0Q.044 normal ’/1 in. ABS B Stee]
Tensile strength 36 0.047 normal 17 in. ABS C Steel
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Tabie 3,3 Young's moduius data

No. of
Test Samples Mean, ksi Cov Distribution Remarks
i 104 30.0 x 108 0.0327 ven structural stee| from bridges
"}“:g::g: 19 2898 X 10°  0.0269 . various steel alioys, u'muﬁed and quenched, and
drawn samples
Tension 22 2950 x 108 0.0072 ver structural steel
Compression 22 2949x10° 0.0146 ces structural steel, same samples as above
Tension 20 2959 x 10°  0.0056 ves low alloy
Compression 20 29.64 x 108  0.0070 . low alloy, same samples as above
Tension 10 29.56 % 100 0.0064 ves low alloy
Compression 10 2961 x 10°  0.01108 eee low alloy, same samples as above )
Tension 38 2042 10°  0.01565 cas various-size specimens from ¥, % and 1-in. plate,
same Lest, structural steel
Tension and standard 94 31.20x 108  0.060 ees structural steel
column
Table 34Comosion rates
(i) Mean corrosion rates for a tanker 3.ie1
Corrosion Mean
and Standard
Deviation
Member or Grouping mils/year
Internal stee}, upper 15 ft 6.5+04
Internal steel, fower 30 ft 33x02
Deck longitudinals 6.5%04
Bottom longitudinals 3.3x02
Deck plate 114 £0.7
Sheli plate sides 54+ 0.6
Bottom plate, wing tanks 5416
Bottom plate, center tanks 179+ 29

(ii) Corrosion Rates for Unprotected Steel in Brackish Water [3.20)

Mean and Standard
Deviation in
mils/year®
Mazximum mit depth 19731 £ 2.25
Uniferm corrosion 6.83 + 266

liii) Carrosion Rates for Unprotected Steel in Seawater [5.131

Exposure depth 0.5m 1.5m

Uniform Corrosion, mil/year® 55403 571 0.2

“ Originally reported as millimeters of corrosion after 18
montha. :
¥ Originally reported as g/m? weight loas after 16 months.
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4. BASIC RELIABILITY CONCEPTS BASED ON FULLY PROBABILISTIC
METHODS - LEVEL 3:

4 In jon - Reli

Structural reliability is currently categorized under three different levels
that depend mainly on the degree of sophistication of the analysis and the
available input information. Level 3, which sometimes is referred to as the fully
probabilistic approach, is the most demanding in terms of the required input
information. But even if the input information is available, the analytical or
numerical evaluation of the resulting integrals for estimating the probabilities of
structural failure is extremely difficult. The basic concept of Level 3 reliability
analysis is that a probability of failure of a structure always exists and may be
calculated by integrating the joint probability density function (j.p.d.f.) of variable
involved in the load and strength of the structure. The domain of integration is
over the unsafe region of the variables.

Because of the difficulties in connection with determining the j.p.d.f. of the
‘variables and in evaluating the resulting multiple integration, Level 2 reliability
(semi-probabilistic approach) analysis was introduced. In this level, a reliability
index, rather than a probability of failure, is introduced to assess the safety of the
structure. The reliability index is connected to the probability of failure, and,
under certain circumstances, the exact probability of failure may be directly
obtained if the safety index is determined. For example, if the design variables
are uncorrelated and normally distributed and the performance functionl© is
linear, the probability of failure can be determined from the safety index using
tables of the standard normal distribution function. If the variables are
correlated and not normally distributed, certain transformation

10 The performance function is a function that contains the load and
strength variables and determines the performance or the state of the
structure.
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4,2

(Rosenblatt transformation (1969)) can be made to obtain equivalent
uncorrelated normal variables, thus, approximate probability of
failure may be determined. Similarly, certain approximation can be
made for nonlinear performance functions.

Originally, the safety index (Level 2) method was based on a
simple mean value first order second moment analysis (MVFOSM),
see for example [4.1, 4.2, 4.3].

Later Hasofer and Lind [4.4] introduced a more consistent
invariant method based on first order reliability which entails
expanding the performance function in a Taylor series at the most
likely failure point and retaining only the first order terms.

Although Level 2 is easier to apply in practice, it is still of
limited use to practitioners. Normally a designer needs factors of
safety to apply in the design process such as those applied to the
yield strength of the material and to the loads. This need resulted in
the introduction of Level 1 reliability analysis. In this level partial
safety factors are determined based on Level 2 reliability analysis.
If these factors are used in a design, their cumulative effect is such
that the resulting design will have a certain reliability level (ie., a
certain safety index). Thus, code developers and classification
societies may determine (and specify in their codes) these partial
safety factors that ensure that the resulting design will have a
specified reliability level.

Level 3 reliability is discussed in this chapter, The following
two chapters describe Level 2 and 1, respectively.

The Basic Problem - Level 3

Level 3 reliability is based on the direct integration of the joint
probability density function (j.p.d.f.) of the random variables
involved in a design. Therefore it will be called here the "Direct-
Integration Method".
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The probability of failure or the probability of reaching a
specific limit state is determined from:

X' 117 n e (4.1)

where fX(.) is the joint p.d.f. of the important design random

variables X1 ...Xp. The domain of integration is over the unsafe
region of a limit state associated with a structure. The limit state
function may be represented as g (x1, X2 ... xp) and the

corresponding unsafe region (integration domain of equation (4.1)) is
given by:

g(xi,xz....x ) £ 0

n (4.2)

The above general equations can be simplified for specific
cases. In fact, the first basic reliability analysis started with two
variables only, the strength of a member "S" and the load acting on it
"Z". In this case, instead of the "n" variables described in equation
(4.1) , we have only two variables X1 = S, X2 = Z. Failure occurs when
the load Z exceeds the strength S. The unsafe region is therefore

glx ,x,) = g(s,2) =8 -2 20 (4.3)

The probability of failure for statistically independent S and Z is then
given by (see equation 1.3):

pf=p[s-zsol=[° Fg(z) f£,(2) dz (4.4)

-]

= [ [ 1 - Fy(z) ] fg(z) dz (4.5)

0

These two convolution integrals given by equations (4.4) and
(4.5) can also be determined from the general formulation for n
variables given by equation (4.1). In the case of two variables S and
Z, this equation reduces to:
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Py = [ _ [ fS,Z(s'z) ds dz
[(s,2):8-250] (4.6)

and if S and Z are independent, then

pe = | | £g(s) £,(2) ds dz “@n
[(s,2):8~-2520] ’

from which equations (4.4) and (4.5) can be obtained.

Figure 4.1 shows graphically the pdf of S and Z. The overlap of
the two curves represents a qualitative measure of the failure
probability. This figure shows that a reduction of the probability of
failure can be achieved by:

a. increasing the distance between the means of the two
probability density functions PS (s) and Fz (z), that is, by increasing the
mean of the strength or decreasing the mean of the load.

b. decreasing the standard deviation (or c.o.v.) of either p.d.f., that
is, decreasing the uncertainty.

fz(z)
fs(s)

/'z —— FS

overlap

Figure 4.1. Probability of Failure

The reliability of the structure can be measured by the
probability of survival or the non-failure probability given by
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Pg =1 = Pp (4.8)

4.3 The Normal Tail and Margin of Safety:

The probability of failure can be given also in terms of a
margin of safety M defined as the difference between the strength
and the load variables, i.e.,

M=g (xx,) =8-2 (4.9)

the probability of failure is therefore

1]
P. = P[M<O] = f,(m) dm = F(0)
£ L M M (4.10)

This is represented graphically in Fig. 4.2.

fy(m)

(o}
area= Pf

Figure 4.2. P.d.f. of the Safety Margin.
If both S and Z are normally distributed and independent, then
M is also normally distributed with a mean /—lM and standard
deviation (Jy given by -

(4.11)

and
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Z (4.12)

The standard distribution of M is obtained by subtracting the
mean My and dividing by the standard deviation i.e. M- /u “. This
standard normal variable has a zero mean and a umt standard
deviation, i.e., N(0,1). Equation (4.10) then yields

Py = FM (0) = ¢ [ o =1 - ¢ (8) (4.13)
where gz _'M
™

is called the reliability or safety index. Note that the probability of
failure decreases as the safety index IB increases.

In this particular simple example of independent normally
distributed variables the probability of failure can be exactly
determined from f and B is given by

g 7 (4.14)
and

£ (4.15)

-3
For example, if f = 0, ﬁ._ = 0.50; if /8 =1, f’; = 0.16 and if /8 = 3.1, ﬂ =10

The relations between 8 and p. for other distribution of S and Z with
a margin given by ecuation (4.9) are plotted in section Al.2 of Appendix 1.

4,4 Probability of Failure of a Ship Hull Girder

Although level 3 reliability is usually limited in application to
actual structures because of the complexity of the analysis, this level
of analysis can be still applied to assess ship primary strength when
the ship is considered as a beam. In order to determine the
probability of failure as described in the previous sections one has
first to determine the probability distribution of the total load (in
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this case, the total bending moment) acting on the ship. The total
bending moment consists of stillwater bending moment and the
extreme wave bending moment as developed by one of the methods
described earlier.

In principle, the magnitude of the stillwater bending moment is
also a random variable since it is a function of the cargo distribution
and the shape of the wet envelope which contains a certain amount
of randomness.- However, the variability in stillwater bending
moment due to random factors is expected to be much less than that
in the wave moment, and, may for this reason, be considered as a
deterministic quantity of a certain maximum value, This maximum
value may be determined from the distribution of cargo that gives
the maximum permissible stillwater bending moment for the
operation of the ship according to classification society rules.

Actual data on stillwater bending moment analyzed by Soares
and Moan in reference [4.5] show that the normal distribution fits
well the data. In this example we will consider both cases. The

stillwater moment is first considered as deterministic quantity with
maximum value mg and then is considered normally distributed with
mean m and standard deviation og.

First let Zp = mo + Yn represent the extreme amplitude of the
total bending moment in n- encounters, where mg is the stillwater
bending moment considered to be deterministic. Yp is a random
variable representing the extreme wave bending moment using
order statistics and based on the Weibull distribution with
parameters k and 1 as the initial distribution.

The probability density function and the distribution function
of Z,are given respectively by [4.6]:

_ -
sa = 3 (252)
E LG s 416

0 otherwise
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B2,(2) = [1 _ (5 ] 22 m
=0 otherwise (417)

The above results are extended to the case when the variability of
the stillwater bending moment is not neglected. The stillwater
bending moment is considered to follow a normal probability law
given by

IR G0}
¢‘T(‘) —a_‘\/'z;e 2

(4.18)

where 43.7.(1:) is the probability density function (pdf) of the stillwater
bending moment T, 0 is its standard deviation, and m is the mean.

The extreme total bending moment Z ,, is simply the sum of the
stillwater bending moment and the extreme wave bending moment

Zo=T+7, (4.19)

The distribution function of Z , is

-

$2,(z) = P{V, + T < 2]

= ff Ora, v (Ynt)dy,dl
{(ymat) 1yn+¢<5]
® 1= Un
= ‘[; dyu f_, dl¢l’u.1‘(ymt) (4.20)

@ 2
= f dynf dl’¢l'-,f(ymt' - yu)
0 — -

where 75‘( T. ( ., . ) is the joint probability density function of the
Al

random variables Y, and T; and the domain of integration is overall

values of y , and t such thaty, +tgz; t” is a dummy variable.
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Differentiating the last equation of (4.20) with respect to“z" to get the
pdf of Zp, we get

Pza(2) = j; @rarUnz — ya) Wn (4.21)

The stillwater bending moment T is assumed to be statistically
independent of the wave bending moment Yp. Therefore equations

(4.21) and (4.20) can be written respectively in the form
6 = [ onie)-orte = ) dy (4.22)

@ = [To [ n@eempa  (429)

where the dummy variable yp is changed to y and t' to t for
simplicity of notation.

Using the Weibull distribution as an initial distribution for Yn
and equation (4.18) in (4.22) and (4.23), we obtain

i iz my
¢z.(z)=—-_'7é—f (y/k)“‘-e-(v/k) 3( .z )

Q1 - c—('Vl*)']'l—ldy

(4.24)

and

Pz.(2) =_n._l \/2f (y/k)=1.e=¥i®)

1= c_("g)t]q_x.f e 2(‘-”-"‘) didy (425)

The safety R is represented by the ratio of the strength to the
extreme bending moment, R = S/Zp. The probability law of R can be
determined from the probability laws of both S and Zp. If statistical

independence 1is assumed between the extreme total bending
moment Zp and the strength S, then the probability density and

distribution functions of R are given respectively by

+ -
hm-ﬁ b2u(2) J(ra)eds (4.26)
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+ =
Fa(r) = fo $2.(2)- F(rs)d (4.27)

Integrating equation (4.27) by parts and noticing that the
probability of failure p¢ is

Pr= PR < 1] = Fg(1) (4.28)

Pf can be written either in the form (see also equations (4.4) and

(4.5))

. + =
ps= _]; " b (F s(e)dz (4.29)

or

+ -
Pr=1 "f b:.(2)f5(2)dz
0 (4.30)

The strength S is assumed to be normally distributed with
mean = W and standard deviation = ©. Its probability density function
is given by

2 (*3%)’

1 -
oV or (4.31)

Ss(s) =

and the corresponding distribution function is

+a - pu '
Fs(s) = fs(a)ds = ¥4 (-—,-—) : (4.32)

where ¥g ( . ) is the standard normal function tabulated in many
statistics books.

Two cases will be considered next. First, the case when the

stillwater bending moment-is regarded to be deterministic of value
mq. Using equation (4.17) for ®7,(2) and equation (4.31) for fg(z) in

equation (4.30), and noticing that z > mg, the probability of failure
can be written in the form
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pr=1«

1. - YE-TAL
thm [1_-3-(-./)]-@ i.( .) dz (4.33)

Equation (4.33) is a function of n; i.e., the probability of failure
is dependent on the number of encounters or the length of time the
ship is underway (see Fig. 4.3). It should be noticed that as n — oo,

(1 = e=@¢=m/BN]® o Qand py— 1

that is to say, as the ship encounters wave loads for an infinitely long
time, failure will eventually occur with probability equal to 1.

FREQUENCY
OF OfCURRENCE
4

SAGGING HOGGING

INCREASING
"t

" h
Fs LOAD BENDING MOMENT OR ULTIMATE
, BENDING STRENGTH

Figure 4.3. Probability of failure under extreme bending moment

A closed-form solution of equation (4.33) in its general form is

not possible. It is best at this point to specialize in the short- and
long-term analyses individually.

For short term, (Rayleigh initial distribution ) 1 = 2 and k =T§, (1)
and assuming, for the moment, n = 1, equation (4.33) becomes

B — me 1
prens = [1 = ¥ (B52)] + VIV +1
_ U= m/ yEDS Bom

= o/ + p/* ~p/

(11) E = 2E = 2 x mean square of the process.
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For long term exponential distribution, e = 1 and k = A, and letting
n = 1, equation (4.33) becomes

phes = [1 -9 (5]

_,_;h—w%.,;,(#_:zz_'u ;.) (4.35)

= p/t + pM M

where V ( . ) indicates the standard normal distribution function of

(o).

We now return to the second case where the stillwater bending
moment is assumed to be a random variable that follows a normal
distribution with mean m and standard deviation Gy . Substituting in
equation (4.29) for gbzn from equation (4.24) and lf's.(z) from equation
(4.32), the probability of failure in this case is given by

7% f T
k a‘\/21r

_ —<u/w—-( ~y-m

) [1 — e=t) |51y

¥((z ~ u)/oldz
(4.36)

For short term, f = 2 and k = E, and letting n = 1, equation
(4.36) reduces to

Prlamt = (1/0)\/2/2E fo- j;. ¥i(z ~ p)/el-w/VE)
.e—(v/vé)'-%('-z._m),dydz (4.37)

For long term, =1andk =7, and letting n = 1, equation (4.36)
becomes
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Prln=t = (l/k)e(’~’+2hnt)/2x:f g—t/A
0

.\p("—m_. f’f)\p (z"'"‘)dz (4.38)

Ty v

where equation (4.38) can be further reduced by letting og = 0 and
equating it to equation (4.35) with my = m. If the first term in (4.35)
representing the probability of failure under stillwater bending
moment is neglected, then

The equality in equation (4.39) holds if

z2—m ]
—— ) =~10
‘I’( s )‘)

in the relevant range of z. This leads to the condition

2
p=m 2+ 400 + ) (4.40)

Using equation (4.39) in equation (4.38) yields

oyt=2Am -+ ot

- i+ 2mt ot _u
Potlnmt = ¥ (I" g E) e M A
[ 4 A

(4.41)

For the more general case when n >1, Bernoulli trials may be
assumed, and the total probability of failure, ps, can be written in the

form

]n

Pg =1 -0 1=Ppip (4.42)
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Equation (4.42) is applicable for both short and long terms, and
also for deterministic and random stillwater bending moment.

It should be noted that several values may be assumed, in the
case of deterministic stillwater moment, m, , over different periods
of the life of the ship, if a long-term analysis is considered. The
corresponding values of n and the probabilities of failure during
these periods can then be calculated. Since different values of m
correspond to mutually exclusive events, the total probability of
failure is equal to the sum of probabilities of failure. In this way an
allowance can be made for discrete variation of m, .

Although the derivation of the probability of failure for a ship
as given above seems to be complicated, the final results are not.
Equations (4.34) and (4.35) for a deterministic stillwater moment are
simple algebraic equations that can be easily used to calculate p s for
a given set of values for the variables. For the case of a random
stillwater bending moment, equation (4.41) for the long- term
analysis gives a simple means for calculating p, . Equation (4.37)
which gives Pp for a random stillwater moment under stationary
condition (short- term) is not simplified further since these
conditions are. unrealistic from a practical point of view. In the
short-term analysis (p’.g. a storm cbndition) it is more appropriate to
consider a deterministic constant value of the stillwater moment
rather than a random one, therefore, equation (4.34) is more
appropriate to use. Finally, equation (4.42) may be used to calculate
p; for values of n larger than one. It should be noted that this
equation may give large errors if n is very large, and, in this case
numerical integration may be necessary. Numerical examples of the
use of the derived equations for Pp will be given later (Chapter 10).

Notice that, in principle, the hull girder may fail in hogging or
sagging mode (see figure 4.3). Since these two events are mutually
exclusive events, i.e., the hull can be either in a sagging or a hogging
mode, then the total probability of failure is the sum of the two
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individual failure probabilities provided that the distributions are
determined separately. In practical application, however, the total
probability of failure is controlled by the direction of the stillwater
bending moment (just as in the deterministic approach). Thus if the
stillwater bending moment is a hogging moment, the total probability
of failure is simply equal to the probability of failure in that mode
since the probability of failure in the sagging mode will generally be
very small. Sare naval vessels however, may deviate from this rule.
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5, LEVEL 2 RELIABILITY AMALYSIS

As mentioned in Chapter IV, Level 3 reliability analysis can be
very difficult to apply in practice. The two main reasons for this is
the lack of information to determine the joint probability density
function of the design variables and the difficulty associated with the
evaluation of the resulting multiple integrals. For these reasons,
Level 2 reliability was developed. 1In Level 2, the safety index
concept which was first introduced by Cornell [5.1] in 1969, was
further developed by several researchers. In the next few sections,
the development of Level 2 reliability will be presented starting with
the simple safety index concept, followed by several improvements
of the concept.

5.1 The Mean-Value First-Order Second-Moment (MVFOSM) Method

If Z is a random variable representing the load and S is a
random variable representing the strength, then the safety margin as
defined previously is:

M=S-Z R
Failure occurs when the total applied load Z exceeds the

ultimate capacity S, that is, when the margin M is negative.
Therefore, the probability of failure pf is

pf = PM<O = Fu@© (5.2)

For statisticallyzindependent load Z and strength S, the mean
Mm and variance @ of the margin are given by

B = p -y

m s z

2 2 2 (5.3)
o 2 g + e

m s 4

The standardized margin G, which has a zero mean and a unit
standard deviation, can be written as
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G = — (5.4)

Failure occurs (or a limit state is reached) when M < 0 so that
equation (5.2) can be written as

~ ¥
Py = Fy (0) = Fg | —R— ] = Fg (=8 (5.5)
m
where ﬂ =/ = safety index, which is the inverse of the coefficient of
variation of the safety margin.

If the distribution function FG (.)) is known, then the exact
probability of failure associated with the safety index can be
determined.12 But even for unknown or unspecified distribution
function Fg (), there will be a corresponding though unspecified
probability of failure for each value of /3 Thus IB may be taken as a
safety measure as is the case in the MVFOSM method.

The foregoing results can be generalized as follows. Define a
limit state (or performance) function g(.) as

M= g (4%, »e0eXp) (5.6)

where 4; are the applied and strength parameters considered as
random variables, and the limit state function g(.) is a function that
relates these variables for the limit state of interest (serviceability or
ultimate state). The limit state is reached when:

M =g (x ,x, ....x ) 0 (5.7

Notice that the above equation is the same as the integration
-domain in the Level 3 reliability (see equation (4.2) ). The limit state
function can be expanded using Taylor's series, and if only the first
order terms are retained, we get

g(x1.x2, ... %) 2 g(x1,x5....25)

_ |28 (5.8)
+);,(r4 x]) Foy

12 See section Al,2 of Appendix 1 for the relationship between B and the
probability of failure for several distributions.
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where “C; is the linearization point, and the partial derivatives are
evaluated at that point. In the MVFOSM method the linearization
point is set at the mean values (£, , 4%, - - --- - Ly ).

The mean and variance of M are then approximated by

im = BTy Fp) (5.9)
~s (%] 2
A3z (%) (2] pnous, (5.10)

where j’ ] is the correlation coefficient and the subscripts .’t and
.ﬁ:d' denoté evaluation of the partial derivatives at the mean point.

The accuracy of equations (5.9) and (5.10) depends on the
effect of neglecting the higher-order terms in equation (5.8).

If the variables X; are statistically uncorrelated, then (5.9)
remains unchanged but (5.10) becomes

o, =>;(%]:as. (5.11)

As an example, if the margin M is represented by the variables
S an Z only, that is '

M = g(x),x3) = g(S.2) =S5 —

then applying equation (5.9) and (5.11) for determining the mean
and variance, one immediately obtains identical results as given by
equations (5.3). [Equations -(5.2) and (5.5) follow accordingly. This
method is called the MVFOSM method because the linearization of
the limit state function takes place at the mean value (MV); only the
first-order (FO) terms are retained in Taylor series expansion, and up
to the second moment (SM) of the random variables (means and
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variances) are used in the reliability measure rather than their full
probability distributions.

A geometric interpretation of the safety margin M = S - Z will
be useful particularly for the discussion of the Hasofer Lind
reliability index which will be presented later. First we notice that
M > 0 represents a safe state or region, M ¢ 0 represents failure state
and M = 0 represents a limit state or failure surface (or line in the

. case of two variables), The standard or "reduced" variates of S and Z can
be written as

Therefore, the limit state function M = O can be written in the
space of reduced variates as:

M = assl - azzl + Fg - MZ = 0
which is a straight line shown in Fig. (5.1).

]
I

Failure
Region

..S'
0
Figure 5.1. Limit State Function in the Space of Reduced Variates

The region on one side of the straight line which contains the
origin "0" -represents the safe state (M > 0) and the other region
represents the failure state (M < 0). Thus the distance from the
origin to the line M = 0 can be used as a measure of reliability. In
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fact, from geometry, the minimum distance "D" shown on Figure 5.1
is given by

Notice that D is equal to the safety index B for the case of the
normal variates and linear limit state function discussed earlier, i.e.,
for this case

and the probability of failure is thus

pf = i (-D)

5.2 Improvements to the Mean Value First Order Second Moment
Reliability Index:

The MVFOSM method described previously has three basic
shortcomings:

First, if g(.) is nonlinear and the linearization takes place at the
mean values of A, , errors may be introduced at increasing distance
from the linearization points by neglecting higher-order terms.

Second, the method fails to be invariant to different equivalent
formulations of the same problem. 1In effect this means that the
safety index [5 depends on how the limit state equation is formulated.
For example if the M is set to be a nonlinear function of S and Z such

as
M=§2-72
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5.2.1

then ﬂ: = FH (0), still given as before by equation (5.5); however,
when Mw and (%, are computed from (5.9) and (5.11) and

substituted in "

m
g =
o (5.12)
m
the following ,3 is obtained
2 2
s = hg = ¥z
[ dyu o; + 4;1; a; ]0'5 (5.13)

which is different from the P obtained when M is taken as M = S - Z,
even though the criterion of failure is still given by equation (5.5).

Third, in the MVFOSM method the safety index f can be
related to a probability of failure in cases when the variables xj are
normally distributed [and when the function g(.) is linear in xj]. It is
known that wave bending moments in ships follow a Weibull or
exponential distribution.  Thus, one of the improvements in an
advanced method over the MVFOSM method would be to include
such distribution information (see section 5.2.2),

The Hasofer/Lind Index:

The first two shortcomings discussed previously are avoided by
using a procedure usually attributed to Hasofer and Lind [5.2].
Instead of expanding Taylor's series about the mean value point,
which causes the invariance problem, the linearization point is taken
at some point on the failure surface. On the failure surface, the limit
state function g(.) and its derivatives are independent of how the
problem is formulated.

In the Hasofer/Lind procedure, the load and resistance
variables, xj, are transformed to reduced (standardized) variables
with zero mean and unit variance by
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X, (5.14)

The Hasofer/Lind reli‘ability index is defined as the shortest
distance from the origin to the failure surface in the reduced space.
This point is found by solving the following set of equations

G(YT;Y:, ....y):o
(5.15)

(5.18)

(a!ld)!h
\/ (bw vi (5.17)

G(.) is the
failure surface in the reduced space, and f are coordinates of the
point closest to the origin in the reduced space (the checking point).
All partial derivatives are evaluated at the checking point. In effect,
this procedure is equivalent to linearizing the limit state function in
the reduced variables space at the checking point and computing

,3 associated with that point.

In the original space, the checking point or the most likely
failure point is obtained from
X _ _ *
xi = X, + 0 yi
5 (5.18)
In general, for a linear limit state function, the Hasofer/Lind
method will yield the same result for f as the MVFOSM method. For

nonlinear limit state functions, this method yields a safety index B which

is invariant to the formulation of the performance function. To illustrate
this point, the following example is considered (see ref.[5. 11}).
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Example:

Suppose that a simple beam is subjected to random loading that produces a
maximum stress with a mean value p, = 20,000 p.s.i. and a standard deviation o
= 2,500 p.s.i. The beam is made of material of mean yield strength p¢ = 30,000
p.s.i. and a standard deviation og = 3,000 p.s.i.

The following three limit state functions are considered. They all represent
failure of the beam and, therefore, should yield the same value of the safety index
if the method used to determine the safety index is consistent (i.e., invariant to the
formulation of the limit state function). The three limit state functions are:

M; = S-2 (5.19)
My = §2.72 (5.20)
M3 = : 8§ -;';9,3 Z (5.21)

The strength S and the load Z are independent; S is normally distributed
and Z follows a Weibull distribution. The safety index p will be computed for each

of these three limit state functions using, first, the mean value first order second
-moment method (MVFOSM) then the Hasofar-Lind method. Notice that the first
limit state function (5.19) is linear; the other two are non-linear.

The M lue Fir rder nd Mom M

In this method the safety index B is defined as (see equation 5.12)
p = — (5.22)

Where the margin means Um and its standard deviation om are computed

for each limit state function using equations (5.9) and (5.11), respectively. The
resulting P's for the three limit state equations (5.19) to (5.21) are:
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Hs - Hz

P (052 + 6,2)1/2 (5.23)
Hs 2 -y
- 5.24
Pz (4 ps2 052 + 4 uz 2 6,2)1/2 (5.24)
d -1 _
B3 = oa Us -toqlly 525

(6s2/us 2 + 02/p,2)1/2

Substituting in the above equations the values of pg, yg, 6s and o, one
obtains the following results:

B1 = 2.5607 Ba = 2.4282 B3 = 2.5329

The values of 8's are not the same indicating that the MVFOSM method is
not invariant to mechanically equivalent formulation of the same problem. Notice
that we have not made use of the distribution information ($: Normal and Z:
Weibull) in the calculatior. of the B values.

If the probability of failure for each limit state is to computed from pg, = O(-B),

an error will result since this equation is valid only if all the random variables are
normally distributed and the limit state function is linear. Let us, however, use
this equation in order to compare the results with those obtained by a more
accurate method described in the next section entitled "Inclusion of Distribution
Information”. Using,

Pg = @R (5.26)

the following values are obtained:

pp, = 0.005223 pr, = 0.007574 pry = 0.005655
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b. The Hasofar /Lind Method

Equations (5.15) to (5.17) are applied to determine the B value for each limit
state function according to this method. For the non-linear limit state functions,
these equations must be solved iteratively since the evaluation of the derivatives
required for calculating § will depend on the coordinates of the most likely failure
point which are unknown. An iterative procedure would be simply to assume
values for the most likely failure point (e.g. mean values of the variables) and to
evaluate the derivatives of the limit state function at that point as required by
equation (5.17). Equation (5.17) is then substituted in (5.16) to obtain a set of
coordinates y¥ which will be a function of the unknown . These coordinates are

substituted in (5.15) and the resulting equation is solved for B. The obtained P is
then used in (5.16) to obtain a new set of coordinates of the most likely failure

point. The procedure is repeated until convergence is obtained. The procedure
will be described in more detail in Chapter 6.

The procedure was applied to the limit state equations given by (5.19) to
(5.21). The linear limit state function (5.19) did not require ’any iteration; the
second limit state function given by (5.20) required five iterations and the last one
(5.21) required seven. The following results were obtained:

By = 25607 B2 = 2.5607 By = 25607

These results indicate that the value of B is invariant to the formulation of
the problem. They also show that the MVFOSM method gives identical result to -
the Hasofar/Lind method if the limit state function is linear (see B; obtained using
the MVFOSM method).

The probability of failure calculated from equation (5.26) for all B values
according to Hasofar/Lind method is 0.005223. Here again no use is made of the
distribution information given in the problem. Therefore, unless all variables are
normally distributed (which is not the case in this problem), the probability of
failure computed using equation (5.26) will be in error. More accurate values of
the probability of failure will be given for this example after the next section.
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5.2.2 Inclusion of Distribution Information:

The third and final refinement of the advanced method over
the MVFOSM method is that the information about the variable
distributions (if known) can be incorporated in the computation of
the safety index and the corresponding probability of failure. In the
MVFOSM method the index /3 can be related to the probability of
failure in cases when the variables 4{ are normally distributed [and
when g(.) is linear in %;]. This relation is given by [see equation (5.5)1

Pp = & (-g) (5.27)

where & is the standard normal distribution function. In order to be
able to use equation (5.18), approximately, in the case of non-normal
variables, a transformation of these variables into equivalent normal
variables is necessary prior to each iteration in the solution of
equations (5.15) to (5.17).

The tail of the distribution is usually the location where most of
the contribution to the probability of failure comes from. It is,
therefore, better to fit the normal distribution to the tail of the non-
normal distribution at the linearization point x’{, which is where
failure is most likely to occur (that is, minimum )B ). This is the basic
idea of the Rackwitz/Fiessler method as given in [5.3].

By requiring that the cumulative distributions and the
probability density functions of both the actual distribution and the
normal distribution be equal at the linearization point, one can
determine the mean u', and standard deviation o', of the equivalent normal
variable, that is

F%) =@ ("—}-“—) (5. 28)

and
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fz(x‘)=T—ﬂP ["‘( - u,) ]
= 72 el ®=1[F,(z*)} (529 )

where 0 (.) is the standard normal probability density.

. st pe s / /
Since we are concerned with finding M, and 07 ', the parameters
of the equivalent normal distribution once fitted at the linearization
point, we can solve for them as follows:

‘P{‘I’Z[f:gz'm (5 30 )

py =1* = B=1F,(*)o, (531)

This process is illustrated in Fig. 5.2.

Smce the linearization point xi*, changes with each iteration,
0';.'; and [41. must be calculated for each iteration also. These values
are then used in equations (5.15) through (5.17) as before. Note that
if the iteration is performed in reduced space, then distribution
transformation into reduced space has to be performed in each step.

T X
"x* “LINEARIZATION POINT

Figure 5.2. Equivalent Normal Distribution at Linearization Point
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In our simple beam example discussed earlier, the load follows a Weibull
distribution while the strength was assumed to be normal. An equivalent normal
distribution can be determined for the load using the procedure described above.
The three limit state functions describing the failure of the beam are given by
equations (5.19) to (5.21). If one uses Hasofar/Lind method, then one must -
determine the parameters of the equivalent normal distribution in each step of the
iteration procedure for the nonlinear limit state functions (equations 5.20 and 5.21).
The results for the B values including the distribution information
are [5.11]: ' |

B1 = 2.6690 B2 = 2.6690 B3 = 2.6690
and the corresponding probability of failure is ps = & (—f) = 0.003802.

The results indicate that the f values are invariant to the problem
formulation since B1 = B2 =P3. They also show that, in this case, inclusion of the
distribution information increased the p value from 2.5607 to 2.6690 and decreased
the corresponding probablity of failure from 0.005223 to 0.003802. The values of
and pr determined including the distribution information are more accurate. It
should be emphasized that inclusion of the distribution information does not
always yield larger safety index.
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3.3

Correlated Random Variables

So far, the random variables XL have been assumed to be
uncorrelated. If the variables are normal and correlated through a
correlation matrix [C], a transformation to a set of uncorrelated
variables Y;_ is possible. The new uncorrelated set can be then used in

the procedure developed earlier for computing the safety index ﬁ

The set of uncorre}ated variables Y{_ can be determined from the
reduced variables X; using the orthogonal transformation

R
Y =1"X (5. 32)

where I is an orthogonal transformation matrix and the superscript

L indicates the transpose. The transformation matrix T is such
that

EARICH I [ ] (5. 33)

where [C'] is the covariance matrix of 5, and [A] is a diagonal matrix
of the eigen values of [C']. The covariance matrix of X “is to be related

-to the covariances of the original variables )_( through

Ea!



1
1 P12 P13 —== °1n
Pa1 1 ppg =-——- Pon
I R T e P3n
P4 Py P_a=———=—= 1
where
cov (x.,x.]
. . = J
1J a )
xi xJ' (5.35)

The safety index ﬁ can be then calculated from equations (5. 15 to
517) for the new uncorrelated set Y or more directly from (see
reference [5.4]):

G*t X'*

J g*: [ ;] G (5. 36)

B =

where g* is a gradient vector evaluated at the linearization point
(most likely failure point), i.e.,

s dg g og
(_}, = ax’ . ax’ . __""'ax ] t
1 2 n (5. 37)

t
Notice that since T is orthogonal,(T-1 = T )and from (5. 32):

X' =TY (538)
and
X'=[0X]¥'+Lx (5_39)
where
g
xl 0
[ % ] = °x2
0 N .
xn J
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and p_x =4

It can be shown (see reference [5.5] ) that the eigen values [ A ]
are also the variances of the variables Y, .

For linear performance function g(x) represented by

2 () 2a,+ ) ax (5.40)

i

equation (5.36) for calculating f is reduced to:

M n n
Z Z a a P a a
J - S B LT

where _P& is given by (5.35).
!

The above procedure is valid for transforming a set of
correlated normal variables to a set of uncorrelated normal variables.
If the variables are non-normal, then as an approximation,
equivalent normal vyariables can be determined as described
previously under "Inclusion of the distribution information”. A more
exact procedure would be to use Rosenblatt transformation [5.6]
which requires information on the joint probability density function - -
of X. The degree of approximation is illustrated through a numerical
example given in [5.5] and is usually small.

5.4 ~ Trend of the Reliability Index for Eighteen Ships

First order reliability’ was used to calculate the safety indices
for eighteen existing ships. A linear performance function was used,
therefore the MVFOSM method yields the same results as the
Hasofer/Lind method. The margin "M" or performance function for
the primary strength is simply given by:
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M=8 - 2

where S is the hull resistance given in terms of moment capacity and
Z is the total applied bending moment which consists of stillwater
and wave moments. A worldwide mission profile was chosen for
sixteen of the ships as indicated in figure 5.3. The remaining two
ships have mission profiles shown in references [5.7, 5.8]. Three of
the eighteen ships are large tankers (190,000 dwt or larger), nine are
small to medium-size tankers (26,500 to 75,500 dwt), and the rest
are cargo and bulk carriers. Table 5.1 shows the general
characteristics of the eighteen ships. A strip theory program was
used in conjunction with Pierson-Moskowitz spectra [5.9] in order to
determine the root mean square and the mean values of the wave
bending moment in different sea conditions specified by their
significant wave heights. Figures 5.4, 5.5 and 5.6 show these results
for sixteen ships. The required results for the remaining two ships, a
Mariner and a tanker, were obtained from references [5.7] and [5.8],
respectively, Reference [5.10] was used in order to determine the
frequency of occurrence of the different sea conditions. The mean
value of the wave bending moment was then obtained from the
mean values in the different sea conditions and the frequency of
occurrence of these sea conditions. A typical procedure is illustrated
in detail in references [5.7, 5.8]. The variance of the wave bending
moment was determined using the equation:

Variance = Mean square - square of mean value

In the computation, the following assumptions regarding the
sea description were made in order to reduce the computer cost:

(a) Pierson-Moskowitz spectra were used (fully devéloPed

seas)
(b) Long-crested head seas were assumed.
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B g

T’%}f// T,

Figure 5.3. Assumed ships' route (Figure without the indicated route
was obtained from reference [5.10] )
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Table 5.1.

1,000,000

200,000

800,000

700,000

600,000

500.000

400,000

300,000

R.M.5. WAVE BENDING MOMENT {[FT.-TONS]

200,000

100,000

Figure 5.4. Rms of Wave Bending Moment for Three Large Tankers

General Characteristics

SHip

Tanker No.
Tanker No.
Tanker No.
Tanker No.
Tanker No. !
Tanker No.
Tanker No.
Tanker No.
Tanker No. 10
Tanker No. 11

Tanker No, 12¢
Oilrore carrier

No. 13

L= X~ I LY G

LBP (it)

1076.00
1069. 25
1000.00
763.00
754.70
754.70
754.69
719.10
620.81
594.00
775.00

700.65

Cargo ship No. 14 528.50

Cargo ship No. 15 520.00
Cargo ship No. 16 528.00
Bulk carrrer

No. 17 800.00
Bulk carrier

No. 18 656.20
Tanker No. 8 693.75

B (ft)

93.80
97.00

of Eighteen Ships.

d (ft)

81.40
38.05
60.45
42,01
4+4.40
44.74
44.74
39.15
35.72
33.48
47.00

40.70
29.88
31.42
29.80

44.55

42,63
39.17

Cs

copo cooopooooss
2520 BEFyRERIzES

0.840

0.793
0.775

dwt
(approx.)
326,600
206,100
190,800
67,900
66,500
63,300
62,000
40,970
31,500

75,500
45,100
13,400
12,750
13,400
74,200

48,550
46,650

* Tanker and mariner ships from references{s.;Jand (5.« jrespectively

SIGNIFICANT WAVE HEIGHT [FT]
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Figure 5.5. Rms of Wave Bending Moment for Eight Medium-Size

Tankers
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—
+
206,000 ¥
1000 - 13.5 KNOTS
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Figure 5.6. Rms of Wave Bending Moment for Cargo and Bulk
Carriers
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The strength coefficient of variation V¢ was investigated next.
A detailed procedure for determining this coefficient is described
and applied to three ships (tanker, cargo, and frigate) in references
[5.7, 5.8]. The strength coefficients of variation of these three ships
were in the range of 7 to 11.3 percent. These figures include the
estimated subjective and the computed objective uncertainties. The
eighteen ships under consideration were assumed to have a strength
coefficient of variation = 13 percent. This is rather pessimistic and is
on the conservative side. The mean values of the strength, m, were
considered to be equal to the section modulus of the ship multiplied
by the yield strength, taken = 30 k/sq in.

Obviously, the foregoing parameters for the eighteen ships
were determined in an approximate manner. More accurate
procedures can be used. However, the main objective was to provide
a preliminary investigation of the order of the magnitude of the
safety index B for as many ships as possible.

With these parameters determined for all the ships, the safety
index is computed from the equation: ‘

0 - 1

2 .2 2
[

where € =M, /m_ and V; and V, are c.o.v. of the strength and load,
respectively.

Figure 5.7 shows the computed values of the safety index P of
these ships plotted versus the length between perpendiculars. These
results show a wide variation of the safety level, with ﬁ ranging
from about 4 to about 6.5. There seems to be a general tendency for
higher longitudinal strength safety, that is, higher /3 , with increased
ship size. .

The safety index /3 was also plotted versus several other
parameters. Figure 5.8 shows }3 plotted versus the parameter
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Mg = pgL2Bd, which is proportional to the static bending moment.
Only 15 ships are shown in this figure as the three large tankers 1, 2,
and 3 have very large Mg values (470 x 109, 310 x 106, and 267 x
106, respectively) and would change the abscissa scale considerably.

They do however follow the same general trend of the data, which is
higher safety B for higher Mg. The physical significance of this figure

is that designing ships on the basis of the static bending moment M
would lead, in general, to higher safety for larger ships; that is, the
static bending moment seems to overestimate the load on large ships.

=
-

L 1 | ! | | 1 1
" " " [ ” 1000 e 1208
LOWITY METWETR FEMEVRICHANM L3P {FT.}

Figure 5.7. Safety index B for Eighteen Ships
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Figure 5.8. Safety Index P for Fifteen Ships
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Figure 5.9 shows. the computed safety index B plotted versus
the parameter

(SM) o

Fg = ————
g L' Bd

Where (SM) is the elastic section modulus, oy is the yield
strength, pg is the water weight density and L, B and d are the
length, beam and draft, respectively. The parameter F is
proportional to a conventional factor of safety defined by dividing
the ship strength by the static bending moment. The figure shows
that some of the eighteen ships may have actually a lower safety B
than the others even though Fg may indicate the opposite. This, and
the scatter in the data, suggest the inadequacy of the parameter Fg as
a measure of the real safety of ships. The same result was pointed
out in reference [5.8] for a more specific case.
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Figure 5.9. Safety Index B for Eighteen Ships

In general, the wide range of the safety level of the eighteen
ships indicated by B as shown in figures 5.7, 5.8 and 5.9 could be due
to several reasons. The lack of allowance, or at least the lack of
uniform measure for the allowance of the uncertainties in the

146

15h



bending moment and the strength in the traditional design procedures is a
possible reason. Another reason is the possibility of inadequacy in the prediction
of the wave bending moment when using the traditional static balance .
procedures. A third reason may be due to the slightly different rules of the
different classification societies used for determining the section moduli of the
ships. In addition, the variation of the actual values of the section moduli of the
ships with respect to those specified by the rules is also a contributing factor.
Finally, a more exact procedure for determining the parameters used in this
application may lead to a slightly different range of level of safety.

fe x B n Non-Li imi ncti
The following analysis is presented to illustrate the wuse of Hasofar/Lind

procedure and the method of including the distribution information in calculating
the safety index for a ship. The following limit state function is considered

gx) = (SM) fy - Mgw - My (5.41)
where _

(SM) = minimum section modulus

fy = yield strength of the material

Mgw = stillwater bending moment

My = wave bending moment

Notice that the product in the first term of (5.41) makes the limit state
equation nonlinear. The limit state equation in the reduced space is

g(x) = (Usm + Osm (SM) (pgy + oty y) - (Usw + Osw M'sw)
- (Uw+owMy) =0 (5.42)

where the prime superscript indicates a reduced variable and p and o indicate the
mean and standard deviation, respectively.

The derivatives required in evaluating the direction cosines (equation 5.17)
are:
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Osm (lrlfy + ny f&) = Ogm fy (5.43)
P = o, (SM) (5.44)

G - Oe (5.45)

|

-Ow (5.46)

The direction cosines aj can then be calculated from (5.17). Using these,
the coordinates of the most likely failure point are calculated from (5.16) and
substitutedin the limit state equation in the reduced space (equation 5.15) to yield
the following result:

{Msm - Osm 0*sm B) ( H-fy - O'fy O'v*fy B) -
(Hsw - Osw 0Fsw B )=( pw - Ow ¥y B) = O 547

Equation (5.47) is to be solved for B. Notice that the o*; are to be evaluated at
.the most likely failure point, i.e., fy and (SM) values at that point must be inserted
in equations (5.43) and (5.44), respectively, when evaluating a*; given by equation
(5.17). Since these coordinates are unknown apriori, the mean values of these
variables can be used as initial values in an iterative procedure. After solving for
B from (5.47), a new set of coordinates can be determined from (5.16) and used to
determine a new set of a*;. The procedure is repeated until convergence ig
achieved.

The above procedure is accurate if all the random variables in the limit
state function (equation 5.41) are normally distributed. However, as discussed
earlier, the wave bending moment My, follows a Weibull or an exponential
distribution. In this case, the mean and standard deviation of an equivalent
normal distribution must be determined in each iteration step according to
equations (5.30) and (5.31) and used in equation (5.47)prior to solving for f. This
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transformation will produce additional non-linearity in the limit state equation in
the reduced space.

For an exponential distribution with a parameter A, the equivalent

parameters (o™ and un) of the normal distribution for the wave bending moment
can be calculated frem equations (5.30) and (5.31) which yield:

mi ..m*._,‘
Smy, = ke—”‘x P(ol[1-em 1) (5.48)
and
=T, n
p'r:llw = m:’-<D'1 [1-e A.w ] U"‘w‘

(5.49)
This procedure is further illustrated by the following numerical example.

Numeri Exam

Consider a Tanker of the following characteristics:

Length = 763 ft Beam = 125 ft Depth = 5451t
Draft = 41.33ft Blo~k Coefficient = 0.805
Displacement = 90,650 L.ton DTW = 75,650 L.ton

The values the means (1) and coefficients of variation (3) of the variable in
the limit state equation were determined as:

Hsm = 150,441 in2 -ft

dsm = 0.09
ufy = 18.16 t/in2 &, = 0.10
Hsw = 425,000 ft-ton dsw = 0.35
Uw = A = 150,500 ft-ton ow = 1.0

For the first iteration in the procedure described above the mean values
were taken as the most likely failure point. The parameters for the equivalent
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normal distribution for the wave bending moment can be calculated directly from
(5.48) and (5.49). The derivatives and direction cosines are then calculated from
equation (5.43 to 5.46) and (5.17), respectively. The resulting direction cosines are
substituted in (5.47) yielding an equation in B. The first iteration solution for p is
5.95. Using the determined value of B a new set of coordinates of the most likely
failure point is determined according to (5.16). The procedure is repeated and the
second iteration results::‘a B value of 5.04,More iterationsshould be performed until
convergence is achieved. For comparison, if the information on the wave bending
moment distribution was not included, the resulting P values are 5.83 and 5.73 for
the first and second iterations, respectively.
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6.

6, LEVEL 1 RELIABILITY ANALYSIS:

1

Although Level 2 is easier to apply in practice, it is still of
limited use to practitioners. Normally a designer needs factors of
safety to apply in the design process such as those applied to the
yield strength of the material and to the loads. This need resulted in
the introduction of Level 1 reliability analysis. In this level partial
safety factors are determined based on Level 2 reliability analysis.
If these factors are used in a design, their cumulative effect is such
that the resulting design will have a certain reliability level (i.e., a
certain safety index). Thus, code developers and classification
societies may determine (and specify in their codes) these partial
safety factors that ensure that the resulting design will have a
specified reliability level. The method of determining these partial
safety factors for a given safety index is discussed next:

Derivation of Partial Safety Factors from Level 2 Method:

The partial safety factors (psf) or load and resistance factors
LRF are simply safety factors that are multiplied by the basic design
variables in order to assure a specified reliability level B . They are
usually applied to the mean values of the design variables, thus, we
may write the limit state function as:

Ceene =0
8 (kg 1 Baky, s ®ntx,) (6.1)
where 4A; are psf and /41, are the mean values of the variables. Since

equation (6.1) represents the failure surface, 4; f‘xi must fall on the
surface, preferably, the most probable failure point, i.e.,

(6.2)

In the normalized variate space (see equation (5.16) ) we may write
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X X
X! = - a, w . =
i i ] here ¢1

Thus the original variate is

L ' ¥ -—af s o
xi-u_-tc X', = ail

(1-af v, ) - (6.3)
. i i
Comparing equations (6.2) and (6.3) we conclude that

]
=

X
A, =1 =-a, B v
i 1 X5 (6.4)

Evaluation of the psf A; requires evaluation of the direction cosines

X{ at the design point, i.e., the most probable failure pomt fr_ For
non-linear limit state functions, the determination of CE requires an
iterative solution. The following simple procidure may be used [6.1]:

X, -
¥ : * X
1. Assume X and determine xi’ = -
X5
3
2. Evaluate )and @,
. * ¥ _ %
3.  Determine Xj S by *to  x'. =g =-a; B
1 1 1 1
4.  Use the new values of x from step 3 again in 1 until

convergence is achleved.

¥
5.  Calculate the psf from 4;=1 - a; 8V for a given g .

X5

Notice that if B is not prescribed but is to be determined, then
the above procedure can be modified as follows. After Step 3, follow
the following steps:

4, Substitute x determined in Step 3 into 3(3:, y~= %5 )=0 and solve
for ﬁ
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5. Using P obtained in "4" above, reevaluate x’; = - ai* B+
6.  Repeat Steps 2 to 5 until convergence is obtained.

6.1.1 Linear Performance Functions:

In this case the psf are such that

g ‘ Axnxl, "o e An"xn ) = 0
and n
g2 (x ) =a +
0 . a; x,
or n i=1
=0
8, ¥ Z i Al "x:\.
i=1 2
Because of linearity the partial derivatives —a—-?-— are independent
of x., that is
g _
Ox’i = ai '-"x
i
(since Xj %o XMy o+ ong )
i i
Therefore from (6.4), the psf are
" a. o
xl
8 . . , 1 L A vxi
a, 2.
[ ) i) | (6.5)
1

6.1.2 Example

Consider the simple linear performance function
M=g.(xl.x1)=s-z

where S represents strength and Z represents load.

In order to determine the psf for a given value of P , we first
write the reduced variables as
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6.2

g’ = 8 : Z) = z
‘s ®z
- - ' -
therefore M =8 -2 =0 8"+, -0, 2 he
and M " M - o
35T = % bz T T
a a
therefore a_ = 2 and a = -« z
2 2 .-t_ z 2 2 !
( g * o, ] 2 { Ty * 9, } 2
The psf are thus:
°s
AB =1 = a ] vS =1 -8 Vg . . :
[o + o ] 2
s z
and o,
Az =1 - «, 8 Ve = 1 + 8 v, - : -
[ o 4+ o ] 2
8 z

Notice that A (1 and A; )1 , as expected. The determination
of psf's for eighteen ships will be given in Chapter 10  of this
report.

Recently Developed Reliability-Based Codes:

The procedure described above for the derivation of psf may
be used to develop safety factors for use in codes. This necessitates a
change in code format as well. Changing from a working stress
design code to a reliability-based code is not an easy task.
Complicating the procedure is the fact that there is no set method for
introducing reliability into a code. The implementation of reliability
theory in design codes changes from organization to organization.
Even when two organizations use the same reliability-based design
format, the details differ as it must for different types of structures.
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It is the objective of this section to review and assess the
implementation methods and use of reliability analysis in certain
design codes. Specifically, work attributed to or sponsored by the
American Petroleum Institute, the National Bureau of Standards, and
Comite Euro-International du Beton are examined in some detail.
Codes of several other organizations are also discussed and
compared.

Proposed American Petroleum Institute Code Format

The work reviewed in this subsection is the proposed revision
to the "API Recommended Practice for Planning, Designing and
Constructing Fixed Offshore Platforms” (RP2A) which is issued by the
American Petroleum Institute (API) [6.2]. API is currently
sponsoring research aimed at changing the code format of RP2A from
working stress design (WSD) to load and resistance factor design
(LRFD), with the release of an LRFD-based RP2A for industry review
and comment envisioned in the near future. Much of the information
reviewed here that pertains to the proposed LRFD RP2A was
obtained from references [6.3, 6.4, 6.5, 6.6].

In the currently used working stress approach, the maximum
or yield stress is divided by a safety factor to obtain an allowable
stress.  Designs are then limited so that the maximum calculated
stress under extreme operating loads does not exceed this allowable
value. The basic safety checking format is of the form:

R

SF— 2 D+ L + W + other load effectsa (6.6)
where
R = nominal component strength
SF = safety factor
D nominal gravity load effects on components
L = nominal live load effects on components
W = nominal environmental load effects on components
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Presently, nominal loads are all combined with factors of 1.0,
and constant safety factors of 1.67 and 1.25 are used for operating
and extreme loading, respectively, Note that there is a probabilistic
statement implicit in the given safety factors, in that since extreme

events are by nature, rare, the associated safety factor can be
reduced.

Design based on the WSD format has provided structures with
high reliability without explicitly considering uncertainties and
probabilistic safety descriptions. The WSD format, however, does not
provide for structures with uniform reliability. The problem with
WSD is that the one safety factor in equation (6.6) cannot possibly
account for uncertainties in all variables, including those arising from
the theories and analysis methods employed.

In the LRFD format, individual partial safety factors are
calibrated according to the different component strength' and loading
uncertainties. The advantage of LRFD with its multiple factors is that
proper weight is given to the degree of accuracy with which the
various loads and resistances can be determined, resulting in a more
rational procedure and. a greater uniformity or reliability [6.7]. The
LRFD format recommended [6.3, 6.4, 6.6] for API RP2A has the form

¢Ri Ri>rDD+rLL+rww+.... (6.7)
where
Ry = nominal strength or resistance of component i
95;11 ‘partial resistance factor for component i
D = nominal gravity or dead load effect
¥ = load factor for dead load
L = nominal live load effect
XL = load factor for live load
W o= nominal environmental force effects with
prescribed return period (usually 100 years)
Kw = load factor for environmental load
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Each resistance factor cf:R, is calculated as the product of two
. ¢ .
terms representing component strength uncertainty (¢b; ) and system
consequence (4;s ), that is

‘R, T4t (6.8)

- The component resistance factor ¢, takes into account variations
in material properties, strengths of fabricated components, and
errors in mathematical predictions of strengths (due to underlying
assumptions and approximations).

The system consequence factor reflects the relative
consequence on the entire structure of the failure of a component.
This, in turn, depends on whether the component was redundant or
not, brittle or ductile, main or secondary, etc. - In addition, the system
consequence factor covers any other social and economic impacts of
platform failure.

The load factors ) are also calculated as the product of two
terms. These terms correspond to uncertainty in the load intensity
(7§;) and uncertainty in the analysis required to calculate the load
effects (7 A)' We then have,

¥ Load effects = (Y intensity) X (Y analysis) = B’; A B’A (6.9)
In an actual design, the ¢ - and ¥ -values would be tabulated,

and the design equation would be checked for all specified load
combinations. Actual derivations of load and resistance factors for

proposed use in API RP2A are explained in [6.8, 6.6].

Comite Euro-International Du Beton Code Format

The code discussed in this section is a joint effort of the Comite
Euro- International Du Beton (CEB), sometimes referred to as the
European Committee for Concrete, and the International Federation
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for Prestressing (FIP). The design code is entitled "CEB-FIP Model
Code for Concrete Structures” [6.9]. Information explaining the use of
probability in the CEB Model Code can be found in references [6.9,
6.10]. It should be mentioned that CEB-has been studying structural
reliability for many years and, for this reason, is considered a leader
in the field of such code development.

The CEB design checking equation has the general form

R

az S84 (6.10)

where Ry is design resistance and S, the design load effect.

The CEB code is a Level-I code, meaning appropriate levels of
structural reliability and provided by the specification of a number
of partial safety factors. The code development uses the Level-II
method whenever possible to assess appropriate values for the

safety factors used in the code. The code considers both ultimate and
serviceability limit states.

The format used for defining the design load effects, following
CEB notation, is

Sq = S{‘YgG + VP + Yq|Qu + ‘; (\l/mQac)” (6.11)

1
A
W

design (factored) load effects

S{...} = refers to load effects due to all loads in brackets
(that is, it is not a numerical operator)

G = nominal dead load

P a representative value of prestressing force

Q, =  characteristic value of principal variable load

Q characteristic value of other less important variable

 loads
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?53 ,Xf’ )B’? = partial safety coefficients

\'UOL

= load combination factor

The CEB Model Code uses, in general, two types of partial safety
factors, ¥, and J , related to the strength and the loads [as in
equation (6.11)], respectively.

Yf is the partial safety factor which is multiplied by the
characteristic action (load) value, Fk, to obtain the design load effect,

that is

&
s,

2

z

oy,

Design action = 0y F, (6.12)
is a function of three factors: ZH , 2‘&1 , and ZF;

accounts for variations in load magnitude from the

specified characteristic (that is, nominal) value. It is
analogous to the Xi factor used by API.

reflects the reduced probability of combinations of loads
all acting at their respective characteristic values. [ £, Is
referred to as a load combination factor. [ 3]:2_ is written
as Y, in qquauon (6.11).]

accounts for the structural response to loads and the
possibility of redistribution of the load effects. )f- reflects .

inaccuracies in predicting load effects, and is a fianction of

the construction material, design and construction
process, and the limit state under consideration. In
equation (6.11), B’f- -values are written as o , §p, and

'ﬁq, since the BF -value differs for each load. Also in the
CEB nomenclature, F refers to a load in general while Q
refers to a variable load.

Ym, the second type of partial safety factor, is used in the

structural analysis by dividing the characteristic strength of a section
( j:'.r, ) by Ym to obtain the design strength of the section, that is
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design strength = FK /Xm (6.13)

Ym, accounts for any uncertainties in the predicted strength of
the materials used to build the structure. Specifically, it reflects .any
variation in the strength of materials from the specified
characteristic value; any variation in the strength of the materials
from that predicted by control test specimens; possible flaws in the
structural material due to either the construction process or the
material itself; dimensional inaccuracies of the material; and the
effect on the predicted structural resistance of inaccurate values of
material strengths. The ym partial safety factor is the CEB version of
a resistance factor such as#’Ri used by the APIL

There is an additional factor in the CEB code - the modifying
factor yn. This factor takes account of the inherent structural

behavior, that is, of parts of the structure which can fail without
warning, and the consequences corresponding to this failure. 1yp is
broken down into two factors:

Yny1 reflects the type of failure (ductile or brittle)
Yny accounts for the consequences of failure

Yn is not used explicitly, but only modify ym or Yg-values. In
(6.8, 6.6], actual values of some of these factors are presented.

National Bureau of Standards Code Format

The design code referred to in this section is American National
Standard A58, Building Code Requirements for Minimum Design
Loads in Buildings and Other Structures, published by the National
Bureau of Standards (NBS). Much of the information dealing with the
use of reliability in this Code was obtained from "Development of a
Probability Based Load Criterion for American National Standards
AS58"[6.11].
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The format recommended for use in the A58 Standard is a
combination of the CEB-FIP format described previously, and the
load and resistance factor design format proposed by Ravindra and
Galambos [6.12]. Since the CEB format has already been described ,
The LRFD format of Ravindra and Galambos is explained together
with how the two formats are combined in an optimum way.
Information concerning the LRFD method of Ravindra and Galambos
can be found accompanying reference [6.12] in the September 1978
Journal of the Structural Division of the American Society of Civil
Engineers.

The LRFD criterion can be expressed as

®Rn Z YE(YDCpDm + YL.CLLm + YWCWwWp + ...) (6.14)
where
¢ = resistance factor
Rn = nominal resistance
ZE,D;L,W = partial safety coefficients
_ Dl,w = deterministic influence coefficients
0., LW, = mean dead, live, wind loads, etc.

The terms representing the load effects (that is, the right-hand
side of equation (6.14) are defined as follows:

CpCLL.Cw are deterministic influence coefficients that

transform the load intensities to load effects.
YE is partial safety factor representing the

uncertainties in structural analysis. It accounts for

approximations and assumptions in the underlying
theory and is somewhat analogous to the yp load

‘ analysis factor used by APL
YDYLYw  account for the degree of uncertainty inherent in

the determinations of the loads Dm, Lm and Wp.
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The major difference between the CEB and the Ravindra and
Galambos load representations is that the live load is a separate case
with its own load factor in equation (6.14), but is a multiple of the
maximum load Y/, (J;x in equation (6.11). NBS believes that the
computational simplification realized by expressing the arbitrary-
point-in-time load as per equation (6.11) will outweigh certain
advantages due to the increased accuracy of having a separate
loading case in equation (6.14).

The CEB format is not considered advantageous in other ways,
however.  If the methodology of the CEB format was applied to a
situation combining dead, live, wind, and snow loads, a total of 32
loading combinations is possible [6.11]. On the other hand, the LRFD
method has only four combinations to be considered. Since it is
desired to explicitly state just a small number of fundamental load

combinations for simplification in design, the LRFD method is the
optimum choice in this regard.

The NBS format for load factors is therefore a combination of
the best features of two methods. However, the NBS format for load
factors follows LRFD much more closely than it follows the CEB
format. The CEB method is used such as in the case of factored
arbitrary-point-in-time loads, mentioned earlier when comparing the
two methods. The design equations for load effects. take the LRFD
form, however, as it is simpler to use in the design process. Also,
from now on, the NBS format will be referred to as LRFD.

In the case of resistance factors, ¢ , the LRFD method is used

and not the CEB concept of using material partial safety factors, Yum, .

This factor is closely analogous to the factor used by API. The

resistance factor, always less than unity, accounts for variability in

member strengths due to assumptions used in determining the

resistance equations, variability of material properties, variability of

~ dimensions, uncertainties in fabrication, and importance of the
component to the structure.

164

1Y



In summary, the format recommended by NBS is
n
R 2 2. 1:0s (6.15)

NBS has tabulated many fy-values for various materials and
loading combinations, and has outlined a procedure to determine
values consistent with an organization's objectives. These values of
vy and the ¢ determination procedure are discussed in references [6.8,
6.6].

Code Formats of Other Organizations

The American Institute of Steel Construction (AISC) released, in
September 1983, a proposed design code entitled, "LRFD Specification
for Structural Steel Buildings,” for the purpose of industry trial and
review. The code is based directly upon the LRFD method of
Ravindra and Galambos which represents a prototype for a new
generation of structural design codes. The implications of the
proposed change of the AISC code to the LRFD format will be felt by
other organizations which use this code in some way. The American
Petroleum Institute is one such organization as the current working
stress based API RP2A adopts several of its design provisions
through explicit reference to the AISC Code.

Another organization which uses an LRFD procedure is the
American Concrete Institute (ACI). In fact, ACI introduced split load
factors to North American design codes back in 1963. The history of
the use of reliability in the ACI Code is presented by MacGregor
[(6.10]. In [6.8], the ACI method of deriving partial safety factors is
discussed. .

The National Building Code of Canada [6.13] uses the following
~ split load factor format for load effects:

Load effects =S{vpD + ¥(vLL + YW + v7T) (6.16)

165

175



where

S{...} = load effects due to all loads in the brackets (that is,
it is not a numerical operator) ‘
DAL, - - o= load factors
DL,... = are the loads (dead, live, . . .)
v = load combination probability factor equal to 1.0,

0.7, or 0.6 depending upon whether one, two, or
three loads are included within the brackets
T = 1.25 if D acts in the same way as the loads in the

brackets and is 0.85 if D acts in the opposite way.

The load factors account for variations in the load effects due to
model errors and uncertainties in the structural analysis. The v term
reflects the reduced probability of maximum dead, live, wind, etc.,
loads acting simultaneously. Note that if both live and wind loads
were present, equation (6.16) would design using the entire wind
effect (depending, of course, upon the chosen load factor). The LRFD
procedure and the CEB method are both considered more flexible
than the format of equation (6.16).

Another organization which uses a split load and resistance
factor format in a design code is Det norske Veritas (DnV) in their
"Rules for the Design, Construction, and Inspection of Offshore
Structures” [6.14], although the partial factors are not reliability
based. The format is somewhat similar to other European codes such
as CEB. The general format for ultimate limit state design is

Rl F
K= i i‘Yﬂ} (6.17)
where

Ry = characteristic resistance (strength)
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Tm = material factor

Rk/fm = design resistance

K = factor depending on type of resistance
S{Z F;?S\:L} =  design loading effect

Fj = characteristic load

Y = load factor

The material presented in the foregoing subsections gives a
description of the major reliability-based code formats. There are, of
course, other formats, but these are generally variations of the
formats given herein. The format used more widely than any other,
at least in North America, is the load and resistance factor design
method.  Whether it be the procedure proposed by Ravindra and
Galambos, or a variation thereof, LRFD seems to be a good practical
way of incorporating reliability into a design code. Most importantly,
an LRFD-based code is the simplest to use in practice, and this may
be a major consideration.

Deciding upon a design code format which allows for the
implementation of reliability methods is a complicated process.
However, once an organization has chosen a reliability-based code
format, the work is by no means over. A load and resistance factor
design code format 'xlnay look quite impressive, but is of very little
use without the corresponding load and resistance factors.

Generally, the first step in deriving partial load and resistance
factors for use in the LRFD format is to calibrate these factors based
on the reliability level inherent in the current design criteria. From
this inherent reliability, a corresponding target reliability level B is
established.  Using this target value, load and resistance partial
safety factors are determined for the new format such that they
minimize the deviation of the calculated reliability from the target
level over the range of design applications. Although the target
reliability level cannot be reached for all design conditions, it should
be achieved on the average. Reference [6.8] gives more detailed
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information on this procedure as well as some typical values of the
load and resistance factors corresponding to code formats developed
by the various organizations discussed previously. Examples and
additional information can be found in [6.8, 6.6, 6.3, 6.9, 6.11, 6.15].
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7. SIMULATION AND THE MONTE CARLO METHOD:

7.1 General Concept

In general, simulation is a technique for conducting experiments in a
laboratory or on a digital computer in order to model the behavior of a system.
Usually simulation models result in "simulated" data that must be treated
statistically in order to predict the future behavior of the system. In this broad
sense, simulation has been used as a predictive tool for economic systems,
business environment, war games and management games.

The name "Monte Carlo method" was introduced in 1944 by von Newmann
and Ulam as a code name for their secret work on neutron diffusion problems at
the Los Alamos Laboratory [7.1]. The name was chosen apparently because of the
association of the town "Monte Carlo” with roulette which is one of the simplest
tools that can be used for generating random numbers.

Monte Carlo simulation is usually used for problems involving random
variables of known or assumed probability distributions [7.2]. Using statistical
sampling techniques, a set of values of the random variables are generated in
accordance with the corresponding probability distributions. These values are
treated similar to a sample of experimental observations and are used to obtain a
“sample" solution. By repeating the process and generating several sets of
sample data, many sample solutions can be determined. Statistical analysis of
the sample solutions is then performed.

The Monte Carlo method thus consists of the three basic steps:

a. Simulation of the random variables and generation of several sample data
using statistical sampling techniques

b. Solutions using the sampled data

c. Statistical analysis of the results
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Since the results from the Monte Carlo technique depend on the number of
samples used, they are not exact and are subject to sampling errors. Generally
the accuracy increases as the sample size increases.

Sampling from a particular probability distribution involves the use of
random numbers as will be discussed later. Random numbers are essentially
random variables uniformly distributed over the unit interval [0,1]. Many codes
are available for computers for generating sequence of "pseudo” random digits
where each digit occurs with approximately equal probability. The generation of
such random numbers plays a central role in the generation of a set of values (or
realizations) of a random variable that has a probability distribution other than
the uniform probability law.

The Monte Carlo method is considered now as one of the most powerful
techniques for analyzing complex problems. Since its chief constraint is
computer capability, it is expected to become even more commonly used in the
future as computer capabilities increase and become less expensive to use.

2 fM rlo Method in ral Reliabili nalysi

As was discussed in Chapters 1, 4 and 5, the reliability of a structure can be
. characterized by a.limit state function g(x) = g(xq,%2 . . . Xp), where x; are random
variables representing'tile basic design variables. The inequality g(x) < 0
corresponds to failure,while g(x) > 0 represents the safe region. In the Monte
Carlo approach a random sample values xj for the basic design variables is
generated numerically according to their probability distributions using a
random number generator (see the following section). The generated sample
values are then substituted in the limit state function whose value is then
computed to see if it is negative or positive, i.e., failure or no failure. Repeating
this process many times, it is possible to simulate the probability distribution of
g(x). This will require a very large number of samples. The probability of failure
can then be estimated from either of the following methods:

a. The probability of failure is given by
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=P 0] =lim 3¢
Pf [e@<0] =lim (7.1)_

where N is the total number of trials or simulations and n is the number of trials
in which g(z) < 0.

The ratio n/N is usually very small and the estimated probability of failure
is subjected to considerable uncertainty. In particular the variance of n/N
depends on the total number of trials N, decreasing as N increases. That is, the
uncertainty in estimating pr decreases as N increases. Statistical rules can be

used to establish the necessary number of trials which depends on the magnitude
of p. Many variance reduction techniques have been developed to decrease the
variance of n/N with smaller number of trials than would have been necessary
otherwise.

b. In the second method, the probability of failure is estimated by, first fitting
an appropriate probability distribution for g(x) using the trial values described
earlier [7.3). The moment or any other established statistical method may be used
in the fitting process. Elderton and Johnson [7.4] suggested some distributions
that are suitable for fitting the g(z) data. The probability of failure is then
determined from

o}
ps = J' fy (m) dm (7.2)

-y

where M = g(x) is a random variable representing the margin and fy;(m) is its
probability density function as estimated from the fitting process.

n i f m F m Variable With Ti
nti Pr jlity Distributi

As mentioned earlier the process of generating random numbers with a
specified probability distribution may be accomplished by first generating
uniformly distributed random number between 0 and 1. Through appropriate
transformation, one may then obtain a corresponding random number with a
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specified probability distribution. Therefore, in this section we will first discuss
how to generate uniformly distributed random numbers then how to obtain the
corresponding random numbers with a specified probability distribution.

7.3.1 Random Numbers Wi niform Distributions:

Special devices may be used to generate uniformly distributed random
numbers within a given range. For example, by equally subdividing the
circumference of a wheel into a number of intervals equal to the given range and
spinning the wheel, the desired uniformly distributed random number can be
generated. Uniformly distributed random numbers are also tabulated and are
available in the literature for pencil-and-paper Monte Carlo simulations.

In computer simulation, methods for generating uniformly distributed
random numbers are generally based on recursive calculations which, because of
cyclic effects, do not generate truly random numbers. The generated set
eventually repeats itself after a very long cycle and, therefore, referred to as
pseudo-random or quasi-random. An example of a recursive calculation of the
residues of modulus "m" that produce such a set of pseudo-random numbers is

X;j = axj.1+ b (mod m) (7.3)

where a, b and m are nonnegative integers and the quotients x;/m constitute the
sequence of pseudo-random numbers (7.1, 7.2]. Such a sequence repeats itself
after almost m steps, i.e., cyclic. For this reason m must be set very-large e.g. 108
or larger.

7.3.2 Random Numbers with Prescribed Distribution;

Based on a generated set of uniformly distributed random numbers between
0 and 1, one may obtain the corresponding random numbers with a specified
probability distribution. This can be done using a method known as the "inverse-
function” method. The method is suitable if the inverse of the prescribed
cumulative distribution function "C.D.F." of the random variable can be
expressed analytically, The method is illustrated as follows.
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Suppose that a set of random numbers are to be generated for a random
variable Y which follows a prescribed distribution with C.D.F. Fy(y). The value of

Yat Fy(y) =x1is
y = Fy'lx) (7.4)

where FY‘l(x) is the inverse of the C.D.F. at "x". If X is a uniformly distributed

random variable "r.v." between 0 and 1, then

Fx(x) = x 0<x<«1

Thus if x is an outcome of the r.v. X, the corresponding value of Y obtained
from (7.4) will satisfy the following equations.

PlY<yl=P[FylX <yl = P[X<Fyy)] = Fx[Fy(y)] = Fy(y)

This means that if (x3, Xo ... xp) is a set of numbers of the r.v. X, the
corresponding number obtained from equation (7.4), i.e.,

vi = Fylx) i=12...n (1.5)

will have the C.D.F. Fy(y) as required. As an example consider the r.v. Y to have
a Weibull distribution with C.D.F. given by

Fy) = 1. e(y/k) y20 (7.6)
The inverse function is
y= Pyl = k[n(1x]1 Y = k[-Inx] Ve 7.7

since x and (1-x) have identical distributions, i.e., uniform distribution. Thus one
can generate the random numbers yj,i =1, 2, . .. n corresponding to uniformly

distributed random numbers x; according to (7.7) from:

vi = k[Inx] W2 (7.8)
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The Weibull distribution can be reduced to the Rayleigh and the exponential
distributions as discussed earlier. If the Weibull parameters k and £ are equal to
v 2E and 2, respectively, the Weibull distribution reduces to the Rayleigh
distribution. If k and { are equal to A and 1, it reduces to the exponential
distribution. Thus, substitution for k and £ in equation (7.8) will lead to a set of
random numbers for these two special distributions as well.

4 le Size and Varian 1 hni

As mentioned earlier, the simulated data according to Monte Carlo method
should be treated as a sample of experimental observation, and therefore, is
subjected to sampling error. If the probability of structural failure is to be
computed from the simulated data the underlying error becomes an important
consideration since the sought probability of failure is usually small. Shooman
[7.5] developed the following expression for estimating the error in the estimated
probability of failure:

1-pe12
f) (7.9)

error = 2 (m

where N is the total number of simulations (sample size) and pr is the probability

of failure. There is a 95% chance that the actual error in the estimated probability

is less than that given by equation(7.9). It is seen that the error is dependent on
the number of simulations N and the probability of failure pf; it decreases by

increasing N or pf. Therefore, if the estimated probability pfis small which is
usually the case, N should be large enough to decrease the error.

There are techniques, however, which may reduce the error (or variance)
without increasing the sample size. These techniques are known as variance
reduction techniques, and the one that is used often in structural failure problems
is called "Antithetic Variates”.

7.4.1 Antithetic Vari

Let Y; and Yo be two unbiased estimates of Y as determined from two
separate sets of samples or simulation cycles. The average of these two unbiased
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estimations Y5 = 12 (Y; + Yy) is also an unbiased estimator since its expected
value E [Yy] is equal to Y. The variance "oy 2" of the new estimator Y, is
determined from the individual variances "oy,2" and "oy2" as:

Gyaz = 1/4[ C)'y]_2 + O'y'22 +2cov (Y, Yo) ] (7.10)

If Y, and Y, are negatively correlated, i.e., the cov. (Yy, Y3) < 0, it is seen
from equation (7.10) that the third term becomes negative and

OyaZ < 1/4 (Uy12 + Oyo?) (7.11)

That is, the accuracy of the estimator Y, can be improved (or its variance
can be reduced) if Y| and Yy are negatively correlated estimators. The antithetic

variates method is thus a procedure that ensures a negative correlation between
Y, and Yp. This can be accomplished in structural reliability problems as

follows.

If X is a random variable uniformly distributed between 0 and 1, then 1-X is
also a uniformly distributed random variable between 0 and 1 and the two random
variables X and 1-X are negatively correlated. Each of these random variables can
be then used to generate the basic random variables Y; which have prescribed
probability distributions as described earlier. This results in a pair of negatively
correlated basic random variables. The procedure is repeated for all the random
variables Yj in the limit state equation. The limits state equation is then solved for
each negatively correlated set of random variables separately and the results are
averaged to estimate the population mean. Note that the error (or variance) of the
result is reduced because of the negative correlatlon between the generated
variables according to equation (7.11).

75 _ Application Examples:

751 mpari of Analvtical an imul Evaluation f a Random
Function
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The purpose of this example is to compare numerically simulated results
obtained using a "standard” random number generator with exact analytical
values. For this purpose, the random process x(1)(t) was examined in ref. [7.6]

x(Xt) = A sin (ot +6()) (7.12)

where A and ¢ are fixed (deterministic) constants and 6(1) is a random phase
angle with uniform distribution shown in Figure 7.1.

Analytical Results

The analytical result for the first order and joint probability density
functions (jpdf) of x given that  is uniformly distributed can be derived by
standard statistical methods. These are given by:

fix) = 1/{ndAZ = x2) . A < x < B

and = %) otherwise

fix1,x2) = 1/[20yAT = X171 = -A < (x1,x2)¢< A

0 §(x2 - xlcosegT + A7 = x1?2 sincy)
* d(x2 = xlcosar - JBZ - =12 singz)) (7.13)
- o

otherwise
wheret = t - t5.

The first order pdf of x is shown is figure 7.2. In general, the jpdf is -
difficult to represent graphically. It is three-dimensional with spikes when the
argument of either of the two delta functions is equal to zero. The occurrence of
these spikes will depend on the values of A,c and 1 as well as the current values of
x1 and xg. The factor in front of the delta functions modifies their sum so that the

total area underneath the jpdf will equal one.
Numerical Results
First Order Pdf: For given values of A, ¢ and 1, a data file of N random

phase angles and the corresponding values of the x was created. The values of x
were generated by simply substituting the random values of 8 into equation (7.12).
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BASIC language was used to create the data file, because it contains a random
number generator. A separate routine was written in FORTRAN to compute the
pdf of either the random phase angle or the random x's. This routine divided the
range from 0 to 2xn for 0, or from -A to A for x, into n intervals of size A8 or Ax.
Then the number of 8's or x's in each interval was counted. The value of the pdf
at the center of each interval is given by,

f(-) = (# of occurrences per interval ) /[ ( AB or Ax ) * N ]
where N is the total number of samples (simulations).

The probability density function of theta compares well with the expected
uniform distribution, see figure 7.3. The pdf of x was computed for the case of

A = 1 magnitude unit
o = 1 rad / (time unit)
t = 1 time unit

N = 100000 samples

The numerically computed points compare extremely well with the analytical
curve, see figure 7.4. There is, however, disagreement between the computed
‘values and the analytical curve at the singularities, x = +1.

Second Order PDF: The numerical procedure used to calculate the jpdf was
very similar to that for the first order pdf.

Some easily visualized cases of the jpdf were investigated. Consider the
case when t; = tg so that ot = 0. Since sin(0) = 0 and cos(0) = 1, the argument of

both delta functions in the analytically derived result (equation 7.13) simplify to
(%1 - xg). This implies that the jpdf will consist of spikes along the line, x; = xs.

The numerical results for this case with

A = 1 magnitude unit
N = 100000 samples
Ax1, Ax2 = 0.05 magnitude units
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is given in figure 7.5.

Another interesting case is when ¢ = 1 rad / (time unit), t; = 1 time unit and
to = 2.57 time units, then ot = w/2. Since sin(n/2) = 1 and cos(w/2) = 0, the argument
of both delta functions will equal zero when x;2 + x,2 = A2. This means that the
jpdf will be a series of spikes along a circle centered at (%3, x3) = (0, 0) and of radius
A. The numerically computed jpdf evaluated under this condition is shown in
figure 7.6 and it indeed appears as expected.

Effect of Number of Samples and Size of Increment: The analytical
derivation of the probability density function assumes an infinite number of
samples and infinite resolution of x. In a numerical computation, however, both
N and Ax are finite values. On the average, the number of samples per interval

will equal the total number of samples divided by the numbers of increments, i.e.,

# samples per interval = N /[ 2A/Ax ].

The trend shown in figure 7.7, as well as, in figure 7.8, shows that as N increases
for a constant Ax, the numerical values converge to the analytical result for the
pdf. In addition, comparing figure 7.7 to figure 7.8 for a constant N, shows that
decreasing the size of the interval Ax appears to increase the spread of the
numerical data. Therefore,.in order to get an accurate numerical representation
of the probability density function, not only the total number of samples and the
size of the increments are important, but mainly their relationship in
determining the number of samples per interval is important.
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Probability Density Function of Theta
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Probability Density Function of x
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A o,t1,t9) =(1,1,1,1)
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15,2 Application of Monte Carlo Method to Reliability of Ship Structures
(excerpted from White and Ayyub [7.7]):

In order to compare results of the Monte Carlo simulation method with the
other reliability methods discussed earlier in Chapters 4 and 5 an example
problem is solved using each method. The problem chosen is to determine
probability of ductile yielding of a vessel's deck under extreme bending moments.
Any of the other possible modes of failure could have been chosen, for example,
plastic collapse or Buckling, but the availability of data on this problem facilitated
comparison of methods. The vessel chosen for the analysis is a naval frigate, the
same one used by Mansour and Faulkner [7.8]. The principal dimensions are
given in Table 7.1 and the midship section is shown in Figure 7.9.

The problem is essentially a simple beam in bending and can be written as:
M, = CY (7.14)

where My, is the ultimate bending moment; C is the section modulus of the vessel:
Y is the tensile yields stress of the vessel material.

In order to see the effect of different, but mechanically equivalent
formulations on each method two limit-state equations will be used. The first
limit-state equation has a simple linear form:

Z=R-Q , (7.15)

where R is the resistance, given in tons/in2 and is equal to Y in Equation (7.14); Q
is the total load in tons/in2 .

Next a more cdmplicated non-linear form is used. This form separates the

wave and still water bending -moments, My and M, respectively; and Z is

expressed in units of bending moment:

Z = YC-M,-My (7.16)
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The basic variables for each form are shown in Table 7.2 along with their
respective statistical properties.

First Order Reliability Method (Level 2): The method described in Chapter 5
was applied in [7.7] to the linear and non-linear limit state functions given by
equations (7.15) and (7.16), respectively. In both cases the distribution information
was included in the analysis. The results for the safety index "B" and the
corresponding probability of failure "pf' are given in column 2 of Table 7.3.

Direct Integration Method (Level 3): The method described in Chapter 4
was applied in reference [7.8] using the linear limit state equation only (equation
7.15) and assuming the stillwater bending moment to be deterministic. In
reference [7.8], the probability of failure was computed for ship operation period of
twenty one years (n=3). To be consistent with the results given in this example,

the value given in [7.8] must be divided by 3 and the corresponding resulting value
for pris 1.3 x 10-6 which is shown in Table 7.3.

Monte Carlo Simulation Method: In reference {7.7] the same problem
(equations 7.15 and 7.16) was solved using Monte Carlo simulation technique
described in this chapter. TJse was made of Antithetic Variate reduction method
and conditional expectation in order to reduce the number of simulation cycles.
The primary steps involved in the solution according to reference [7.7] are:

Step 1. Identify the basic variable with the most variability in the limit
state equation. _

Step 2.  Condition the variable in Step 1 with respect to all the remaining
variables in the limit state equation. ‘

Step 3. Generate a uniformly distributed random deviate for each of the
conditional variables.

Step4. Generate a second uniformly distributed random deviate which is
negatively correlated to the one from Step 3.

Step 5. Using the inverse transform method produce a random variable
for each deviate from Step 4.

Step 6. Calculate the probability of failure using the probabilistic
characteristics of the variable identified in Step 1 for each set of
random variables.
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Step 7. Find the average probability of failure for the two p¢s in Step 6.

Step 8. Repeat Steps 3 to 7 N times.

Step 9. Calculate the statistics of the N number of probabilities of failure
thus generated. '

The results are shown in Table 7.3 for 2000 simulations cycles. Figures 7.10

and 7.11 from reference [7.7] show the simulation scheme converges on a solution
with increasing N. .
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Table 7.1. Vessel Characteristics

Length Between Perpendiculars 360.0 f (110.00 m)
Beam (molded) 410£t (12.50 m)
Depth 289 ft (8.78 m)
Draft 1201t (3.66 m)
Displacement 2800.0 tons (2845.00 tonnes)
Section Modulus (at deck) 5700.0 in2 ft (1.12 m3)

Table 7.2. Probabilistic Characteristics of Basic Variables

Basic Variable Mean COv Distribution
Linear Formulation
R 22.20 tons/in2 0710 Normal
Q 2.70 tons/in2 5390 Weibul
Non-Linear Formulation

Y - 22.20 tons/in2 | 0610 Normal

C 5700.00 in2 ft 0379 | Log-Normal
Mo 7080.00 ft-tons --- Deterministic
Mw 8290.00 ft-tons 1.0000 | Weibul (k=1)
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Table 7.3. Example Problem Results

First Order  |Direct Integration Monte Carlo
Method Method Method
Linear Limit B =475
State Equation (7.15) | pf = 0.97x106 | pr~ 1.33x106 | pr = 0.98x 106
(C.OV. = 0.0192)
Non-Linear Limit B =4.75

State Equation (7.16)

pf ~ 0.976 x 106

pf = 0.98x 106
(C.OV. = 0.0174)
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8. SYSTEM RELIABILITY

1. Intr

The reliability analysis discussed in Chapter 4, 5 and 6 has been mainly
concerned with a single failure mode (or a limit state) defined by a single limit
state equation. Marine structures, however, involve several modes of failure, i.e.,
there is a possibility that a structure may fail in one or more of several possible
failure scenarios. The subject of system reliability deals specifically with the
methods of combining the probabilities of failure associated with these modes in
order to determine the total reliability of the structure as a system.

Two main sources of "system effects" are identified. The first is due to
possible multiplicity of failure modes of a component or a structural member. For
example, a beam under bending and axial loads may fail in buckling, flexure or
shear. Each one of theses modes can be defined by one limit state equation. Even
though in this case, we are dealing with a single member (beam), system
reliability methods must be used in order to combine the possible failure modes
and to obtain an assessment of the total risk of failure of the beam. The probability
of failure of one mode may be larger than the others, but the fact that there is a
possibility that the others may occur indicates that they must be included and

" combined to obtain'the total probability of failure of the beam.

Another example of multiplicity of failure modes is the primary behavior of
a ship hull. In the primary behavior, one treats the ship as a single beam -
subjected to weight, buoyancy and wave loads which induce sagging and hogging
bending moments. The hull may fail (or reach a limit state) in one of several
possible modes, e.g., buckling of deck or bottom panels or grillages, yielding of
deck or bottom plating, etc. Here again, system reliability methods must be used
to combine these different modes of failure and to obtain a total probability of
failure.

Multiple modes of failure of a member are usually modelled in system
reliability analysis as a series system. A geries system is one that is composed of
links connected in series such that the failure of any one or more of these links

, constitute a failure of the system, i.e., "weakest link" system. In the case of the
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primary behavior of a ship hull, for example, any one of the failure modes
discussed earlier will constitute failure of the hull (or a limit state to be prevented)
and therefore can be considered as a series system. Series systems will be
discussed in more detail in a later section of this chapter.

The second source of "system effects" is due to redundancy in multi-
component engineering structures. In such structures, the failure of one
member or component does not constitute failure of the entire system. Usually
several members must fail to form a "failure path" before the entire structure
fails. The failure of each member is defined by at least one limit state equation
and a corresponding probability of failure. These individual member probabilities
of failure must be combined to get the probability of failure of the system for a
particular "failure path". Thus, system reliability methods must be used to
determine the reliability of a redundant structure. An example of a multi-
component redundant structure in which system effects are important is a fixed
offshore platform. For such a platform to fail, several members must fail to form
a failure path. The probability of failure of the system in this case is usually
modelled as a parallel system in which all links along the failure path of the

system must fail for the entire structure to fail. More over, there will be several
| possible paths of failure any of which will constitute failure of the entire platform.
Therefore each failure path and the associated probability of failure can be
" considered as a link in a series system since failure of any link constitute a failure
of the system in the series model. The total offshore platform can be thus
modelled as several parallel subsystems each of which represents a failure path
connected together in series since any of them constitutes failure of the platform.
Parallel systems and general systems consisting of series and parallel
subsystems will be discussed in later sections of this chapter.

8.2.  General Formulation

The exact system reliability problem taken into consideration possible time-
dependent random variables is an outcrossing problem. If the time-dependant
loads or response of the structure exceeds (outcrosses) one or more of several
possible failure modes (surfaces), failure of the structure occurs. The problem
formulated in terms of stochastic processes however is difficult to solve. Only a
few cases of very simply structures with certain load history models can be
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evaluated in this manner and the reliability of the structure at any time during its
life can be calculated. For a single time varying load it is possible to treat the
peaks as a random variable and its extreme-value distribution may be formulated
to perform the reliability calculation.

At the present, the general problem is formulated as a time-independent
problem which is sufficient only for the evaluation of an instantaneous reliability.
As such, the form of the equation to evaluate the system reliability is the same as
that of component reliability (equations 4.1 and 4.2) except that, now, the multiple
integration is carried out over all possible limit state functions corresponding to
the potential modes of failure. For k modes of failure, and n random variables,
the system probability of failure can be written as:

pe=| ... [ fxGpx...x) dx)...dx, (8.1)

where fy (x1, Xg . .. Xp) is the joint probability density function of the n random
variables and gj(x) are the k limit state functions. The domain of integration in
.equation (8.1) is over the entire space where each of the "k" limit state function is
negative or zero. '

The same difficulties encountered in the level 3 computation of component
reliability will be encountered in determining system reliability from equation
(8.1), namely, the determination of the joint density function and the evaluation of
the multiple integration. In addition, the domain of integration over all possible
modes of failure in equation (8.1) will present additional numerical difficulties.
For these reasons this general exact formulation is not used, and instead of
determining the combined total probability of failure of the system as given by (8.1)
only an upper and lower bounds on that system probability are determined. These
upper and lower bounds are usually determined by considering the structure to be
a series system or a parallel system or a combination of both (general system).
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It should be noted that, in principle, simulation methods and the Monte
Carlo technique can be used to solve equation (8.1) in basically the same manner
~ discussed in Chapter 7. In this case numerical simulation of the random
variables is performed according to their prescribed joint distribution and all limit
state equations are checked to see if failure occurs. The ratio of failure
realizations to total number of simulations gives an estimate of the probability of
system failure. Reduced variate techniques and other methods for improving
convergence may be used here. Usually, for realistic structures the number of
simulations required for a reliable estimate of the system probability of failure is
still high, but these methods have potential for application in system reliability.

Boun n th ability of

A series system is one which fails if any one or more of its components
fails. Such a system has no redundancy and is also known as "weakest link"
system. Schematically a series system is represented as in figure 8.1

Fy Fo F3 ’

Figure 8.1. Schematic Representation of a Series System

A typical example of a series system is a statically determinate structure
where a failure of any member constitutes failure of the structure. Another
example of a series system is a beam or an element which may fail in any of
several possible modes of failure each of which may depend on the loading
condition of the beam. A ship hull girder in its "primary behavior' is such a
system with the additional complication that failure may occur in hogging or
sagging condition. Each condition includes several modes of failure. A third
example of a series system arise when combining the probabilities of failure of
several possible failure paths in an offshore platform, any of which constitutes
failure of the platform.

If F; denotes the ith event of failure, i.e., the event that [g; (zx) < 0], and S;
represents the corresponding safe event, i.e., [gi (X) > 0], then the combined
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system failure event Fgis determined as the union "U" of all individual failure
events Fj as

Fs = U Fj i=12...k

1

The corresponding probability of system failure is

P(Fs) =P(IiJ Fi)=1-P(? &) (8.2)

where N represents the intersection or mutual occurrence of events.

The calculation of the probability of systems failure for a series system
using equation (8.2) is generally difficult and requires information on correlation
of all failure events. Approximations are therefore necessary and upper and
lower bounds on the system probability of failure are constructed instead of
evaluating the exact value. Two types of bounds can be constructed; first and
second order bounds.

Fir rder

These are bounds on the probability of system failure which require no
information on the correlation between the events of failure. In other words, the
user of such bounds does not need any information on the correlation between the
events of failure which, in many cases, are not available. They are constructed as
follows (see reference 8.1).

If the events of failure of a series system are assumed to be perfectly
correlated, the probability of system failure is simply the maximum of the
individual probabilities of failure. For positively correlated failure events, this
assumption leads to the lower non-conservative bound on the actual system
probability, i.e., '

max. P(Fj) < P(Fy) (8.3)
1 .
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On the other hand, if the events of failure are assumed to be statistically
independent, an upper bound (conservative) can be determined. In this case, for
independent failure events of a series system, the right hand side of equation (8.2)
reduces to

k k
1-P(osi)=1-n P(Sj)=1-1 [1-PF)] 8.4)
1 i=1 i=1
k
where I P(Sj) represents the product of the probabilities of survival. The result
i=1

given by equation (8.4) represents an upper bound on the true probability of system
failure, i.e.,

k
PFs) c1- 1 [1-PFD] (8.5)
i=1

Combining equations (8.3) and (8.5), one obtains an upper and lower
bounds, i.e.,

k
m:ilx. PFpPp<PFg<1-1 [1-PFD] - (8.6)
i=1

Although the upper bound in equation (8.6) is not difficult to evaluate, it can
be further simplified by noticing that

k k
1- 1 [1-PFD] « I PEFED (8.7)
i=1 i=1

therefore, equation (8.6) can be written as
k

mziax. PF) < PFg) < 3 PFYD (8.8)
i=1
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Equation (8.8) gives the final result for the bounds of a series system and
states the obvious conclusion that the actual probability of system failure lies
between the maximum of the individual probabilities and the sum of all
individual probabilities. These bounds are narrow if one mode of failure is
dominant, i.e., if one of the individual probabilities of failure is much larger than
the others. If not, these bounds may be too wide to be useful. In such cases a
more narrow set of bounds should be considered (second order bounds).

nd Order Boun

These bounds were developed in references [8.2, 8.3, 8.4 and 8.5] and are
given in terms of pair-wigse dependence between failure events, therefore, are
called second order bounds. The original bounds for k potential modes of failure
are given as (8.2, 8.3]:

k i-1
PFD+ I max {[P(F) - T PF;F)]1;0} < PFg) <
1=2 =1
k k
T PF)- X max. PFE;F) (89
i=1 i=2  j«i

. where P(F1) is the maximum of the individual probabilities of failure and P(F; F}j)
is the probability of intefs'ection (mutual occurrence) of two events of failure, Fj
and Fj.

The bounds given by equation (8.9) depend on the ordering of the failure
modes and different ordering may correspond to wider or narrower bounds.
Therefore, bounds corresponding to different ordering may have to be evaluated to
determine the narrowest bounds. '

The evaluation of the joint probability P(F; Fj) required in equation (8.9)
remains difficult. A weakened version of the of these bounds (more relaxed

bounds) was proposed by Ditlevsen in [8.4] as follows.

In the lower bound of equation (8.9), P(Fj F;) is replaced by [8.5]
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P(F; Fj) = P(A) + P(B) (8.10)

whereas, in the upper bound, the same term is replaced by

Py Fj) = max[P(A), P(B)] (8.11)
where

P(A)

D (-p1) @ ( - Biphi ] (8.12)

\ 1-p2

@ (-Bj) q:(--ﬁi;p-ﬁi ) (8.13)

\j 1-p2

and @() is the standard normal cumulative distribution function and B; are the
individual safety indices (Hasofar-Lind) as discussed in Chapter 5. p is the

P(B)

correlation coefficient between two failure events (or modes). Such a correlation
coefficient between the failure events (F;) = (g; () < 0) and (Fj) = (g ®) < 0) can be
evaluated from [8.4]:

Pg g = L EE) | (8.14)
PE) Cg. Cg.
gi g
where
g = 3 [Sgi} [ng} | (8.15)
cov (gi, &) = ) : .
m=1 SXm . 8Xm .
) s ¢, 2 )1
and Cg, = m):=1 X (8.16)
m )% |
[ o (8g \2|1m
= e
Og; mél {BX,;, J ) (8.17)
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In equations (8.14) to (8.17), X, X5 . . .X;, are the reduced random variables
and the derivatives are evaluated at the most likely failure points as discussed in

Chapter 5. The proposed bound by Ditlevsen [8.4] apply only for normally
distributed random variables.

Narrower bounds than the second order bounds can be constructed, but,
they involve intersection of more than two failure events and are much more
complicated.

4 Boun n the Pr ili Fail |

A parallel system is one which fails only if all its components fail, i.e.,
failure of one component only will not necessarily constitute failure of the system.
Schematically, such a system can be represented as shown in Figure 8.2

*

b

Figure 8.2. Schematic Representation of a Parallel System.

A typical example of a parallel system is a statically indeterminate
structure where, because of redundancy, failure of several members along a
"failure path" must take place for the entire structure to fail. The behavior of
such a structure depends also on whether the members are brittle or ductile.
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Generally, brittle failure implies that the member looses completely its load-
carrying capacity while in ductile failure, the member maintains a certain level
of load-carrying capacity after failure.

If F; denotes again the ith event of failure and S; the corresponding safe
event, then the system failure event of a parallel system Fp of k components (i.e.,

failure events) is the intersection or mutual occurrence of all failure events, i.e.,

Fp = N F - i=12...k (8.18)

The corresponding probability of system failure is

PFp) = P(riw Fi) = 1-P(U 8) (8.19)

Equation (8.19) for failure of a parallel system should be compared with
equation (8.2) for failure of a series system. It is clear that the failure of a series
system is the union (any) of the component failures, wherea;, the failure of a
parallel system is the intersection (all) of the component failures.

Just as in a series system, the evaluation of equation (8.19) for determining
" the exact system failure of a parallel system is generally difficult, and,
approximation by constructing bounds is usually necessary.

Simple first order lower and upper bounds can be constructed using

similar arguments as for the series system. Now however, perfect correlation
between all failure events (p = 1.0) corresponds to the upper bound and no

correlation between any pair corresponds to the lower bound. Thus, for positively
correlated failure events, these bounds are:

k .
T PFy) < P(Fp) <« min. P(Fy) (8.20)
i=1 1

Unfortunately, the bounds given by equation (8.20) on the probability of
failure of a parallel system are wide and no second order bounds are available. In
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some special cases, however, the "exact" system failure can be evaluated. For
example, Thoft-Christensen and Baker (see reference [8.7]) evaluated the
probability of parallel system failure under deterministic loading and other
restrictive conditions.

neral m

A general system is one that consists of a combination of series and parallel
subsystems. A useful general system from an application point of view, is one
that consists of parallel subsystems connected together in a series. An example of
application for such a general system is an offshore platform (or, in general a
statically indeterminate structure) where each failure path can be modelled as a
parallel subsystem and all possible failure paths (parallel subsystems) are
connected together in a series since any of them constitute failure of the platform.
This representation is called "minimal cut set" since no component failure event
in the parallel subsystem (a failure path) can be excluded without changing the
state of the structure from failure to safe. A schematic representation of parallel
subsystems connected together in a series is shown in figure (8.3).

Fp
F =
. , ' Fs .
Fy
Fy

Figure 8.3. Schematic Representation of Parallel Subsystems
Connected in a Series (Minimal Cut Set)

A general system may also consist of a series of subsystems connected
together in parallel (minimal link set). Such systems, however, have less
potential for application to structural reliability and therefore will not be
discussed further.
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The failure event "Fg" of a general system consisting of parallel subsystems
connected together in a series (minimal cut set) is given by the union (series) of
intersection (parallel) of individual failure events, i.e.,

Fe=0 O (8.21)

e
j i
where (Fy;) is the ith component failure in the jth failure path. The probability of
failure of such a system is thus determined from

PFp = 2| U 7 ®y)] (8.22)

1

Exact evaluation of (8.22) is difficult and requires information of the joint
dépendence of failure events. Similarly bounds on the probability of failure given
by (8.22) are not available in general. If however, one is able to determine the
probability of failure of each parallel subsystem (for example, under restrictive
conditions), then first or second order bounds can be determined using equations
(8.8) or (8.9) for the remaining series system.

The Pr ilistic N rk Ev ion Techni P

The PNET is an approximate method for estimating a single value of the
system probability of failure rather than bounding it [8.5]. The motivation behind
the method is that the bounds given by equations (8.8) or (8.9) for a series system
can be wide if none of the events or modes of failure is dominant, i.e., if none of the
probabilities of failure is much larger than the others. The same problem is
encountered if the series system consists of parallel subsystems (failure paths)
none of which is a dominant failure mode.

The PNET method is based on the fact that perfectly correlated (or, as
approximation, highly correlated) events of failure in a series system have a
system probability given by the lower bound of equation (8.6) or (8.8), whereas,
independent failure events have a system probability given by the upper bound.
Therefore, one may select a threshold value for the correlation coefficient and
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assumes that failure events with correlation coefficient P1j above or equal to the

threshold value to be perfectly correlated, thus can be represented by a
"representative event” which is the event among them that gives the maximum
probability of failure, say P(F;) (see lower bound of equation 8.8). If a set of n
failure events (modes) F; wherei =1, ... nis arranged in a decreasing order then
the failure probability of the representative event is P(F;). The remaining, events
with pij < po are again rearranged in a decreasing order of their failure
probabilities. Let these be Fy, Fy, .. . Fy_ and the pair-wise correlation are pgg, poy,
... Pgx- Those events with p2'j > 0 are represented by F,. The remaining ones are

rearranged in a decreasing order and the procedure is repeated to search for
other representative events (modes) of failure. The mutual correlation between
the representative events will be low therefore, they may be assumed independent.
Thus, the probability of system failure may be approximated by (see upper bound
of equation 8.6)

PF) = 1-1} [1-P(Fp)] (8.23)

F Tr n nt Tr

Fault tree is a systematic and effective method of identifying various
possible failure events and their interaction that lead to a main failure event
called "top event'. It is usually represented by a "fault tree diagram" which
starts with basic events whose probabilities of occurrence may be readily
estimated and describes the various possible combinations (unions and
intersections) of such events that lead to the top event or failure of the system. Its
value becomes more important in complex systems where some possible modes of
failure may be overlooked.

Fault tree analysis finds many applications in the design and operation of
nuclear power plants. It can also be applied to complex structural system such as
offshore platforms. In such 'analysis the fault tree diagram will help in
identifying in a systematic manner the various component failures that form a
"failure path” and the different possible failure paths that will lead to the top
event, the failure of the entire structure. In addition to identifying all potential
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failure paths, the fault tree analysis may single out the critical events that
contribute significantly to the likelihood of failure of the structure.

The probability of top event (main failure) in a fault tree analysis is
calculated through unions and intersections of subevents which are expressed in
terms of basic events (component failure) for which the failure probabilities can be
estimated. Although fault tree analysis provides the logic leading to the top event,
it does not eliminate the difficulties in computing the probabilities of unions and
intersections of correlated events. Approximations and bounds may still have to
be used if a quantitative assessment is to be made of the probability of occurrence
of the top event.

Qualitative evaluation of a fault tree can provide also valuable information
to designers. Without knowing accurately the probabilities of failure of events and
subevents, the fault tree analysis may point out the critical basic events and the
critical paths that contribute significantly to the occurrence of the top event. With
this knowledge a designer may then take the appropriate steps to reduce the
probability of occurrence of such critical basic events.

Event tree analysis on the other hand starts with the top event (main
failure) and examines in a logical manner all possible consequences resulting
-from the occurrence of such an event (for example loss of life, pollution, explosion,
fire, etc). The consequences of the top event (now called the initiating event) may
or may not be series depending on the possible occurrence of other adverse events
following the initiating event. The identification of all possible subsequences and
scenarios is best accomplished through an event tree diagram. Each "path” in
the event tree represents a sequence of subsequent events leading to a particular
consequence. The probability of occurrence of a specific consequence depends on
the probabilities of the subsequent events and is simply the product of conditional
probabilities of all events along that path.

Reliability Bounds for Ship Pri ren
Reliabilify bounds for ship primary strength were developed in 1972 in

reference [8.6]. In the primary behavior, the ship hull is considered as free-free
non-uniform beam supported by water pressure. Wave loads (bending moment)
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are calculated using the equations of motion of the ship if dynamic effects are to be
included otherwise by balancing the vessel on a wave configuration. The loads on
the vessel alternate from hogging which produce compression in the bottom
plating to sagging which induce compression in the deck. This hog/sag variation
must be considered in the hull reliability analysis.

In each hog/sag condition there will be several possible modes of failure,
eg., plate and panel buckling, tensile yield, etc. If Fh and F represent hogging
and sagging events of failure, respectively, then the combined event of failure F¢ is
given by the union of the two events, i.e.,

(Fo) = (Fh)UF*) (8.24)

Since hogging and sagging are mutually exclusive events, i.e., the vessel
can be either in hogging or in sagging condition (but not both at the same time),
then the union of the two events given in (8.24) is simply their sum. The
probability of combined event of failure is thus

P(F¢) = P (Fh) + P(Fs) (8.25)

As mentioned earlier, each of the hogging and sagging conditions will have
. several possible modes of failure (or limit states). In each case these modes can be
modelled as a series system since any of them constitute a failure of the hull (or a
limit state to be prevented). Thus bounds on the probability of failure in hogging
condition P(Fh) and in sagging condition P(Fs) can be constructed using equation
(8.8) or (8.9) for first or second order bounds, respectively. The bounds on the
combined probability P(F¢) are simply the sum of the bounds on each condition as
implied by equation (8.25).

Experience indicated that in many cases either hogging or sagging
condition is governing in the.reliability analysis depending on whether the
stillwater bending moment is hogging or sagging (in much the same manner as
in the usual deterministic analysis). In some cases, however, both conditions
must be included otherwise the estimated reliability will be unconservative.
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In reference [8.6], the probabilities of failure (or reaching a limit state) were
calculated for a Mariner class vessel in hogging and sagging conditions using
level 3 reliability method. The stillwater moment for the Mariner is a hogging
moment. Several modes were considered in each condition and the results are as
follows:

Hogging Conditi

i) Tensile yield of deck plating: p; = 6.16 x 10-7
ii) Compressive post-buckling yield of inner bottom plating: p; = 4.03x
105

ili) Compressive post-buckling yield of bottom plating under lateral and
inplane loads: pp = 62.99x 105

iv)  Compressive grillage failure of bottom shell under combined loads:
Pr = 147x 10'5

The first order bound on the probability of failure in hogging condition ph

were thus obtained (see equation 8.8) as

max (6.16 x 10-7, 4.03 x 105, 62.99 x 10'5, 1.47 x 10-5) < p

£6.16x10°7+4.03x 105 + 6299 x 10-5 + 1.47 x 10-5

or
6.3x 104 <p <6.8x 104 (8.26)

Notice that these bounds are tight since one mode of failure is dominant
(post-buckling yield of bottom plating). There is no need to consider second order
bounds.

Saggin ndition
i) Tensile yield of bottom plating: p; = 1.55 x 10-14

ii)  Inelastic buckling of deck plates between stiffeners: p; = 2.29 x 10-11
iii)  Grillage instability of deck: p; = 2.18 x 10-7
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Bounds on the probability of failure in sagging condition p# can be

constructed in a similar manner as those for the hogging condition. The sum of
the two sets of bounds would then give the bounds on the combined probability of
failure. It is clear, however, that in this case the bounds on the failure modes in
sagging are of the order ~ 10-7, much smaller than those given by equation (8.26)
for the hogging condition. The latter bounds, therefore, can be considered as
bounds on the combined probability of failure.
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9.1

9. FATIGUE RELIABILITY

INTRODUCTION

Fatigue is the degradation in material, element, and system strength and

stiffness as a result of cyclic straining-stressing.

Materials in marine structures can consist of steels, concretes,
synthetic fibers, and soils (foundation). Elements can range from
bulkheads to hatch cover openings, from cylindrical braces to mooring
lines, and from deep (piles) to shallow (anchors, mats) foundations.
Systems represent assemblages of elements, and can range from cargo ships
to fixed and floating platforms.

Cyclic straining can develop from a wide variety of environmental
(thermal, wind, wave, current, ice, earthquake), construction
(installation transport, launch), and operational (slamming, equipment,
cargo) causes. The relentless cyclic forces are perhaps one of the most

distinguishing characteristics of the marine structures’ environment.
Design for fatigue reliability has four principal lines.of defense:

1. Minimize stress-strain risers (stress concentrations) and cyclic

straining-stressing through good engineering of the structural
system and its details. This requires a high level of
engineering quality assurance (QA) at the concept-development-

design stage.

2. Minimf;e flaws (misalignments, poor materials, porosity-voids,

etc.) through good, practical material and fabrication
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specifications and practices. This requires a high level of QA
during the development of plans and specifications and during
construction (involving materials selection, fabrication,
transportation and installation). Further, there is a similar
QA program required during operations to properly maintain the

system.

3. Minimize degradation at the local element through selection of
good materials and fabrication practices, and good engineering
designs (e.g. crack stoppers, damage, localizer, and repairable
elements). This requires a recognition that when (not if)
fatigue degradation occurs, all reasonable precautions are taken
to restrict its development and effects. Note, again QA plays a
key role, particularly during operations to disclose the

presence of fatigue degradation (early warning). -

4. Minimize deqradation at the system level so that when (not if)
local fatigue degradation occurs, there are no significant
effects on the system’s ability to perform satisfactorily. Here
good fatigue design requires system robustness (redundancy,
ductility, capacity) and system QA, Inspections and monitoring
to disclose global system degradation are another strategy to

minimize potential fatigue effects.

The purpose of this discussion has been to outline the major factors and
the complex interpiay of these factors in determining fatigue
reliability. Cyclic strains, material characteristics, engineering
design, specifications, and life-cycle QA (inspections, monitoring) are
all parts of the fatigue equation. This is the engineering equation of

"fail safe design" -- fatigue may occur, but the structure can continue
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to function until the fatigue symptoms are detected and repairs are made.
The alternative is "safe life design" - no significant degradation will
occur and no repairs will be necessary. Safe life designs are difficult
to realize in many long-life marine structures or elements of these

structures.

Uncertainties and variabilities are present in each of the parts, and
thus, reliability methods can play an important role in assisting the

engineer to achieve fatigue reliable-durable structural systems.
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9.2 FATIGUE ANALYSIS

A fatigue analysis can be organized into five basic components:

1. Characterize the life-cycle (short term and long term) cyclic

conditions.

2. Determine the cyclic forces imposed on or induced in the

structure (system).

3. Evaluate the cyclic strains-stresses developed in the element

(detail) of concern.

4. Determine the degradation in strength and stiffness (damage of

the element (detail) caused by the cyclic strains-stresses).

5. Given the fatigue damage, evaluate the acceptability of the

element (detail) performance.

In development of the following simplified fatigue design procedures
[a.1], it will be assumed that waves are the source of cyclic forces. It
will be assumed that the long-term (e.g. T = 100 years) wave height
distribution can be represented by Weibull distribution (Figure 3.1).

For storms, the cumulative distribution function [CDF = Fy(X)] of wave
heights (h) is:

- R\ (9.1)
Fy(h) = 1~-exp —(}'{_) InN,
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For non-storm conditions, the CDF is:

O\ (9.2)
Fy(h) = 1l-exp -(ﬁ-) InN,

The structural detail fatigue stress range (peak to peak) (Sf) will be

taken to be a function of the wave height:

S, = CH® (9.3)

Next, the number of cycles to "failure" (N) of the detail subjected to a
cyclic stress range (Sf) will be taken as (Figure 9.2)* [9.2]:

N = Ks;" (9.4)

Accumulation of fatigue damage (D) will be assumed to be described by a

linear damage accumulation rule (Palmgren-Miner):

n(s ) (9.5)
b= ZN(-S/()

*Footnote:

Log N = Log K - m Leg SF
and, Sf = (K/N)1/m
and, N =K Sg™M
m = negative slope of $-N curve

Log K = 1ife intercept of S-N curve
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Where

n{Sfi) = number of stress cycles at stress fi

N(S¢j) = -number of cycles to failure at stress fi.

The summation is overall stresses, Sfj, experienced by the structural

detail. When D = 1, failure is presumed to occur.

Fatigue damage (D) accumulated over the 1ife (T) of the detail can be
computed from the following equation [9.1]:

TC™ (9.6)
D, = “K_(Yo"'yl)
Where

"% - 9.7

No o n o (9.7)

Yo = = H, (11_1N°) rii-2=
m (9.8
N] Tn _‘-l- an ( )

-(-) = Gamma function

Now, let the design accumulated damage be limited to a fraction of the

life damage:

220

232



D, (9.9)

or the design service life (Tg) be:
T, = (F,)'T (9.10)
where

Fsf = fatigue life or damage Factor of Safety (commonly in
the range of 2 to 3).

The fatigue design stress (Sf¢p) will be related to the fatigue design
wave height (Hgp) as before:

S}D - CHC;D (9.11)
Thus,
i (9.12)
s KHp
P T (Yo+Y))

Based on an Hep = 70 feet,* the long-term wave height distribution in
Figure 9.1, and the API-X S-N curve (weld without profile control, Figure
9.2), S¢p can be computed as functions of Tg and « (Figure9.3) [ 91].

Note:

Use an Hep close to extreme condition design wave height, e.g. 100-year
height.
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For example, for a detail life of 25 years and a factor-of-safety of 2
(T = 50 years), and a wave height exponent (a) of 1.0, the design stress
range is indicated to be 65 ksi. For a detail stress concentration
factor (SCF) of 3, this would equate to a nominal allowable design stress
of 22 ksi (based on API X S-BN curves, Figure 9.2). For an a = 1.5, the
design stress range would increase to 150 ksi. For an SCF = 3, the
nominal stress range would be 50 ksi.

In design practice, it is often useful to state the design stress range,
S¢p» as a peak stress value, Spp. This can be accomplished by defining a
stress ratio, R, that is the ratio of the minimum stress, Spip, to the

maximum stress, Smayx for the design wave height, Hgp. Thus:

S 9.13)

Sro (1-R)

The values of R will be structure dependent. For conventional

template-type, shallow water platforms, R is typically close to -0.33.

-
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9.3 RELIABILITY MODELS

Based on a fatigue analysis as outlined in the previous section, the

principal sources of uncertainty can be organized as follows:

1. S-N relationship (Eq. 9.4, Figure 9.2)

2. D-N relationship (Eq. 9.5)

3. S-H relationship (Eq. 9.3)

H-N relationship (Egs. 9.1, 9.2)

S-SCF relationship

Dp-DL (or Lp-L) relationship (Egs. 9.9, 9.10)

Other factors such as corrosion and cathodic protection

~ o vt
L . . .

Additiona]ldetails on these sources of uncertainty are given in Table 9.1
[9.3]. There are many sources of complexly interrelated uncertainties
and variabilities. It is the primary purpose of a fatigue reliability
analysis to logically organize these sources, and then to quantitativély
~ evaluate them to determine what factors-of-safety (e.g. Eqs. 9.9 and
9.10) (alternatively, levels of reliability) should be employed in a

given design-analysis framework.

Wirsching [9.3, 9.4] has made extensive fatigue re]iability studies for
fixed offshore structures. Munse [9.5] has made similar studies for ship
structures. Recently, Wirsching and Chen [9.6] have summarized and
contrasted results of these two studies. The following discussion will

be based on these developments.

Alternative methods for computing fatigue damage are summarized in Figure
9.4 [9.3]. Table 9.2 [9.3] summarizes the alternative analytical

expression for computing fatigue damage at a joint (detail).
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TABLE §.1

A SUMMARY OF FACTORS AND CONSIDERATIONS
RELATED TO FATIGUE IN WELDED JOINTS OF OFFSHORE PLATFORMS

FATIGUE BEHAVIOR OF WELDED JOINTS
® Definition of fatique faflure in S-N data
@ Size effect in 5-N data
® Effect of weld profile
¢ Effect of corrosion and cathodic protection
@ Assumption of a linear mode) and lognormal distribution for N
® Classification of joint on the basis of geometry rather than load pattern
® Relationship between stress at joint and stress used to obtain S-N curve
@ [gnoring possible stress endurance in 5-N curve
® Comatibility of determination of hot spot stress with S-N curve
MANUFACTURING COMSIOERATIONS
@ Fabrication uncertainties =
@ Requirements on weld contours not met
DEFINITION OF THE ENVIRONMENT
® Use of full scatter diagram of "S - To
® Variatioas in TD
® I occurrence estimates
@ Mave directionality
® Interaction of Waves and Currents
® Theoretical model used for ocean waves
HYDRODYNAMIC LOADS ON STRUCTURE
@ [nertia and Drag Coefficient
® Directional wave spectra which accounts for wave spreading
® Marine growth
@ Sheltering effects
STRUCTURAL RESPONSE TO HYDRODYNAMIC LOADS
® Assumptions made in spectral analysis

2. linear response during transfer function development
b. linearization of drag term
c. at jofnts, 1. No flexibility
11, effect of can
111, center to center coordinates
d. Soil stiffness in Oynamic Model
e. Damping effects {n structural response
f. Dynamic response not accounted for in analysis

FATIGUE STRESSES AT JOINT
@ Method of analysis to evaluate stress concentration factors {SCF)
® Parametric equations used for SCF

® Point at fntersection where failure oceurs
FATIGUE QAMAGE EQUATIONS

® Assumption of Miner's Rule
® Assumption of narvow band damage equation in spectral approach

® Assumption of Weibull distribution f
approach or stress ranges fn stress distribution

OTHER CONSIDERATIONS
® Errors by designers

@ Bad judgement during towing and installation
® In service loads
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FIG.9.4 CLASSIFICATION OF FOUR BASIC METHODS OF COMPUTING FATIGUE DAMAGE
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TABLE 9.2

A SUMMARY OF EXPRESSIONS FOR FATIGUE DAMAGE JOINT

FATIGUE DAMAGE AT TIME T,
D = T8"2/K
m,K = parameters from S-N curve

B

factor to account for uncertainties in estimating fatigue
stresses from oceanographic data

= stress parameter

STRESS PARAMETER USING VARIOUS APPROACHES TO THE STRESS DISTRIBUTION

Wave Exceedance Diagram (Deterministic Method) .

- m
2 fogcisi

f° = average frequency of stresses

Si = stress range

§; = fraction of total stress ranges that Si is acting

Spectral Method (Probabilistic Method)
R = A(m)(2/2)"1(F ¢ Mgy fo,”
A(m) = rainflow correction
r(-) = gamma function

th

= fraction of time in i~ seastate

-t
e
I

th

-
.
]

frequency of wave loading in the i~ seastate

RMS of stress process in the it! seastate

Q
e
L]

Weibull Model for Stress Ranges
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Wirsching’s reliability analysis has been cast in a lognormal format in
which the random variables are assumed to have lognormal distributions.
The time for fatigue failure (T) is expressed as a function of the
accumulated damage (D = 4), the S-N curve parameters (K, m, Eq. 9.4), a
stress range model error parameter (B = actual/computed stress range),

and a stress range parameter (2, Table 9.2):

AK (9.14)
B™0

T =

The probability of a fatigue failure (Pg) is taken as:

P, = P[TST,] | (9.15)
where P[-] is the COF of T, and Tg is the service life.

P, = &(-B) (9.16)

where #(-) = standard Normal distribution function and g is the Safety
Index:

InT/T, (9.17)

Ot

where

T+ = median value of T, and

*Note: X will be taken as the median (50th percentile)
value of the parameter x.
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4K (9.18)

UlnT - [ll‘l(l+C§)(1+C§—)(1+C§)mz]”2 (9-19)

in which the C’s are the Coefficients of Variation (COV = C) of each
variable.

Uncertainty in the stress ranges (S) is expressed through the stress

range model error parameter (B). The errors are attributed to:

1. Fabrication and assembly (BM)

2. Seastate characterization (Bg)

3. Wave load predictions (Bf)

4. Determination of member loads (BN)

5. Estimation of gyress concentration factors (By)
Thus,

B = B, Bs-B; By By | (9.20)

and

(9.21)

for 1 = M, S, F, N, H.
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Tables 9.3 and 9.4 summarize the statistical estimates on the B
components and K, B and 4 random variables, respectively. At the bottom
of Table 4, note the range of Safety Index implied by API’s RP 2A design

wave peak stress rule (limits nominal brace stress to 60 ksi).

Munse’s fatigue reliability analysis [9.5, 9.7] has been based on a two
parameter Weibull distribution of stresses (S) and cycles (N) (Figure
9.5).

[ s\ (9.22)
Fy(s) = P(S<s) = l-exp -(5)

where
¢ = Weibull distribution shape parameter
& = Weibull distribution scale parameter

Defining a design stress (Sp) such that this value is exceeded on an

average once every Ny times:

_1 (9.23)
6= S,[InN,] "

Nt* is the total number of cycles in the service life T. Thus,

s \° (9.24)
F,(s) = l—exp[-(g—)lnNT]

m

*Note: N7 =" Tg fo = Service Life x Average Stress Frequency
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TABLE 9.3

SUMMARY OF BIAS AND COEFFICIENT
OF VARIATION OF COMPONENTS OF B

—_—,,—,—_—_——— e e e e

Random variables representing sources

of uncentainty in fatigue stress estimates Bias" cov®
(1) (2) (3)
Bu 0.90-1.30% 0.10-0.30%
B 0.60°~1.20 0.40%-0.60°
Br 0.60~1.10 0.10-0.30
Bx 0.80-1.10 0.20-0.40%
By 0.80%-1.20 0.10-0.50%

‘Bias = actual load or stress/load or stress estimated by current analysis pro-
cedure; for each B;, the bias can be interpreted as the median value B,.
*COV = Vexp (¢7) — 1, in which ¢ = In (Xu/X,)/6; and Xy and X, = upper
and lower limits of X.
“Bs = By- Bp = (0.9)(0.7) = 0.60 in which P = percent occurrence of each seas-
tate; and D = directionality.
“This relatively large figure, which dominates C,, is due to the sensitivity of
. the dynamic response to small variations in Tp . The figure of 0.40 is due to this
effect only. I
*This figure was obtained by Eq.218 by assuming ‘“maximum” COV’s of 0.4
for dynamic response, and 0.3 each for directionality and percent occurrence ef-
fects. The resulting figure of 0.60 is considered to be the largest reasonable value.
‘This bias occurs when wave spreading is not considered in the development
of the response spectra.
‘These extreme values should be used only when supporting evidence exists.
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TABLE 9.4

EVALUATION OF SAFETY INDEX, B

IMPLIED BY API RP2A DESIGN WAVE PEAK STRESS RULE

USING DIFFERENT DATA SETS

_—_____—*“_;__—___“_____

Data Set
Design factors A B c D E F
() @ | B 4) (5) (6) )
S-N curve, in kips m 14.38" 14.38° [4.42° [3.00° [3.22¢ (3.00'
per square inch K |4.6E12 |4.6E12 [1.55F12 |5.25E10 {1.29E11 {1.46E10
units . ‘ Cx {073 {073 [1.35 0.73 1.25 0.67
Rainflow correction A 1079 1079 1079 |0.86 0.85- |0.86
Damage ratio A |1.00 |1.00 (1.00 |1.00 [1.00 1.00
C. {030 [0.30 030 [0.30 0.30 0.30
Stress modeling B |o0.80 [0.70' |0.70° [0.70' 0.70f  |0.70f
error Cy 017 ]0.50 (0.50 ]0.50 |0.50 0.50
Average frequency, f,,
in hertz 0.25 |0.25 (025 |0.25 0.25 0.25
Safety index implied by#* ' '
RP2A design wave peak
stress rule (60 ksi rule), g [5.34" |2.78 |2.09 [2.62 2.57 1.83

*Data from Commentary of API RP24, p. 81, Fig. C2.5.3-2.
*AWS-X data, elastic range only. )
‘T and K joint data provided by member of Technical Advisory Committee
“T and K joint data: an “improved” version of data set D. _
*Values provided by member of Technical Advisory Committee. Value of C,

now thought to be low.

‘Values provided by member

.

of Technical Adv@w Committee. Numbers are

now considered reasonable for “worst case” analysis in which wave spreading
and wave directionality are not considered.
*As computed by solving for B, in Eq. 7.16 |
“Relatively high value due to small value of C,. See superscript e above.
‘The ‘“T-curve” from UK DOE RULES
Note: For a 20-year life, Sg = 53.2 ksi; £ = 0.69 for 20 year-wave. (Same struc-

ture would have S; = 100 ksi and § = 0.57 for 100-year wave climate.)
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Figure 9.5 [9.3] shows this distribution for Ny = 108 cycles. Figure 9.6
[9.7] shows measured long term, low frequency, wave-induced ship hull
girder stresses. Shape parameters (c) in the range of 0.7 to 1.3 model
these data well.

The Weibull shape parameter (c) will depend on a large number of factors
such as wave conditions, type of structure, dynamic response of
structure, position of fatigue detail in the structure. ¢ characterizes
the severity of the fatigue stresses relative to the extreme design
stress. ¢ =1 yields a straight line on a semi-log plot (Figure 2.1),
and ¢ = 2 results in the Rayleigh distribution.

Guidelines for ¢ for platforms in the Gulf of Mexico are given in Figure
9.7 [9.8]. Waterline braces and floating marine structures may have ¢ in
excess of 1.0. Munse reports [9.5] ¢’s in the range of 0.7 to 1.3 for

hull girder stresses in tankers and cargo ships.

Munse’s fatigue reliability model addresses the uncertainty of fatigue
Tife (expressed as COV = Cy) as a function of uncertainties in stress
evaluation (Cg), workmanship in fabrication of the details (Ce), and
fatigue assessment (Cf):

Cy = [C§+1n2C3+C3]“2 (9.25)
where
C, "[3§~+Cia] (9.26)
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and

Csn = COV associated with S-N data

COV associated with Miner’s rule

o
3
2

]

3
$

slope of N-N curve

Based on available fatigue data [9.7], Munse estimates the following
coefficients of variation:

¢ Cogy = 0.862
e Cyp = 0.15
o Cg = 0.10
e Cc = 0.40
o Cy = 0,96

These estimates do not includz any effects due to corrosion. Munse [9.7]
recommends use of a total uncertainty (Cy) of 0.80 until letter values
can be established. Munﬁe’s CN can be directly compared with Wirsching’s
Ck (0.73 to 1.35, Tables 9.1 and 9.4).

Again, assuming Miner’s rule and that D = 1,
(9.27)

E(s™) =

where ¥ is the mean life, and E(SM) is the mean or expected value of SM,

gives the probability of failure (Pf) at the service life (Ng) as:
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where

E(s™) = A(m)S"‘l‘(?+ 1)

(9.28)

(9.29)

Note that the Weibull shape parameter e has been approximated as:

€ = C“-VI.OB

and the scale parameter 6 determined as:

_N_
r(t«1)

€

6 =

where

(9.30)

(9.31)

N = mean life to failure obtained from a least squares analysis

of fatigue data.

As noted in Table 9.2, a correction factor, identified as the rainflow

correction factor a, [9.9] should be applied to the stress parameter

when the Weibull parameters (e.6) are based on an analysis which uses the

assumption of a narrow-band process (Rayleigh) used to describe short

term distributions of wave heights in each of the stationary seastates

composing the long-term distribution. For S-N curve slopes ranging

between m = 3 and m = 4, and short-term seastate spectral widths greater

than 0.5, A, = 0.86 to » = 0.80 [9.3].
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9,4 DESIGN APPLICATIONS - DETAILS

Reliability evaluations of the fatigue design of a structural detail
(joint) can be developed from either the Wirsching lognormal based
distribution of N (Eqs. 9.16 to 9.19) or the Munse Weibull based
distribution of N (Eqs. 9.25 to 9.29).

Using these two approaches, an allowable/design stress range, S¢p, can be
defined based on a Weibull distribution of stresses as [9.5, 9.6]:

Sip = S;VRg (9.32)

where

S¢ = (E)'"" mean stress range for failure at N cycles (9.33)
N

v = mN%<r(1+"€‘)>- (9.34)

= random load factor

R _ PfDC[-vl-OB m
fm r(1+cy°)

= Munse Reliability Factor [9.7]

-

| =

(9.35)

1 (9.36)

1 4 "
Rey = 2| ——
: B[exp(BDolnT)]

= Wirsching Reliability Factor [9.6]
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where Pgq and g, are the design probability of failure and safety index,
respectively.

Ideally, Psq and 3, should be based on considerations of the design
details’ influence on capacity of the structural system, insﬁectabi]ity,
and repairability. Life cycle operations, reliability, and costs should
be optimized.

Munse’s fatigue design process proceeds through six steps:

Step 1 - Establish the expected loading history for the detail to be
designed. This is equivalent to choosing a Weibull distribution
shape parameter, ¢ (Figure 9.5). ¢ commonly ranges from 0.7 to 1.3
[9.7].

Step 2 - Identify the type of detail to be designed. An extensive

summary of typical ship details is given in reference [9.7].

Step 3 - Obtain the mean fatigue stress ranges and slope of the S-N
curve based on the type of details and the design number of cycles

(NT). Based on laboratory tests of typical ship details, reference
[9.7] summarizes Sy and m data.

Step 4 - Compute the random load factor » from Eq. 9.34 based on Nf,
¢ and m.

Step 5 - Compute an appropriate reliability factor, Rgy, from Eq.
9.35 based on an estimate of the COV of fatigue 1ife (e.g. Cy = 0.8)
and desired probability of failure (e.g., Pgp = 10-2).

Step 6 - Determine the design fatigue stress range from Eq. 9.32.
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Wirsching’s [9.3, 9.4] procedure for a fatigue design check proceeds

through six steps:

Step 1 - Define an appropriate value of of the Weibull stress range
shapes parameter ¢ (e.g. Figure 9.,7) for the environment, type of

structure, and detail location.

Step 2 - Define an appropriate stress ratio (R = Spin/Smax. Eq. 9.13)
for the detail.

Step 3 - Define an appropriate S-N curve slope, m (e.g. Figure 9.2)
and then use Figure 9.8 to establish the design stress range,

Sfp = SR, for the desired service life, Tg.

Step 4 - The peak stress value for the detail is computed as
Spp = Sfp/(1-R) (Eq. 9.13).

Step 5 - The fatigue strength can be stated in terms of a nominal
stress by usihg an appropriate stress concentration factor (SCF) or
SPON = Spp/SCF.

Step 6 - The detail (joint) is taken as satisfactory if Sy s spD,
where Sy is the hot spot stress corresponding to the "design wave"
(assumed to be the 100-year wave). Alternatively, SyN S Sppn, where

SmN is the nominal (brace) stress.

Wirsching’s procedure is based on a "code calibration” approach to define
the fatigue design safety index (8,) [9.3, 9.4]. Table 9.5 summarizes
the data and method used to construct the design stress range curves of

Figure 9.8.
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TABLE 9.5

SUMMARY OF THE DATA USED TO ESTABLISH THE
DESIGN STRESS RANGE CURVES OF FIGURE 9.8

Figure 9.8(a) Figure 9.8(b)
m 4.38 3.00
k 4.6E12 5.25E10
Ck .73 0.73
A .79 .86
pi| 1.00 1.0
c, .3 .3
B g 0.7
Cg .5 0.5
Fo (Hz) 0.25 0.25
B, | 2.78 2.62

Method for constructing curves: Consider Data Set B for which the target
safety index is g, = 2.78. Sp for Tg = 100 years is computed directly using
Eq. (a) with 8 = 2.78. The 20-year curve we know must pass through the
reference. From Eq. (a), # = 1.63 for the 100-year wave condition. Using
this g, the 20-year curve is establish from Eq. (a). For g, = 2.78 for a

Ts = 40 years, Eq. (a) fixed SR = 52.4 ksi. This value is scaled to Sg = 78.7
ksi for the 100-year wave. Then corresponding to ¢ = 0.57, Eq. (a) gives g =
2.11 for the 100-year wave. This value of 2 in Eq. (a) is used to construct
the 40-year curve; a # = 2.11 for 100 years ensures & = 2.78 for 40 years,

Eq. (a) is:

LY

AK
AfoT:B™exp(B,01nr)l(2+1)

Splors,,) = [in(f,T,)]
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Based on the fatigue analysis process outlined in Eqs. 9.1 through 9.13,
Geyer and Stahl [9.1] have developed a very useful simplified fatigue
design procedure. The key to this procedure is the use of a uniform
fatigue life criterion (Eqs. 9.9, 9.10).

Based on the API X S-N curve (Figure 9.2, m = 4.38), a deepwater Gulf of
Mexico wave height distribution (Figure 9.1), a design wave height of 70
feet, and a 20-year service life (T) with a factor of safety of 2

(Ts = 40-year design fatigue life), they developed the design fatigue
stress range curves shown in Figure 9.9 as a function of the stress-wave
height exponent, a (Eq. 9.11). For details and structures in which asx
1.2, the Tow-cycle fatigue stresses developed by hurricanes has an
insignificant effect. However, for a2 1.2, the Tow cycle hurricane

stresses can have a major influence on damage.

As an alternative to a design stress range, Wirsching and Chen [9.6] have

formulated the fatigue design as a design damage ratio (Eq. 9.5), 4,:

i (9.37)

A -
? B™exp(Bp0 mr)

The safety check on the computed damage Dy is:

D, £ 4, (9.38)
where
T.0 (9.39)
Po = %
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Using reasonable fatigue reference data for calculation of 4, as a
function of 8., Wirsching and Chen developed Figure 9.10. Then, 5.’s
were chosen depending upon the levels of importance, inspectability, and

repairability of the design details.

It should be realized that in the foregoing design applications, the
design reliability (Safety Index, 8, or probability of failure, Pgp ) has
been targeted to a service life, Tg. For the lognormal formulation (Egq.
9.17), the safety index, 8., for any exposure period, (t) can be
expressed in terms of the design safety index, g, for a service life as:

In(t/T,) (9.40)

Be = Bp——
O a1

For t < Tg, the safety index is much larger than g, (Figure 9.11). This

explains why there is a very low probability of finding fatigue failures

early in the life of a structure (if all has gone well).

This equation also points out how inspections and repairs might be
utilized to maintain the safety index above some value (Figure 9.12).
Inspections can be used to reduce the uncertainties that contribute to‘
gwr (Eq. 9.17), and thus increase #,. Repairs (if effective and well
done) can increase g, by erasing all or a large portion of the cyclic

damage.

The optimum inspection and repair strategy will be a function of the
element’s (detail’s) importancé to the capacity and serviceability of the
system, inspectability, repairability, and costs. The reader is referred
to reference [ 210] for additional details on the roles of quality

assurance and inspections in maintaining fatigue reliability.
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9.5 FATIGUE RELIABILITY - SYSTEMS

Fatigue failure of a detail in a "fail-safe" engineered structure does
not constitute failure of the system (recalling the Introduction to this
Section). Thus, in addition to design of details for fatigue,
consideration must be given to fatigue reliability of the structural
system. The reader is referred to Section VIII for a discussion of

system reliability.

For a system of N identical and independent elements in series (a chain
system), the probability of failure of the system, Pfs,'is related to the
element probability of failure, Pge as:

P = [1-(1-2,)"] (9.41)
or approximately,

F, = NP, (%42

If because of materials, construction, design, or loading, there is a
very high degree of correlation of the strengths of the elements, then

for perfectly correlated (dependent) elements:

Pfs = P!a (9'43)

Thus in a series system, correlation in element strengths has the effect

of reducing the probability of .failure.
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Correlation expresses the degree of dependence (or independence) between
random variables (refer to Section II for a discussion of correlation).

Zero correlation implies independence. Unity correlation implies perfect
dependence.

Correlation is generally expressed by a correlation coefficient, oUV:

cov(u.v) (9.44)
auqay

plUV =

where U and V are two random variables and the o’s are the standard

deviations of these variables. The covariance of U and V, COV(U, V), is:

covu,vY=E[(U-u)(V-u))

where the »’s are the expected values, E['], of the variables. The two
random variables are said to be uncorrelated if o = 0 (independent), and

to be perfectly correlated if » = 1 (dependent).
Cornell [9.11] has suggested a useful approximation for the correlation

coefficient between the probabilities of failure of the system’s

components as:

2 (9.45)
where Vg2 and VR2 are the squared coefficients of variation of the
load(s) and resistance (R), respectively.

If the resistance is the dominant uncertainty, then o tends toward unity
(dependence).
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Figure 9.13 [9.12] shows the Safety Indices for series systems, g5:, as a
function of the correlation coefficient, the number of elements (N), and
the element safety index 3, (assuming normal distributed strengths and
equally correlated elements). For the high reliability elements

(8. = 3), the system safety index is approximately equal to the value
based on zero correlation (Eqs. 9.41 and 9.42) for o < 0.8. For high
degrees of correlation (0 > 0.8), there is a small correction to the

element safety index to determine the system safety index.

For the fatigue reliability of a series system, the design probability of
failure of the N elements which compose the system (Pgop) can be
reasonably and realistically related to the system design probability of
failure (Pfgp) as:

PfsD (9.46)

Such an approach has been used in developing fatigue design criteria for
the connector elements of a tendon system for a Tension Leg Platform
(TLP) [9.13].

In the case of a parallel member system, the problem is much more
complex. Martindale and Wirsching [9.14] and Stahl and Geyer [9.15] have
studied the progressive fatigue characteristics of such systems. Typical
results for a system comprising parallel brittle members (g, = 3.0)

(2 joints per member) and a correlation in element f&tigue lives of

32 percent is shown in Figure 9.14. The three curves are for:
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a. First member failure
b. 50 percent member failure (50 percent loss in capacity)
c. 100 percent member failure (100 percent loss in capacity).

Only in the case of >50 percent member failure is there a beneficial

influence from adding parallel elements.

The effect of adding joints to the parallel elements for the condition of
100 percent member failure is summarized in Figure ¥.15 (based on results
from [9.15]). The ratio of system to element safety indices (8:/8.) is
for correlations of 30 to 60 percent, 1 to 4 parallel elements, and 2 to
16 joints per parallel members. 'Adding joints to the parallel members
swamps out much of the beneficial effects of redundancy, and the system
behaves much more like a series system (Figure 9.15). For example, for
an element correlation of 50 percent, Figure 9.15 indicates that for a
system of 10 elements (joints) in series, the g;/8, ratio is 0.5 and 0.75
for 4, = 2 and 3, respectively. Referring to Figure9 .13 for the same
number of joints per member, g;/8, = 0.5 to 0.6 and 0.75 to‘0.80 for

B, = 2 and 3, respectively,

Given a target reliability for design of the system (8s,), Figures 9.13
" and 9.15 could be used to define the target reliability for the
individual elements (B..).

Reliability based methods for analyses of complex structural systems are
being developed [9.11, 9.16], and these methods are being extended to
considerations of inspections and repairs [9.16, 9.17, 9.18]. The reader

is referred to the cited references for these research developments.
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19. APPLICATIONS TO SHIPS AND MARINE STRUCTURES

0.1 Long- and Short-Term Procedures:

Two types of analyses may be used for assessing a vessel
strength under extreme load; short-term and long-term analyses. At
the design stage, if one knows the route of the ship and and if that
route is more or less permanent, then the probability of failure can
be predicted using long-term analysis. If on the other hand the
route of the ship is not defined, then the short-term analysis can be
used to obtain the probability of failure under one or more
conditions that are considered to be the severest the ship may
encounter during its lifetime. An example of this situation are the
design conditions checked in the ASR catamaran by Lankford [10.1]:

(a) "One year of continuous service in average North Atlantic
weather."

(b) "Six months at a position in the North Atlantic where the
worst weather for this period of time would normally be
expected."

(c) "Two months on station in the worst area and the worst
season in the North Atlantic."

A more simple short-term analysis criterion is to consider the
single most severe sea condition (or a sea condition with a specified
return period) and subject the vessel to this condition for a specified
period of time.

These two methods, short- and long-term analyses, will
naturally produce different final results for the safety margins and
therefore care must be takem when comparing safety margins of
different ships, i.e., the method and criterion used in predicting the
loads acting on the ship will have a considerable impact on the
resulting safety index.
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To further amplify on this point, the long-term distribution of
the wave loads acting on a ship may be determined by tracing the
expected route of the ship during its lifetime. Based on ocean wave
statistics along that route, the long-term wave load probability
distribution (usually taken as Weibull or exponmential distribution) for
the entire history may be determined. Any lack or deficiency of data
on wave statistics over a period of time covering the ship life should
be corrected for. In the short-term analysis, a distribution of the
extreme load is predicted on the basis of criteria such as one
occurrence in a lifetime, one extreme sea storm of a specific duration
or a short-term operation in a specific location under severe sea
conditions.  For that purpose, one of the extreme wave load
distributions discussed under "Prediction of Extreme Wave Loads" in
Chapter II is used.

It should be noted that there is a fundamental difference
between computed results based on these two avenues. In the
short-term analysis, the computed probabilities of failure are
conditional probabilities given the occurrence of an extreme wave
load per a selected criterion. Care must be taken in this case in
determining the response of the ship to this extreme load since non-
linearities may play an important role. In the long-term analysis,
however, the resulting probabilities of failure are associated with the

entire history of the expected load acting on a ship during its
lifetime.

A. Procedure for long-term analysis

The following procedure may be used for calculating the
probability of failure during the ship's operational lifetime.

1. Define the mission profile for the ship that includes
estimates of
a. ship route
b. expected total years of service
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c. Number of days per year the ship is expected to be
at port and underway

d. Nominal cruising speed and maximum speed and
the corresponding fraction of time during operation.

2. From the ship route and available wave statistics such as
in reference [1Q2], obtain the frequency of occurrence of
different sea conditions the ship will encounter in each of the
geographic areasl! .

3. From step 2 above and the mission profile of the ship
(more specifically from expected number of days in each
geographic area), determine the total frequency of

encountering different sea conditions.

4, Determine the root-mean-square value )’E- (rms) of the
wave bending moment in each sea condition. First, the
response amplitude operator, RAO, has to be determined either
from available strip-theory (seakeeping) program or from
model experiment. The rms values can then be obtained using
the determined RAO in conjunction with existing sea spectra
such as Pierson-Moskowitz §03]. These programs usually give
the value of the stillwater bending moment also.

5. From the total frequency of encountefing different sea
conditions (step 3) and the rms values of the wave bending

moment in each sea condition, determine the average wave
bending moment A.

11 In almost all the main areas where ships operate, statistical data
concerning wave heights and periods have been observed and
tabulated. The surface of the earth is divided into a grid of ten-
degree squares known as Marsden squares. These squares are
arranged into geographic areas over which wave conditions are fairly
uniform. The areas are given a code number; see, for example
reference [L0.2].
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6. Estimate the strength parameters (mean p and standard
deviation ¢ or the coefficient of variation) including the
objective and subjective uncertainties. Each failure mode will
have its corresponding pu and o.

7. Calculate the probabilities of failure in the different
modesl2  (that is, yielding or buckling at different locations) in
sagging and in hogging. Combine to get the total probability of
failure.

A block diagram of the foregoing procedure is given in Figure 9.1.

B. Procedure for short-term analysis

The following procedure may be applied in the short-term
analysis.

1. From the assumed design criteria and ocean wave
statistics, calculate the frequency of operation in different sea
conditions.

2. Calculate the rms value of the wave bending moment in
each sea condition using either strip-theory approach [0.4,10.7]
or towing tank experiment results in conjunction with available
sea spectra. Calculate also the stillwater bending moment.

3. Estimate the strength parameters (u and ¢) for each
failure mode.

12 The probability of failure in the different modes can be calculated
using equation (4.35) if the stillwater bending moment is considered
deterministic or from equation (4.38 or 4.41), if it is considered as a
random variable. In the former case, if desired, different values of

the stillwater bending moment could be used with an estimate of the
corresponding fraction of time.
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4. Calculate the probabilities of failure in each sea condition,
ie.,

P [ R < 1/ith sea condition ]
5.  The total probability of failure is thus

Py = Z P[RS 1/ ith sea condition ] p(i)
1
where p(i) = probability of operation in the ith sea condition as
determined from step 1.

A block diagram of the above procedure is given in Figure 102,

If only onme storm condition (with a certain return period) is
specified in the short-term analysis, then only the probability of
failure in that condition needs to be calculated. This probability is
thus a conditional probability given that the vessel encounters the
specified sea condition, and, is expected to be larger than the long-
term or life probability of failure.

In general, long-term analysis requires much more information
and computational effort than the short-term analysis. Long-term
analysis is, however, necessary if fatigue failure is considered since
the entire history of loading should be included. On the other hand,
failure under an extreme load can be more easily estimated using
short-term analysis.

10.2 Application Examples:

10.2.1. Short-term analysis - Level 3 Reliability

In this example, we will evaluate the probability of exceeding
any limit state of a ship during a specified storm condition. The limit
state can be an initial yield limit state, an initial buckling limit state,
the ultimate strength limit state, or any other condition desired to be
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evaluated. The duration of the presence of the ship in the storm is
limited by the stationarity condition to a short period of time.

Consider now a tanker of length = 763 ft, breadth =125 ft, and
depth = 54.5 ft. We will evaluate the probabilities of exceeding the
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Figure 10.1. Long-Term Procedure
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Figurel0.2, Short-Term Procedure.
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initial yield limit state and the ultimate strength limit state in a
storm condition specified by a significant wave height of 29.0 ft and
an average wave period of 10.1 sec. The storm is assumed to be
stationary under these conditions for a period of one hour. The
following parameters were computed for the tanker using a typical
ship motion program:

669,037 ft-ton

(considered deterministic)
Rms of the wave moment iﬁo— = 216,450 ft-ton
Average wave moment period = 12.1 sec
Bandwidth parameter of wave moment spectral density & = 0.337

Stillwater moment (full load) mg

Number of moment peaks (in one hour) N = 60.X 60 = 2975
12.1

The mean and standard deviation of the initial yield limit state
were computed to be ur = 2,420,488 fi-ton and or = 314,663 ft-ton,
respectively. The corresponding values for the ultimate limit state
were computed to be pr = 2,804,760 ft-ton and or = 392,666 ft-ton.
The mean of the initial yield limit state was simply combuted as the
minimum section modulus of the hull amidship multiplied by the
average yield stress. The mean of the ultimate strength was
computed using "USAS,” an elaborate nonlinear finite-element
program (see f105]).

Using order statistics and the determined values of yfm_ , €, and
N, the expected maximum wave bending moment in N peaks is
computed from equation (2.57), to be 763,859 ft-ton. If one assumes
an ideal narrow-band case, such as & = O instead of 0.337, one

obtains, using equation (2:57) again, the slightly more conservative
value of 767,543 ft-ton. That is, the error due to the assumption of ¢
= 0 is less than 0.5 percent.

Equation (2.58) may be used to compute the extreme wave
bending moment with probability of exceedence a. For example, the
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value of the extreme wave moment with a probability of exceedence
« = 0.0001 in the given storm condition is computed to be 1,086,685
ft-ton.

A semiprobabilistic factor of safety may be defined as the
resistance mean Wr divided by the sum of the stillwater bending
moment and the maximum expected wave bending moment as given
by (2.57). The computed values of this factor of safety in the given
storm condition are 1.69 and 1.96 with respect to the initial yield
and ultimate strength, respectively.

Finally, the probability of exceeding a limit state pf, which
combines all the given information on the ship and the storm
condition, is computed using the basic reliability equation for a
normally distributed strength (see equation (4.5)).

1 Z = My }2
- 1 ® T T2 o
Pe =1 - oo F, (z) e r dz
£ a \121: Lﬂ ZN .1)

where FZN (z) is the extreme total bending moment (stillwater plus
extreme wave bending moment). Several distributions can be used
for FZy  as discussed earlier in the section entitled "Prediction of
Extreme Wave Load" in Chapter II. We will use FZy (2) as predicted
from order statistics given by equation (2.54) with Rice distribution
given by equation (2.38) as the initial distribution. In the latter
equation, mg , the stillwater moment is added . Substitution of these
equations in (@0.1) and carrying out the integration numerically we
obtain the following values for the initial yield and ultimate strength
limit states:

1.19 X 10-3
3.13 X 10-4

pf (initial yield)
pf (ultimate strength)

H

In order to examine the effect of the sea state on these
probabilities, a storm condition characterized by significant wave
height of 38.75 ft. and average wave period of 11.5 sec is considered
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next. The ship motion program computed values for the rms wave
moment ymg , the bandwidth parameter €, and the average period of
the wave moment are, respectively, 2.863 X 10” ft-tons, 0.364, and
13.0 sec. It should be noted that the rms value of the moment is on
the conservative side because of the linearity assumption. The
number of wave moment peaks in one hour is thus 276.9. Based on
these values and the resistance parameters given previously, the
following probabilities of exceeding the limit states where
determined:

pf (initial yield) 1.23 X 10-2
pf (ultimate strength) =  2.73 X 10-3

It is interesting to note that when pf for the ultimate strength
case was recomputed using equation (2.60), which is based on
asymptotic distribution instead of order statistics distribution, a
value of pf = 3.14 X 10-3 was determined (compared with 2.73 X
10-3 based on order statistics distribution). As expected, equation

(2.60) gives an upper bound on pf and its accuracy should increase
as N—oeo,

It should be noted that the computed probabilities given in this
example are conditional probabilities given that the ship encounters
a specified storm for a specified length of time. They are
fundamentally different from those calculated by constructing the
long-term distribution of the wave moment along the ship route
during its lifetime (see [10.6]). The elaborate procedure in this latter
case produced unconditional lifetime probabilities of failure.

The main advantage, however, of the presented storm-based
procedure is its simplicity and consistency. From the environmental
data along the ship route (or structure location), a design storm
condition can be postulated and the probabilities of exceedence can
be immediately determined from the simple results given
previously.
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The procedure can be used to determine the average
probability of failure (or exceedence of a limit state) during the
entire duration of a storm rather than just the severest one-hour
period of the storm. In this case, a simulation of the storm condition
during successive short intervals of time (say one hour each) is
necessary.  During each interval, the waves are assumed to be
stationary and may be represented by a pair of significant wave
heights and average wave periods. The rms values 7’513 of the wave
bending moment can be calculated for each pair and the
corresponding probabilities pf are determined from (1Q1). The
average probability of exceeding a limit state during the entire storm
duration is then

where fj is the frequency of occurrence of the ith pair of significant
wave heights and average wave periods, and n is the number of
stationary short intervals during the storm.

The important high-frequency moments which may increase
the bandwidth parameter are due to either springing or slamming.
It is unlikely that springing moment is of any appreciable value in
high sea states where wave periods are typically large. Therefore
any increase in the wave moment rms value fm_o will be negligibly .
small. Slamming, however, may have some effect on the rms value
of the wave moment for small ships. It may be combined with the
wave moment to obtain a total rms value using, for example, a
procedure developed in {10.8]. It should be noted, however, that the
‘underlying combined process of the wave and slamming moments is
notmgeneral Gaussian except in one limiting case when slamming
decay rates are negligible in comparison with the mean slamming
rate.
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Equation (0.1) which gives the probability of failure has been
plotted as a function of non-dimensional variables for the case of
FZy (2) estimated from order statistics with Raleigh distribution as the
initial distribution (i.e., Rice distribution with e = 0). This
approximation leads to conservative estimates of the probability of
failure as discussed earlier.  Figure 10.3,10.4,10.5,10.6 and 10.7 show the
value of pf as a function of o*=_¢_,N and W'=pr-mg .

= .

As an example of the approximation involved, the probability of
failure computed from these figures for the initial yield limit state
and the second storm condition (significant wave height 38.75 ft.) of
the above example (with € = 0) is 1.40x 10-2 compared to pf = 1.23 x
10-2 obtained earlier. These figures thus will give slightly more
conservative values for pf but eliminate the necessity of numerical
integration.
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10.2.2, -- Level 3 Reliability Based on Four Different Extreme
Distributions.

Short-term Analysis:

The impact on the probability of failure of the different
extreme value distributions of wave bending moment discussed
earlier in Chapter 2 will be examined in this example. The
distribution function Fz" (z) in equation @Q1) will be substituted for,
using equations (2.56) ; (2.60); (2.70) and (2.71) in order to
obtain pf based on order statistics, type I asymptotic distribution,
upcrossing analysis and a two state description of the random
process. The tanker cited in example 1 is used again with bending
moment parameters (the second storm condition) given by:

669,037 ft-tons /mo

276.9 . q = 0.35

mg

286,300 ft-tons

i

N

The ultimate limit state was considered (ur = 2,804,760 ft-tons
and or = 392,666 ft-tons). The results of the probabilify of failure
are shown in figurel0.8 and table10.1. As expected the probability of
failure based on the asymptotic distribution is higher than the rest
and, in general, the agreement between the other three distributions
is very good. '
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TABLE 0.4 PROBABILITY OF FAILURE ACCORDING TO

FOUR DISTRIBUTIONS
Two-State
N  Qrder Statistics Asymptotic Dist. Up-crossing Description
Type 1 Analysis (q=0.35)

10 0.284183 x 10~7 0.711313 x 1077  0.280864 x 1077  0.268484 x 103
20 0.486767 x 1077 0.856830 x 1072  0.483547 x 1072  0.463766 x 103
30 0.655854 x 10~ 0.101578 x 1072  0.652819 x 1072  0.627937 x 10~3
50 0.804382 x 10™3  0.116312 x 1072 0.801514 x 1073 0.772696 x 1073
50 0.938461 x 1070 0.129867 x 1072 0.935738 x 102 0.903715 x 10~3
60 0.106161 x 1072  0.1L2424 x 1072  0,105901 x 1072  0.102426 x 1072
70 0.117608 x 1072 0.154149 x 1072 0.117359 x 1072 0.113652 x 102
80  0.128%k x 10™°  0.165174% x 1072 0.128105 x 10™2  0.124191 x 102
90  0.138483 x 107¢ 0.175600 x 1072  0.138252 x 1072  0.134154 x 1072
100  0.148109 x 1072  0.185508 x 1072  0.147887 x 1072 0.143621 x 1072
110 0.157291 x 10”2  0.194963 x 10™%  0.157075 x 10™%  0.152656 x 1072
120 0.166080 x 1072  0.204017 x 107°  0.165871 x 1072  0.161312 x 1072
130 0.174522 x 10”2  0.212713 x 10™%  0.174318 x 1072 0.169629 x 1072
140 0.182651 x 107%  0.221087 x 10™%  0.182452 x 107%  0.177642 x 1072
150  0.190496 x 1072  0.229169 x 10™2  0.190303 x 10™2  0.185380 x 1072
160  0.198085 x 10”2 0.236985 x 1072  0,197897 x 1072 .192867 x 1072
170 0.205438 x 1072 0.244558 x 10 0,20525 x 1072  0.200124 x 1072
180  0.212576 x 107°  0.251906 x 10™2  0.212395 x 10™2  0.207170 x 10~2
190 0.219513 x 1072 0.259047 x 1072 0.219336 x 10"  0.214021 x 1072
200 0.226264 x 107° 0.265996 x 107 0.226092 x 10°%  0.220691 x 1072
210 0.23284 x 1072 0.272766 x 102 0.23267% x 1072 0.227192 x 1072
220  0.239262 x 1072 0.279369 x 1072 0.239096 x 102  0.233536 x 1072
230 0.245529 x 102  0.285615 x 1072 0.245366 x 10°2  0.239731 x 1072
240 0.251654 x 1072 0.292114 x 1072 0.251494 x 1072 0.245788 x 1072
T T T S
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10.2.3. ~e Comparison of Level 2 and Level 3 - Effect of
Correlation Between Wave and Stillwater Bending
Moments.

Long-Term Analysis:

This example consists of two parts. In the first part we will
discuss a long-term procedure applied to the ship used in the
previous example. A comparison will be made between Level 3
(exact) and Level 2 (approx.) methods of reliability analysis. In the
second part of the example we will examine the effect of correlations
between the stillwater and wave bending moments on the
probability of failure using again a long-term analysis.

The ship is assumed to have the following mission profile,

a) ship life = 20 years
b) ship in port 65 days/yr. and underway 300 days/hr.
c) ship route: Marsden square numbers, 1, 2, 4, 12,

21, 23, 25, 30, 31 (see Figure 5.3)
d) time proportions in Marsden squares: 2, 2,1, 1,1, 1, 1, 1, 1

The frequency of occurrence of different sea conditions
specified by the significant wave height is calculated in each
geographic area. For the ship, frequency of encountering the
different sea states during the operational lifetime is obtained using
such information in conjunction with (a), (b), (¢) and (d), and is
shown in Table10.2. |

To calculate the number of wave bending moment (or, wave
peaks (N)) the ship will encounter throughout her life, at different
sea states, first we calculate the average wave period at different sea
states from. wave data (Ref.10.2) as shown in Table10.2. The ratio of
number of days the ship spends in a particular sea state and average
period of waves in that sea state gives the number of peaks. Such
results are also shown in the same table.
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The root mean square of the WBM ( jmo ) in each sea state are
calculated from standard sea-keeping program and are shown in
Table10.3. In the same table the scale and location parameters MNL

and UN; of the asymptotic distribution as calculated from equations
(2.65) and (2.64) are shown (e = 0).

The SWBM is assumed deterministic and all variables are
assumed independent. The complete problem reduces to calculation
of B (or, pf) for the performance function

gx) = R-M;-Mw

R ~  Normal (2420488,314663) ft-ton (strength)
Mg ~ - Deterministic = 669037 ft-ton (stillwater)
Mw ~ Extreme Value 1 ( a“;,u_m.)(wave)

In the exact method the probabilities of failure pj for each sea
state 't' are calculated by numerical integration of the equation:

EN
-a, (m=M_-u.) 1 m=p
S T S I exp{-e N s Np . 5 ( = )} dm

: o 421 e r

The results are shown in Table 10.3. Similar calculations were
done by the advanced Level 2 method and are also shown in the
same table. The lifetime probability of failure (exceedence of the
initial yield limit state) can now be calculated from,

Pr = Z Py f; (0.2)
A |

where fj is the frequency of occurrence of such sea state. In our
application example, the results are, -

pf exact =  5.2268 x 10-3  (Level 3)
Pf approx. 47851 x 103  (Level 2)
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In the second part of this example the SWBM is assumed to be
non-deterministic and correlated to the WBM. Only Level 2 method
was used to find B (or, pf), where,

R ~ Normal (2420488,314663) ft-ton
Ms w Normal (403520,161408) ft-ton
My ~ Extreme Value 1 ( oN; » UNY)

The correlation matrix is:

]
"
©

23

32

To show the effect of such correlation we calculated failure
probabilities for %,; =§,, = 0.0, 0-1, 0-3, 0-5, 0-7, 0-9. The
results are presented in Table10.4 and Figurel0.9.

A comparison of results in Table 10.3 reveals that in our
example. the Level 2 method yielded lower values of failure -
probabilities than those obtained from the exact method. The extent
and direction of difference in results between approximate and exact
method depends on the nature and shape of the nonlinear
transformed failure surface. As an example, let us consider the
failure surface in sea state 10 in the first part of our application
example. For the linear failure surface R-Mg - Mw = 0 in the original
space, one obtains, by transformation, the nonlinear failure surface in
the standard space as,

1 1
(p*Y o )-M_ - { us o In In [ —';(—Ym—;-)-—'

1} =0

@a.3)
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where Yr and Ymy are standard uncorrelated variables of R and Mw
respectively and are expressed as,

104)

-a"( mw-u)

_ g—1 "
Yoo = 8 [ exp { -e }1

@05)

Substituting the appropriate values in equation (@Q3), the
failure surface is obtained as shown in Figure 10.10. The area of the
single shaded region in this figure represents exact failure
probability. On the other hand, area of the double shaded zone on
the failure side of the linearizing tangent line represents the
approximate failure probability according to Level 2. Since the area
of the double shaded zone is less than that of the single shaded
region, the approximate method is seen to give lower values of pf.

Instead of being concave, if the failure surface is convex, such
linearization would have yielded higher values of pf.

While it is attractive to use approximate methods for ease in
calculations, one rhust have an idea of the _failure' surface for the
problem under consideration. The extent of approximation is well -
understood by having this surface drawn. If this surface is highly
nonlinear, first order approximation analysis may yield gross error.
However, for most practical cases, the problem is not very acute and
the approximate method of level 2 would suffice. Also, if the surface
is highly nonlinear, one may use a few linearization points and
express the actual failure probability in terms of bounds.

Results in Table 10.4 and Figure 10.9 show the effect of
correlation between My and Mg. As expected, as the extent of

positive correlation grows, failure probability, too, increases. From
zero correlation to almost full correlation ( P = 0-9), failure
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probability increases by about 25%. Such an increase in the
probability of failure is not considered to be significant and, in fact,
in terms of B, it would be very small. The results indicate, therefore,
that the correlation between the stillwater and wave bending
moments is not important and may be neglected in future analysis.

Sea Sig, Wave Sea State Number of Avg. Wave Number

State Height  Frequency days Period of Peaks
(1) (ft.) (Secs.) (N)
) 7.15 8.d737246 537.40 5.721 8115952
1 7.80 0.1019174 743.00 5.897 10886878
2 9.15 #.1868501 1318.49 6.031 18887375
3 10.49 0.1592058 1160.60 6.555 15289763
4 11.84 8.8970026 787.280 6.987 8745189
5 13.18 8.8710068 517.60 7.253 6165813
6 14.53 0.0449d62 327.40 7.484 3779711
7 15.88 8.0318823 231.89 7.641 2621060
8 17.22 #.4196168 143,00 7.783 1587459
9 18.56 @.06182419 133.040 7.847 ‘1464487
10 19.90 #.0832569 23.80 7.831 262587
11 21.24 P.0835286 25.840 7.951 288357
12 22,58 0.0050191 36.60 8.0867 391997
13 23,93 0.0040398 29.40 8.069 314883
14 25,27 #.0817686 12.860 8.623 137847
15 26.61 .6019604 14,29 8.102 151429
16 27.95 8.0820007 14.60 8.239 153106
17 29.29 f.0008293 6.00 8.453 61125
18 30.63 4.4008@839 5.8@ 8.287 60471
19 31,98 2.0815291 11,28 8.481 1141480
91 36.00 0.00088232 1.65 8.771 16254
92 38.68 f.0000389 #.29 8.689 2910
94 44.05 0.0000859 .85 7.42¢0 582
95 46.73 2.0000149 f.11 8.273 1149
port - #.1780822 1300.00 - -

Table 10.2. Estimation of Number of Wave Peaks the Ship Faces at
each Sea State, During Operational Lifetime.
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Sea
State
(i)

g
g1
a2
a3
4
@5
g6
87
g8
@9
1@
11
12
13
14
15
16
17
18
19
9l
92
94
95

zp;f;

(™

R.M.S. Of
WBM( m )
(ft-ton)

21650

26700

49415

55570

76500
1249315
129985
155885
1884240
199185
2215640
241045
262695
278578
294459
368880
32404@
338479
356749
363730
398374
418580
453940
469100

Scala
Parameter
(d"N z‘)

2.6055e-084
2.1321e-04
1.4323e-04
1.8351e-94
7.3909e-45
5.5743e-05
4.2367e-85
3.4877e~@5
2.9618e-85
2.6752e-4d5
2.2548e-85
2.8779%e-65
1.9320e-05
1.8863e-085
1,6522e-05
1.5813e-485
1.5¢80e-05
1.3871e~-65
1.3379e-@5
1,3268e-45
1.1854e-085
9.5417e-06
7.8608e-06
1.5610e-05

— |
(Note that e~03 = 10 )

Table10.3.

Location
Parameter
( uN.)

b

1.2212e05
1.5199e85
2.3395e05
3.1964e@5
4,3253e85
5.6095e05
7.1495e@5
8.4751e05
9.6411e05
1.0614ed6
1.10868e06
1.2873e06
1.3332e06
1.4017e06
1.4325e06
1.5086e06
1.5834ed6
1.5891e86
1.6459e046
1.7553e06
1.7543ed6
1.6718ed6
1.6198e06
3.4350e06

(piéxact

3.2187e-06
3.2187e-06
3.2187e-06
3.5167e-86
1.6212¢-85
9.2506e-905
6.1877e-04
2.5651e-93
7.8703e-63
1.7956e-02
2.6627e-02
5.3888e-82
1.1368e-01
l1.6216e-01
l1.9408e~-4d1
2.9189%e-01
3.4412e-01
3.5483e-01
4,2291e-81
5.5559e~-01
S5.6263e-01
4.734le-01

4.2787e-081"

8.9814e-01

5.2268e-03

FExact Failure Approx.
Probability

Failure
Probability

(pigpprox

1.1515e~-87
1.9185e-87
7.4398e~07
2.865%9e-06
1.5214e~05
8.714le~¢5
5.7095e-04
2.3866e-43
7.3835e-03
1.6695e~02
2.4546e-¢2
4.9997e-02
1.0663e~-41
1.5281e-4d1
1.7899%e-01
2.4850e-01
3.28660e-d1
30 3817&-91
4.8512e-01
4.6154e-91
4.5673e-4d1
4.5091e-91
4.0343e-4d1
8.6712e~-01

4.7851e-03

Comparison of Exact and Approximate Failure
Probabilities.
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Sea
State
(i)

20
a1
82
83
g4
@5
06
@7
g8
29
18
1l
12
13
14
15
lé
17
18
19
91
92
94
95

2Pi*E;

L

P; for

J?LJ- =0.0

4.31e~-08
6.89e-08
2.4le~07
8.46e~-07
4.87e-06
2.15e-085
l1.34e-04
5.55e-84
1.74e-93
4.13e-03
6.25e-@3
l.36e-02
3.21le-92
4,92e-02
5.98e-02
9.08e-02
1.35e-01
1.73e-01
2.6le-01
2.67e-81
2.807e-061
1.82e~-41
4.13e-01

1.78e~033

(Note that e-03 = 10

Py for
-PI-J =0.1

4,39e-08
7.05e-08
2.49e-07
8.80e-87
4.27e-06
2.27e~85
l1.42e-084

- 5.88e-04

l.84e-083
4.34e-03
6.60e-063
1.42e-d2
3.33e-082
5.08e-902
6.17e-082
9.23e-82
1.32e-01
1.38e~01
1.76e-01
2.63e-01
2.70e-081
2.1le-01
1,.87e-01
4.14e-01

1.83e-93

3

}

Py for
£ =0.3

4.58e-08
7.42e-08
2.67e-07
9.6le-087
4.75e-06
2.56e-@5
l.6le-24
6.64e-04
2.06e~83
7.37e-83
1.57e-92
3.58e-02
5.40e-02
6.55e-02
9.68e-02
1.37e-061
1.43e~-01
1.8le-901
2.68e~-91
2.75e-91
2.18e-01
1.95e~81
4.17e-01

1.91e-93
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Py for
£y=0.5

4.83e-08
7.88e~-08
2.89e-427
l1.06e-86
5.38e-086
2.93e-05
l1.84e-034
7.57e-04
2.33e-083
5.37e-03
1.72e~-82
3.84e~-02
5.74e-02
6.94e-02
1.01=-981
1.42e~-01
1.49%e-01
1.87e~01
2.808e-91
2.24e-81
2.03e~-01
4,20e-081

2.82e~-03

Py for
£;=0.7

S.14e-08
8.48e-08
3.19e-07
l1.28e-06
6.19e~06
3J.41e-05
2.14e~-94
8.70e-04
2.64e-23
5.99%e-03
9.23e-0@3
1.89e-82
4.1le~@82
6.08e-082
7.34e~-082
l.86e-01
1.47e-81]
1.54e-01
1.92e-01
2.76e-01
2.30e=-01
2.10e-081
4.24e-01

2.12e~33

Table 10.4. Comparison of Failure Probabilities for Different
Correlation Co-efficients ( ft-‘ ) between Mg and My .
$

Py for
£=0.9

5.52e-88
9.24e-@8
3.57e~067
1.37e~-06
7.25e-06
4.82e-85
2.5le-04
1.dde-83
2.99e-083
6.68e-03
1.03e-82
2.06e-02
4.39e-82
6.43e-0@2
7.74e-02
1.13e-01
1.52e-61
1.59e-01
1.97e-081
2.80e-81
2.8%e-41
2.36e-01
2.17e-01
4,29e-81

2.22e-03
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Figure10.9. Effect of Correlation ( fd ) between Mg and Mw on
Lifetime Failure Probability (pf).
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Linearizecd
Failure Surface.

5.
L(\
Exact Failure

Surface.

Figure 10.10. Exact and Linearized Failure Surface in Standard Space
(for Sea State 10 in Application Example 3).
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10.2.4. -- Application to Eighteen Ships Using Level 3, M.V.F.O S.M.
and the Improved First Order Methods:

The same eighteen vessels of the example application given in
Chapter 5 are used here to perform a comparison between Level 3,
M.V.F.O.S.M. and the improved method. The characteristics of the
ships are shown in Table 5.1 (Chapter 5 ). In Chapter 5 the
M.V.F.0.S.M. method has been applied to the eighteen vessels and
their safety indices have been determined on that basis. In this
example Level 3 and the improved first order (Hasofer/Lind and
transformation to normal variables) methods are also applied to the
eighteen ships. In Level 3, the following equation was used to
calculate the probability of failure (see equation 4.35):

o [en (BT (5 %

U -m
et 55 10.6)

where ur and or are the mean and standard deviation of the
resistance, A is long-term mean value of the wave bending moment
(also equal to its standard deviation) and mgo is the maximum
stillwater bending moment (considered detei'ministic). ® () is the -
standard normal distribution function.

In the improved first order method the Hasofer/Lind Safety
index discussed in Chapter 5 was used (see equations (5.15) to
(5.17).  This procedure, however, yields identical results to the
M.V.F.0.S.M. method since the performance function is linear
(Mr - Mg -Mw = 0). What results in a difference between the
M.V.F.O.S.M. and the improved method is the inclusion of the

distribution information as discussed in Chapter 5 (see equations
(5.28 and (5.29)).
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The mean value of the wave bending moment "A" was
determined by a long term procedure described in the application
example of Chapter 5. Similarly, an initial yield limit state was used
to determine the resistance parameters as described in the same
application example.

Table 105 shows a summary of the comparisons of the safety
indices as calculated using the M.V.F.0.S.M. method and the improved
method. The safety indices were then converted to probabilities of
failure and the results are compared with the direct integration
method (Level 3) as shown in Table10.6. Figurel0.11 shows the
absolute value of log1(Q pf for the eighteen ships and Figure 10.12
shows the probabilities of failure. In both cases the results are
plotted versus ship length. Tablel0.7 shows the partial safety factors
Ar and A¢ of the resistance and total bending moment, respectively,
as calculated from Chapter 6 .

Figures 10.11 and 10.12 show that, in general, the improved
method gives results closer to the direct integration method than the
M.V.F.0.S.M. method. This is solely because of fitting normal
distributions to the non-normal variables. However, the spread can
be quite large for some ships.

For these eighteen ships, both the improved method as well as
the M.V.F.O.S.M. method overestimate the safety of the vessel as -
compared to the direct integration method, i.e., they err on the
nonconservative side.

The degree of approximation resulting from applying the
M.V.F.O.S.M. and the improved methods with respect to the direct
integration method varies ‘considerably from one vessel to another
(see, for example, vessels no. 1 and 11 in FigureslO.11 or10.12).
Inspection of Tables 105 and10.6 reveals that the spread or "errors” in
these two methods as compared with the direct integration method
are strongly correlated to the total coefficient of variation of the load;
increasing with its increase.
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The lack of consistency in the degree of approximation when
using the M.V.F.0.S.M. or the improved method and the fact that they
lead to optimistic values of ship safety are matters of concern.

Ship ¢ v, Y Y p"
1 B 0.083 5.12 5.1
2 .1 166 6.09 5.97
3 .13 220 6% 6.10
4 .13 .087 4.70 4.66
s 13 o 5.10 5.10
] RE 0% 5.2 5.27
7 Rk 074 $.2) 5.24
s 3 .09l w9 4.82
] .13 .09 5.20 5.15

10 1 .09 ] 4.82
n 1 e 5.28 5.00
12 13 072 5.2 5.21
13 1 e 5.81 5.43
7] 12 N0 T 4.80 ay
15 12 .07 .0 4.8
15 12 A 3.44 .25
17 .13 .24 6.3 615
18 .13 B ] $.60 5.49

B. safety indes according to MVFOSW

ﬂl- sefety index sccording to the Improved method
Ve = C.O.V, of the fesittance

Yo = C.O,V, of the combingd load

Tablel0.5
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Ship ¢ by (MYFOSN) oy (Imoroved). Py (Ofrect Integration)

! 1 528¢€-7 1.611€-7 3.541€-7
2 6.0t-10 1.2¢-9 $.25¢-9
k] 1.5€-10 5.%¢-10 8.98¢-9
4 1.301E-6 1.581€-6 1.267¢-6
5 1.699¢-7 1.699¢-7 3.372€-7
6 1.205€-7 6.82%¢-8 1.23€-7
7 8.48¢-2 8.03¢-2 1.465€-7
[} $.58€.7 7.178¢€-7 1.704€-6
9 9.965€-8 1.303€-7 1.568-7
10 5. 205€-7 7.178€-7 2.100€-8
n 7.605¢-8 2.852¢€-7 1.586E-6
12 r.2e-8 9.45€-8 1.688€-7
k] 1.795€-8 2.82¢-8 1.197¢-7
14 1. 158E-6 6.2128-6 1.9686-%
15 1.732€-6 3.232€-6 7.001(-%
16 2.90€ -4 $.770€-4 1.099€-3
1?7 1.0€-10 4.0€-10 7.438€-9
18 1.075€-8 2.01¢-8 1. 130€-7
Tablel0.6
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Table10.7. Partial Safety Factors.

Based on Based on

MVFOSM Imprewed Method
Ship Ay Ap Ap A
1 0.348 1.086 0.370 1.135
2 0.230 1.23¢ - 0.287 1,391
3 0.208 1.352 0.289 1.596
4 0.407 1.099 0.441 1.156
5 0.349 1.075 0.366 1.116
6 0.326 1.067 0.339 1.103
7 0.330 1.067 0.343 1.103
8 0.385 1.105 0.420 1.166
9 0.342 1.117 0.378 1.189
10 0.386 1.119 0.427 1.190
11 0.349 1.219 0.438 1.354
12 0.326 1.065 0.347 1.099
13 0.304 1.154 0.350 1.252
14 0.444 1.153 0.510 1.243
15 0.432 1.071 0.452 1.109
16 0.596 1.182 0.682 1.263
17 0.200 1.394 0.287 1.671
18 0.294 1.184 0.350 1.302

4, = strength reduction factor.
Ay = load magnification factor.

10.2.5. Relative Target Reliabilj Tti

Implied in ABS Rules for Ship Longitudinal Strength

In developing a new code format, one should compare it with
existing practice to insure that the new method has some basis for
calibration. One way of doing this is to examine the reliability of
existing ships as was done in the previous examples for the eighteen
ships. This provides valuable information but has some limitations.
Among them are analyzing the ship in the as-built condition rather
than the code minimums, and the fact that in any large group of
ships, one is probably comparing different codes written at different

times.

Another way to tackle this problem is to simply investigate the
reliability implicit in the minimum strengths and loadings required
by the code. To accomplish this, the safety index B was calculated for
ten Series 60 ships, with Cp = 0.70 and L/B = 7.0. The minimum hull
strength and loadings required by the 1982 ABS "Rules for Building
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and Classing Steel Vessels" were used to design the ships and the
following three assumptions were made:

1. The mean value of the hull strength was assumed to be
s = SM. P @a7)

SM = section modulus from Section 6.3.1.a of the ABS
Rules

°

average yield stress of steel (assumed to be 31 ksi).

To determine the ‘standard deviation, COV's of both 10 and 12
percent were used. As an example, using the 300 ft ship, the ABS
calculated section modulus is 6.243 X 103 in.2-ft; then the hull
resistance is 8.640 X 104 ft-ton and the standard deviation is 8.640 X
103 ft-ton for a 10 percent COV.

2. The value of the stillwater bending moment was
calculated by Section 6.3.2.a of the ABS Rules. But this value was
considered to be an extreme value representing the 95 percent
exceedence level; that is, this value would exceeded only 5 percent of
the time. To find the corresponding mean and standard deviation,
this extreme value was used with COV's of 9.1 and 38.1 percent to
cover the range of possibilities suggested by [0.9] and [010]. As an
example, consider the 300 ft ship for which ABS gives Mgw = 2.662
X 104 ft-ton. Then the problem is to find psw and 6gw such that

095 =  Fgw (2662 X 10%) LQg)
and osw/usw = 0.091 or 0.381 where Fsw (.) is the cumulative

distribution function of the normal distribution. Using the standard
normal variate
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it is easy to find from standard tables that t = 1.64 satisfies (Q.8) and
using the condition for the COV provides a second equation. Taking
the 300 ft ship as an example, - - the 9.1 percent COV gives psw =
2.316 X 104 ft-ton and ogw = 2.108 X 103 ft-ton.

3. The value of the wave bending moment was calculated using
Section 6.3.2.b of the ABS Rules but again this was considered to be
an extreme value. The wave bending is known to fit the exponential
distribution where | = o, that is, COV = 100 percent. It remains now
to determine what exceedence level to assign the value derived from
the ABS Rules. This uniquely determines A for the exponential
distribution. From references {0.9] and [LQ11], values of the expected
or average value of the wave bending moment A, based on rational
analysis, were obtained and then were compared with the wave
bending moment calculated from the 1982 ABS Rules. For example,
using the data from reference [10.9] on the Mariner, A = 29 000 ft-ton
and Mw = 2.297 X 105 ft-ton from ABS Rules, one obtains from the
exponential distribution

P[X<2297X105] = Fx(x) = 1-e(&/A)
= 1-e(2.297 X 10929 X 10*) = 0.9996

so the exceedence level is about 0.1 percent. Similar results were
obtained from other examples and the exceedence level was set
somewhat arbitrarily at 1 percent, which is slightly conservative.
Following through on the 300 ft ship example with My = 3.569 X 104
ft-ton from the Rules, then

4
FX (3.569 X 104) =099 =1 - ¢-3.569 X 10" /A
or A = 7750 ft-ton

Now the safety index B can be calculated using

p o M T Hew T Be
@ i ok ¥ oL 10.9)
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Equation (Q9) is the equation for B using both the mean-value
first-order second-moment (MVFOSM) as well as the Hasofer/Lind
Method (without fitting a normal distribution), since the limit state

function is linear. Using the values of the parameters for the 300 ft
ship and noticing the uw = ow = A, then

B

It

4.70 aQ10)

The partial safety factors can be directly computed using
equation (6.5). This results in the following values

As = strength reduction safety factor = (.66
Asw = stillwater BM magnification safety factor = 1.08
Aw = wave BM magnification safety factor = 4.10 all)

It should be noted that these results depend on the validity of
the three assumptions discussed previously. Although the values do
not change much with large changes in the coefficient of variation of
the stillwater bending moment, they are rather sensitive to the wave
bending moment exceedence probability (Assumption 2.) If an
exceedence probability. of 0.1 percent is used instead of 1 percent,

the following values result

B = 544, Ag = 0.56, Asw = 1.10, Aw = 3.94

instead of the values given by equations @0.10) and (10.11). It is
therefore important to regard the values generated in this example
for the safety indices and partial safety factors as relative values of
the reliability implied in the ABS Rules rather than absolute values.
With this in mind, Table10.8, columns 1 to 4 give the computed safety
indices according to the described procedure for strength COV of 10
and 12 percent, and for stillwater bending moment COV of 9.1 and
38.1 percent.
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Before calculating all the partial safety factors, one more
refinement was possible.  This refinement is fitting a normal
distribution to the exponential wave load variate at the most likely
failure point. This is relevant since the calculation of the safety
index implicitly assumes that each variable involved has a normal
distribution and thus the safety index can be easily related to a
probability of failure.

The equation for the most likely failure point of the wave
bending moment in the original space is determined from equation
(5.18) as

2 o
“"”‘"*%u—?ﬁﬁ (1012)

The fitted normal distribution parameters can be now
determined using equation (1012) and equations (530) and (531) as
discussed previously. This leads to modified values -of the safety
indices according to the advanced Level 2 procedure. The results are
given in Table 10.8, columns 5 and 6, for stillwater moment COV's of
9.1 and 38.1 percent, respectively. Figure 10.13 shows plots of all the
results given in Table 10.8.

Finally, the partial safety factors using the "equivalent” normal
wave bending moment distribution were calculated. The
computation is straightforward according to the procedure described
earlier except for the partial safety factor associated with the mean
of the wave bending moment as obtained from the normal
distribution. This partial safety factor must be used in conjunction
with the fictitious normal distribution mean. Since the normal
distribution arises only as a part of the distribution adjustment
process, it is more relevant to determine the true partial safety
factor associated with the actual mean of the wave bending moment
(that is, the mean of the exponential distribution). This is done by
stipulating that the true partial safety factor, when multiplied by the
mean value of the wave bending moment, gives the same margin in
the checking equation as that of the normal mean multiplied by its
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partial safety factor; that is, both lead to the same safety index
values.

Table 10.9 provides a summary of these results and the target
safety indices from which the partial safety factors where computed.
It should be emphasized that these results are meant to examine

trends and relative magnitudes rather than to be used in the
absolute sense.

In general, this analysis of the implicit safety in the ABS Rules
is somewhat surprising in two ways. First, the safety index B, is very
consistent within each method over the range of ships lengths.
Second, the B factor decreases slightly with length while previous
results show it increasing. One possible explanation is that the
method of calculating the wave moment was not the same. Also,
since the previous analyses were done on as built ships, they would
reflect more factors changing than just the length. These would
include varying degrees of safety margin added by the designer to
the code-required minimum as well as different codes from different
years and classification societies.
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Table10.8. Safety Indices of the Series 60 Ships

-
L]
—

(4) (5) (€)
B

Length, (1) 2)
Ship ft -] .} y-] £
1 300 4705 4728 4231 4335 3420  3.648
2 400 4650  4.687 4191 4303 3364  3.593
3 500 4595  4.644 4150 4269 3311 1.530
4 600 4542 4600 4110 4234 3265 3487
5 700 4489 4555 4088 4196 3227 3438
6 800 4438 4505 4025 4154 3.198 3415
7 900 4414 4480 4004 4134 3179 3403
8 1000 4390 4458 3983 4114 3070 3.289
9 1100 4367 4433 3963 4092 3160 3383
10 1200 4348 441l 3944 4073 3149 3373

(1) COV resistance 10% COV stiliwater bending 9.1%

(2) COV resistance 10% COV stillwater bending 38.1%

(3) COV resistance 12% COV stillwater bending 9.1%

(4) COV resistance 12% COV stillwater bending 38.1%

(5) COV resistance 10% COV stillwater bending 9.1% adjusted wave bending
(6) COV resistance 10% COV stillwater bending 38.1% adjusted wave bending

O STILLWATER C.O.V.=38.1%
A STILLWATER C.OV =9.1%

MVFOSM METHOD
STRENGTH C.OV. =10 %

40 .
ADVANCED METHOD

STRENGTHCOV. + 10 % MVFOSM METHOD

STRENGTH CO.V * 12%

35

3.0r

25 1 1 ! ] J 1 L l |

300 400 500 600 700 800 900 1000 HoQ 1200
L.B.P (FT)

Figure10.13. Safety Index (ABS) versus length between
perpendiculars of Ships
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Table10.9. Partial Safety Factors and Safety Index of Series 60 Ships

_ Length, m @
Ship ft A ¢ A A, Y-
1 300 0.8605 1.031 6.515 3.420
2 400 0.8662 1.029 6.434 3.364
K| 500 0.8710 1.028 6.348 3.311
4 600 0.8750 1.027 6.261 3.265
L] 700 0.8780 1.027 6.185 32
6 800 0.8783 1.027 6.117 3.198
7 900 0.8807 1.027 6.085 3.179
8 1000 0.8808 1.027 6.046 3.170
9 1100 0.8809 1.027 6.018 3.160
10 1200 0.8812 1.027 5.988 3.149

o OA\III factors based on strength COV = 10% and stillwater moment
=91%,
(1) Equivalent partial safety factor, exyonentinl wave moment.
4 (2)e;rlrget safety indices from which all partial safety factors are
erived.
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11. CONCLUDING REMARKS AND RECOMIENDATIONS

The powerful tools of the theory of probability provide
- excellent means for assessing the safety of marine structures under
certain conditions of uncertainty. Probabilistic methods have been
developed and used in practice for describing the random loads
acting on a marine structure and the uncertainties associated with its
true strength. The safety margin between an extreme loading
combination and the strength of a structure is then assessed through
reliability indices and probabilities of failure.  Such reliability
analysis is only a small but important part of the total probabilistic
approach for designing or checking a marine structure. Partial safety
factors and safety formats suitable for use in design and for
implementation in Codes and Rules have been advanced and used by
practitioners as well as Classification Societies and Code Developers.
Fatigue analysis has been developed in several reliability formats
which allow for the estimation of the probability of failure from the
load history and the fatigue strength of the material. Complex
redundant structures and structures with multiple failure modes or
mechanisms have been treated using system reliability concepts
which are being rapidly developed at the present time. In short,
powerful and sophisticated probabilistic tools are currently available
for use by the marine industry. There are, however, several
shortcomings that prevent a wider use of the probabilistic and
reliability methods in the design process. These include: '

1. Use of reliability analysis in checking and design processes
requires more information on the environment, loads and the
properties and characteristics of the structure than a typical
deterministic analysis. Often such information is not available or
may require considerable time and effort to collect . Time and
schedule restrictions on the design are usually limiting factors on the
use of such sophisticated methods.

2.  Application of probabilistic and reliability methods usnally
require some familiarity of basic concepts in probability, reliability
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and statistics. Practitioners and designers are gaining such
familiarity through seminars, symposia and special courses.
Educational institutions are also requiring more probability and
statistics courses to be taken by students at the graduate and
undergraduate levels. This, however, is a slow process that will take
at least one generation in order to produce the necessary "infra-

structure” for a routine use of reliability and probabilistic methods in
design.

3. The two shortcomings stated above are not severe drawbacks
in connection with development of Codes and Rules based on
reliability analysis since such a development requires a "one time" or
a more consolidated effort to collect the necessary information. In
addition, the "one time" code format and development can be done
by experts in the field. But here the "inertia of tradition" comes into
play which makes any new approach, reliability or otherwise,
difficult to incorporate. This, however, has been changing and more
Classification Societies and Code organizations have taken an active
interest in the probabilistic methods and developed Rules and Codes
based, at least partiallv, on reliability.

4. On a more technical aspect, the reliability analysis did not
deliver what it initially promised, that is, a true measure of the
reliability of a structure by a "true and actual" probability of failure.
Instead what it delivered is "notional probabilities” of failure and -
safety indices which are good only as comparative measures. Only
notional values are delivered because of the many assumptions and
approximations made in the analysis producing such probabilities
and indices. These approximations, deficiencies and assumptions,
however are made , not only in the reliability aspects, but also in
other aspects and disciplines used in the design. Such aspects
include determination of loads using hydrodynamics theory and
approximations made in the structural analysis and response to the
applied loads. @ When all such assumptions and deficiencies are
removed from the design analysis, the resulting probabilities of
failure will approach the "true" probabilities.
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In spite of the shortcomings stated above, use of reliability
analysis in design provides advantages and unique features. These
include: -

1.  Explicit consideration and evaluation of uncertainties associated
with the design variables.

2. Inclusion of all available relevant information in the design
process.

3. Provides a framework of sensitivity measures.

4.  Provides means for decomposition of global safety of a

structure into partial safety factors associated with the
individual design variables.

5. Provides means for achieving uniformity of safety within a
given class of structures (or specified nonuniformity).

6. Minimum ambiguity when updating design criteria.

7. Provides means to weigh variables in terms of their
significance.

8. Rational guidance for data gathering.

9. Guidance in novel designs.

The advantages seem to outweigh the drawbacks and it is
almost inevitable that the probabilistic and reliability aspects will be
used in designs where randomness of the variables is an important
consideration. Based on these conclusions, the following
recommendations are made:

1. The major effort currently progressing in the development and
application of reliability methods to marine structure should be
continued and expanded. Such efforts will not be wasted since,
most likely, some of the developed procedures will, sooner or
later, be used in design.
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In the calculations of the reliability indices and probabilities of
failure, the resulting values depend considerably on the
methods used in determining the loads acting on the structure
(e.g. extreme versus long-term waves loads) and on the method
of combining these loads. A need exists for "standardizing"
such procedures for use in design.

A study of target reliability based on existing ships or
minimum Rule requirements for the primary strength should
be undertaken based on such a "standardized” load procedure,

Studies and additional development of reliability methods are
needed for the secondary (stiffened panels) and tertiary (plates
between stiffeners) aspects of ship design.

There is currently a strong tendency to neglect level 3
reliability analysis in favor of level 2 because of the difficulties
stated in Chapters 4 and 5 of the report. Certain
simplifications can be made however within level 3 framework
which would make it possible for application to marine
structures.  Such simplifications and further developments of
level 3 are worth persuing. Similarly, application of simulation
techniques should be further studied.

System reliability is an essential aspects of reliability analysis
of highly redundant structures such as offshore platforms.
Additional work is needed in this area particularly in regard to
simplifying and reducing the number of permutations of
possible failure paths and the corresponding computations.
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APPENDIX 1
HELPFUL INFORMATION

In this appendix some useful information on several aspects of reliability of
marine structures are described. They relate to topics which appeared in various
chapters in this report where reference is made to this Appendix.

Wei s e X 1

- The probability density function (p.d.f.) and cumulative distribution
function (¢.d.f.) of the Weibull Distribution are given by

p.d.f.

5w = o [ oot o (1

cdf. = Fx(x) = 1-e&k} x> 0 (2)

where k and f are parameters to be determined from data, e.g., data of wave
amplitude or wave-bending moment amplitude.

The first two moments (mean and variance) of the Weibull distribution are
given by:

Mean = Ex = kT(]1l+) 3)
Variance = Varm= k(r@e'+1 - (T +1)?) @

where I'(t) is the Gamma function defined as

o = |yt e g

0

The Gamma function is tabulated in many Handbooks, e.g., Handbook of
Chemistry and Physics.

Some properties of the Gamma function are described as follows:
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I(t) = (t-DTI(t-1)
I (t+1) = tI'{t)=t¢1) ... tr)T(tr)
i.e., generalization of the factorial function.
ra = 1
I (n+1) = n! for any n = integer
r (‘é‘) = {1:
I‘(n +%) = 1X3X521'1"(2n'1) V& ; n = integer
r (n +%) - 1X3 Xzi/z - (n-1) \j; ; N =eveninteger

The Weibull distribution reduces to two important special cases as follows:
a. Exponential Digtribution

When {=1 and k = A, the Weibull distribution reduces to the exponential
distribution with parameter A. From equations (1) and (2), the resulting p.d.f. and
c.d.f. are

fx@ = e-X/A 20 (5)

&

Fx(x) 1 - exA x>0 (6)

From equations (3) and (4), the mean and variance of the exponential
distribution are given by

EX) = ATL(14) = AT(2) = A 7
Var Xo) = A2(T(24) - T'(2)2) = 22 (21) = a2 (8)
leigh Distributi

When {=2and k = v3E the Weibull distribution reduces to the Rayleigh
distribution. Notice that, if the Rayleigh distribution is resulting from a
stationary Gaussian process as the distribution of the peaks, then "E" as defined
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here is the mean square value of the process, i.e., the area under the spectral
density of the process. From equations (1) and (2), the Rayleigh distribution is
given by

p.d.f.: ';x(x) % X228 x20 9)

cdf: Fx(x) 1 - ex2E x>0 (10)

and, from equations (3) and (4), its mean and variance are given by

EXR = VZE r(%+1)=«]ﬁz%l-\/;=% 2nE (11)
Varckw = 28 (r(2) - (r(3+1)f)= 2 (1) 12)

Estimation of th i istributi r

Several methods can be used to estimate the Weibull distribution
parameters from a set of data. Since the exponential and the Rayleigh
distributions are special cases, similar methods can be used to estimate their
parameters. The ‘methods include the method of moments, Weibull probability
- paper, the maximum likelihood method and a method based on order statistics.
Only the moment method and the Weibull probability paper are discussed here.
The advantage of the probability paper over the moment method is that it provides
a mean for checking if the Weibull distribution actually fits the data or not as will
be discussed later.

M. f M

The mean and standard deviation of a data sample can be determined from
the usual equations:

n
. x

X = Samplemean = =
x P n =1
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- 12
ox = Sample standard deviation = (%— ig L (xj -x)2)

The resulting values for x and ox can be used in conjunction with equations
(3) and (4) to determine the values of k and {, or more conveniently from the ratio:

r(-1+1) X
(reers 1)-(rat+1)2)2 ~ ox

(13)

which is a function of { only. Thus { can be estimated from (13) and then inserted
in equation (3) or (4) to determine k.

1 Probabili
The Weibull distribution function is given by:
Fe(®) = 1- @k
therefore,

log log (1-Fx®) = -llog (xk)
or,

log log (ﬁﬁ) = Jflogx-2logk
Insert

w = log log (1_I:?l‘;(_ﬁ) ;v o= logx

the linear relation results

w=(v - llogk (14)
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So if (I-Fx(x))1 or (I-Fx(x)) is plotted against x on log log versus log paper a
straight line is obtained (if the data fits the Weibull distribution closely). The slope
of the straight line is { or -§, respectively, and the intercept with the axis is -1log k.
Thus k and { can be determined.

Notice that, in addition to providing a mean for estimating the parameters
k and {, the Weibull paper is useful in examining visually the quality of the fit.
Goodness-of-fit tests such as Chi-square, W-statistics and Kolmogorov-Smirnov
tests may also be used to examine more accurately the quality of the fit and to
determine which of several candidate probability distributions fits the data best.

WEIBUL FIT
X ksl

1.88L 12319 FOINTS - ATLANTIC

1 — FEX> 3>
.
)

[ ]
N
~
T

N <—LN <

5.94 s

" Figure Al. Weibull Plot of SL -7 Five Year Data
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More detailed information on these tests and examples of their use in conjunction
with wave bending moment data from SL-7 containerships are given in reference
[A1]. A sample of Weibull probability paper which shows the fit of 12319 data

points from SL-7 containerships is shown in Figure Al obtained from reference
[Al]. '

A n T ili i N n
Distributions:

In Chapter 4 and 5 it was shown that, for the simple margin "M" (or limit
state function) given by:

M=gxy,x9) =S-2 (15)

the probability of failure pris given by (see equations 4.4 and 5.5)

pr = [Fs(@),fz(z)dz ° (16)
[4]
= Fg (-p) an

where Fg () is the cumulative distribution function of the standardized Margin
"G" (see equation 5.4) and B is the safety index defined as the margin mean
divided by its standard deviation. If S and Z are both normal, then the margin M
defined by (15) is also normal and Fg (-) becomes the standard normal cumulative
distribution function tabulated in many handbooks. Thus the relation between p¢
and B can be easily computed.

Figure A.2 obtained from reference [A.2] shows the relation between pr and
B for some other distributions of S and Z and specified values of their coefficients of
variation ( vs = 0.13 and v; = 0.10). The plot shows that pris sensitive to the type of
distributions of S and Z in the higher values of B (range of low probabilities of
failure).
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PROBABILITY OF FAILURE Pe
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Figure A.2. Probability of Failure Versus the Safety Index
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Appendix 2: Computer Program "CALREL" for Performing Reliability
Analysis

A Brief Description of CALREL - A Computer Program for
Component Reliability Analysis:

CALREL is a batch processed computer program in FORTRAN
language suitable for execution in both mainframe and
microcomputers. Given a probabilistic characterization of the basic
random variables, and an analytic performance function (limit state
equation), the program calculates the Hasofer-Lind reliability index,
BHL. in the standard space of uncorrelated variables (u space). The
program calculates the probability of component failure if
probability distribution (level III method) of basic physical variables
are provided. The output includes sensitivity measures of the
reliability index and probability of failure with respect to basic
variables, deterministic parameters in the performance function and
the distribution parameters. Following is a brief description of
special options and features of CALREL. The attached 'User's Guide to.
CALREL' is a self explanatory document of all the other options and
features. ’ -

Input Description: ’

The input to CALREL consists of two parts: i) input data and ii) user
provided subroutines. The data input defines basic physical random
variables, i.e., their mean standard deviation, correlation, etc. and, or
parameters of the optional distribution functions. For level-II
methods only second moment characterization of random variables
are necessary. Both méan value first order second moment
(MVFOSM) and Hasofer-Lind first order second moment (FOSM)
reliability index can be calculated. For level III characterization of
the random variables two options are available: i) first order
marginal distribution method [FOMD, ref.A.1] or ii) first order full
distribution method [FOFD] using Rosenblatt transformation.
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If the basic random variables are independent they can be specified
completely by their respective marginal distributions. For
dependent variables if only marginal distributions and pair wise
correlation among them is known then, a (non-unique) joint
distribution model is implicitly assumed that is consistent with the
specified marginal distributions and correlation structure [FOMD,
ref. A.1l. The marginal distribution function can either be chosen from
the program library or can be specified in an analytical form through
a user specified subroutine called 'df'. The correlation structure for
dependent variables is specified in the input data section.

For full distribution method [FOFD] using Rosenblatt transformation
the following conditional distribution functions are analytically
specified through a user defined subroutine called 'hfun'. [See
Example 3 in User's Manual.]

Hi(xj | x1, ..., Xi.1) = PXj € x| X1 = X1, ..., Xie1 = %.1)  (A.1)
If £X(x) and FX(x), respectively, represent the joint density and joint

distribution function of X, we have:

Xi
Hi(xil x1, ..., Xi-1) = foilxl,,_“,xi_l(mlm, ceer Xi-1) dXj

Fx....xi(x1,...x})

A2
fXI,,__,,Xi_l(Xl,---, Xj-1) (A.2)

The program ‘then implicitly uses the following transformations
between the basic variables space and the standard normal
uncorrelated space :
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Ur = O-1[H(X1)] = ®-1[Fx, (X1)]
Uz = @ 1[Hx(X21X1)]

Uz = @-1[H3(X31X1,X3)] (A3)

Up= CD'I[Hn(XnIXI, wes Xn-1)]

In addition to the above specifications in the subroutine ‘'hfun' the
standard deviation of the basic variables are required as input data
for calculating iteration steps in the optimization scheme to find the
B-point.  The user can also specify parameters of the above
conditional distributions (h-functions) through input data.

Performance function: The performance function (limit state
equation) in CALREL is specified analytically through a function
subprogram 'g’. The subprogram returns a value of the performance
function for each call from the main program specifying a value of
the basic variable X. The parameters for the analytic performance
function can be passed from the main program, if defined, through
the input data. '

The main program uses a finite difference scheme to calculate the
gradient vector of the limit state surface at the iteration point.
Hence, if an analytic performance function is not available the
subprogram 'g' can be made to call other programs (e.g., finite
element, dynamic analysis program, etc.) to return a value of the
performance function. Since finite difference scheme is used to
calculate the gradient vector at the p-point, a number of
performance function values may be required involving great
computational efforts. It is desirable to be able to input the gradient
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vector directly when available (either analytically or through
numerical values returned by other programs such as finite element
etc.). This is beyond the capability of the present version of CALREL
but can easily be achieved through minor modification of a
subroutine in the main program. The user provided subroutines are
provided in a file called 'user.for' which is compiled and linked to the
main body of CALREL, each time a new problem is solved.

Output Description

The output of CALREL consists of reliability indices, probability of
failure for level-III analyses and various other sensitivity measures.
In level-III analyses probability of failure results can be obtained
based on both first order (tangential hyperplane) and second order
(quadratic hypersurface) approximation of the limit state surface.
Two different second order approximations to the actual limit state
surface are available, based on point fitting and curvature matching

procedures. For an approximated quadratic hypersurface the
probability content is calculated by four different approximating
formulas. The different sensitivity measures calculated by the

program can be described as follows:

: 9B
I a=VB@", ie, ai=55|yays (A.4)

where u* is the design point (or B-point).

o is a sensitivity measure of Pyp with respect to the standard
variates (U1, U, ..., etc.).

2. Measures of sensitivity with respect to basic variables X at a point

x* (corresponding to u* in u space) is given by

VR(x*)=aL D! (A.5)
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where D = diagonal matrix of standard deviation
and, C=L1,R=LLT and R = correlation matrix.

To make variations dxi*; i = 1, ..., n; equally likely VB(x*) is scaled by
the corresponding standard deviationms, i.e.,

VBx*)D=al
A unit sensitivity vector is now defined as:

__al
=ler |

(A.6)

Gamma (y) is a relative measure of importance among basic random
variables.

The program also calculates 'delta’ and ‘eta’ normalized (each
variation equally likely as in g and y) sensitivity vectors with respect
to the mean and standard deviation of the basic physical variables.
If desired the program also calculates sensitivity measures of
reliability index and probability of failure with respect to other
distribution parameters and deterministic parameters of the analytic
performance function.

References

. 1. Der Kiureghian, A. and Liu, Pei-Ling (1986). Structural Reliability
Under Incomplete Probability Information. Journal of Engineering
Mechanics, ASCE, Vol. -112, No. -1. '
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User s Guide to
CALREL

&t . -
. A First and Second-crder Structural Reliability Analysis Program
INFUT DATA
1. Title —-—— Format (AB0)
Column Variable Description
1-80 TITLE Alphanumeric description of the problem

2. Centrgl Data —— Farmat (SIS/715/315,4d10.0)
1- 5 IFQ Type of technique used
IFO=1 MVFOSM
IFO=2 FOSM
IFG=3 FOMD
IFO=4 FOFD (Rosenblatt transformation)
6-10 IS0 Type of second-order approximation
IS0=0 First-order analysis only
IS0=1 Foint fitting method
I1S0=2 Curvature fitting methecd
ISO0=3 Both Point and Curvature fittings
11«15 ITG Type of integration schemes used in second
order approximation
IT6.eq.0 BRBreitung formula, Tvedt 2-term
formula and Tvedt single integral
ITG.ne.0 All above three schemes plus
Tvedt double integral
16-20 . ISV Type of sensitivity analysis required
ISV=0 No sensitivity analysic
I1Sv=1 distribution parameters
ISV=2 performance function parameters
ISV=3 distribution and performance
-function parameters
21-2%5 IRS restart code
' IRS.ne.0 restart analyzing an old,
unconverged problem
IFE.eq.0 analyze a new problem

1- 5 NX Number of btasic variables
6-10 NP Number of deterministic parameters in
the performance function
11~-15 NU Number of user—-provided distributions
. 16-20 NS Number of parameters in user—defined full
e distributions (Applicable when IF0=4)
s 21-2% NCORR Flag for correlation matrix .-

(Applicable when IFO.ne.4) °
NCCRR.eq.0 Uncorrelated variables
NCORR.ne.0 Correlated variables
2&6-30 INIT Flag for initialization
INIT.eq.0 Start from mean point :
INIT.me.0 Start point specified by user
31-35 IFPR Output code
IPR.eq.0 Output all iteration steps
IPR.ne.0 Output at every ipr steps
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o

Lo

1 M A

1—- S I0PT Type of ocptimization scheme used
I1I0FPT=1 HL-RF method
I10FPT=2 Modified HL-RF method
IOFT=3 Gradient Projection method

6-10 NIT1 Maximum number of iteration cycles
Default=100, Maximum=100 _
11-15 NIT2 Maximum steps in line search_
Default=4 ,
16-85 TOL Convergence tolerance
Default=0.001, Minimum=0.001
26=-35 0FT1 Step size reduction factor inm line search

I0PT=1, Default=1.0
: I0PT=2 or 3, Default=0.5
36-45 oFT2 Optimization parameter
I0FPT=2 Parameter c in descent functicn
Default=10
I0FT=3 Convergence toclerance for line
searchi: Default=TOL

46-355 QPT3 Optimization parameter
IOPT=3 Maximum step size in line search
Default=4.0

User-defined Distribution --- Format (IZ5,A20)
Skip thie section if NU=O,
For eact user-defined distribution input:

1- 5 NDISU Type number of user-defined distribution
NDISU > 20
6-25 UNAME Name of user-defined distribution.

Basic Random Variables
Skip this sectign if IFD=4, -
Fer each basic variable with NDIS < 21: (2I5,8D10.0)
1- S NV Variable number
5=10 ND . ' NDIS = abs(ND) ; Distributicn type.
NDIS=1 Normal
- NDIS=2. Lognormal
NDIS=3 Gamma
NDIS=4 Shifted Exponential
NDIS=5 Shifted Rayleigh
NDIgS=4 Uniform
ND1S=7 Eeta
NDIS=11 Type-1 Largest Value
NDIS=12 Type-1 Smallest Value
NDIS=13 Type-11 Largest Value
NDIS=14 Weibull

11-20 P1 Distribution parameter 1
ND>O Pl : mean value £
‘ ND<Q P1 : as defined irf Table 1
21-30 Fe Distribution parameter 2 e
ND20O P2 3 standard deviation
ND<O P2 : as defined in Table 1
31-40 P3 Distribution parameter 3
41-50 P4 - Distribution parameter 4

Fresently, P3 and F4 are applicable
only when NDIS=7,
S1-40 XINIT Initial value of x; only needed when INIT=0
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Foer each bacsiz variable with NDIS > 20:

1- S NV
6=-10 NDIS
11-20 F1
21-30 F2
31-40 P3
41-50 P&
a1=60 XINIT
1- S iB
6-15 END1
16-25 END2

Variable No.
Distribution
Distribution parameter
Distribution parameter
Distribution parameter
Distribution parameter .
Initial value of x; must be defined
even if INIT=0

Flag for bounds

type

£ WM e

IB=0 Nc bounds

1B=1 Has leower bound

IB=2 Has upper bound

18=3 Has lower and upper bounds

Loawer bound of the basic variable
Applicable when IE=1,3
Upper bound of the basic variable
Applicable when I1B=2,3

Fasic Random Variables ——— Format (15,2D10.0,I%5,28D10.0)
Skip thig section if IFO=1, 2, or 3.
Faor each besic variable input:

1- 5 NV Variable No.
6-15 SI16 Standard deviation -
16-25 YINIT Initial value of x
26-30 1B Flag for bounds
IE=0 No bounds
Ik=1 Has lower bound
1B=2 Has upper bound
IK=3 Has lower and upper bounds
31-40 BND1 Lower bcocund of the basic variable
Applicable when I1E=2,3
41~50 BND2 Upper bound of the basic variatble
Applicable when 1E=2,3
Correlatiocon Matrix ——— Format (#D&6.0)
Skip this section if NCORR=0,
1-10 RO Lower triangle of the correlation matrix
1=10,11-20 excluding the diagonals, Read it row-wise

Parametere in Full Dietribution Function —=— Format (8D10.0)

and in triangular shape.

Skip this section if NS=0.

1-10.‘-.. DS

Parameters in FPerfermance Function —— Format

Values of the parameters in the full
cumulative distribution function

(8P10.0)
<

Skip this section if NP=0. £

1"10'.-- DP

Values of the deterministic parameters in

the performance function £
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| o

?. Contreol Flag for Preagram Execution =-= Format (15)

1- 5 NEXT Control flag for program execution

NEXT=0 Step execution

NEXT=1 Restart a brand new analysis
All the aforementiconed data
should be input after this line.

NEXT=2 Re-~analyze the ol"d problem
with a different set of parameters
in the performance function.
Only the values of the parameters
in the performance function sheuld
be input after this line.

Notes:

(1)

(2)

(3)

IfT the nearest point is not found in NIT1 steps, the final
status of the analysis will be stoered in an unformatted
file ’calrel.sav’. This file mucst remain unaltered if the
analysis is to be continued in an ensuing run,

In a restart problem, the program reads only the title and
the control data from the input file. The initial status
of the problem are read from *calrel.sav’.

In order to be consistent, IF0, NX,; NP, NU, NS. and NCORR
must be the same as the previous run.

Toe override the restrictions NIT1<100 and TOL>0.001, input
negative NIT1 and TOL. Their absclute values will be used
in the analysis regardless eof the limits.
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functioen g(x.dp)

—
-

Ceewe.Function subroutine to compute the limit-state function
= vector of basic variables

CoeneosaX =

C.....dp = vector of deterministic parameters.

c
implicit real*8 (a=h,c—2)
dimension =x(1),dp(1)
9 & ... i
return ¥
end’ ’
subroutine df(par.x,nd,cdf,pdf)

c

C.ccc.Subroutine to compute pdf and cdf of user-defined distributions
Ceeeeapar vector of parameter distributions
value of variable

ConveeX =

Cieeeaand = distribution number (>20)
Cevew.cdf = computed cdf value
Cees..pdf = computed pdf value

c .

implicit real*8 (a=-h,o0-2)
dimension par(4)
ge to (10,20,...) nd=20
10 cdf = ...
pdf = ...
return
20 cdf = ...
pdf = ...
return

return
end

subroutine hfun(x,ih,ds,hi)

c
C..e..Subrcutine to compute conditional CDF’s for Rocenblatt transformation

vector of basic variables

Connaaed =

Cosesesih = row Number in Rosenblatt tranmsformation
Cuo-w..08 = vector of deterministic distribution parameters
Coeeeeshl = value of ith conditional cdf

c

implicit real+8(a-h,o-z)
dimension »(1),ds(l)
go to (10,20,...) ih
10 hi = ...

return
=1s) hi:? ves
ret@rn Fxd
= - &
~. "~
return B
end
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Hle (ser.for

function g(x.dp)

implicit real#8 (a=h,c~z)
dimension x(1),dp(1)

g = dp(2)%x(2)*xZ—dp(1)%x(1)
return

end

subroutine df(par.»x,nd,cdf,pdf)
implicit real#8 (a-h,o-z)

dikersion par(4) 3

regurn
end,

subroutine hfun(x.ih,ds.h)
implicit real*8(a-h,c~2)
dimension %(1),ds(1)
return

end

IMP\-('{ File -F\_y E;.an~9|¢ l:
X, = Type 1 (u-a.qo.‘l«-n. qao.oa,mﬂs‘) % Ry et
Xy =LN(p=20, T=%)
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example 1
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example
type of
ifo={
ifo=2
ifo=3
ifo=4
type of
ise=0
isop=1
isc=2
ieo=3
type of
analysi

1s5v=l

number
number
number

¢f determimistic parameters
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University
Department of

Wk k %k ¥ % %

’
»

®

* Kk &k ok %k %

c T
Civil

Division of
Structural Engineering and Structural Mechanics

F O S R A P .
First Order Structural Reliabilty Analyeis Program

Developed By
Pei-Ling Liu and Armen Der Kiureghian
Last Revision: September 1986

Extended for FOFD and SOSRAP by

HOMNG-Z0NG LIN, March 198%

Califeornia
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first-order technique used
«s s Mmean=value, 1st order,
«e-first—crder.,
-sxfiret—-order,
s e Tirst=-crder,
secoend-order technique used

input data -- problem

cecesasifo=
eénd mcment (mvfoem) method
second moment (fosm) method
marginal distribution (fomd) method
full dist.(Rosenblatt trans) method
seaeelBO=

1 WX

3

3

csscnnevesss.NG second-order approximation
sssassasassransssasasspint fitting method
ceressavescassnsssUurvature fitting method
esess..point and curvature fitting methods

integratiocn schemes used in second-corder

G seasvavessaaanvesssmaasnenacsawasitg=
itg.eq.0 ....Breitung, Tvedt®s 2«term and single integral
itg.ne.0 ...all c¢f the above plus Tvedt’s double integral

type of sensitivity amalysis Tequired ..,.igv=s .
I18VE(Q cienneacessaneseses.n0 SENS1tivity analysis required

scesevennsnssaS€8NEitivity of distribution parameters

1sv=2 .......sensitivity of perfomance function parameters
isv=3 ....distribution and performance function parameters

ef random variables

of user provided distribution

s e saanunannaaassIHNE

.....--ﬁp=

e ae-TIAE

mnumtter of parameters in usar—definmned full

distrib
cerrela

utions
tion structure

S e s sssacsnsrssanavaenstnnsaansealiBE

tesesvesnsnannses s NCOTTE

1

3

o

O
Q

NECrr.8G.0 ccveesscnnsesuncorrelated variables

NCErr.nNe.0 c..eeeevsscasnca-COrrelated variables
initialization flag .ccccecessvnccacanessinits

init.eqi0 ..........initialization at mean point

init.rne.0 ci.veccerascecacdnitialization by user

Clutlet 'Flag tt.-.!l.l--l.llaclllilcutl.I.-iprs

ipr.e

Q.o

¢]

1

---......-..--Clutput Cl'l"ll\,' fil'hal 'I'ESUltS

1Ipr.ne.0 ...cceeescesa.output at every ipr eteps
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1O0PT=] cacresasnssscnssosnnncssesensaliF=rL g eivu
10pt=2 (iicnecniecrssnnasModified RF-HL method
Iopt=3 .icecesscnscss.Bradient Projection method
maximum number of iteration cycles .....nitl= 20
maximum cteps in line search .vccevvee..nit@= 4
convergence tolerante .s..cscevseccv-tal= 1.000E-04
cptimization parameter 1 .....s....cptl1= 1.000E+Q0Q
cptimization parameter 2 ....vc.c...0pt2= 0.000E-0O1
eptimization parameter 3 ,.........0pt3= 0.000E-QO1

aveilable proebability distributions:
NOTrmal- ceereccansasenscssndis=l
lognorial cceeceveccansse.ndis=2
OAMME Svvesavsencansasrans.nNdis=3
exporential ......ccceee..ndisTG
reyleighiceececeescccacanes.ndis=5
UNIfOrMecacecaresannaasnnsc.andics=é
beta.cieieorenncsnnscesasnndis=?
type i1 largest value .....ndis=11
type i smallest value ....ndis=12
type ii largest value ....ndis=13
weilbwll.. oo ennaneeeannenndis=14

statistical data ¢«f basic varibles:

var ndis mean «t. dev. paraml param2 param3 param&4 init. pt
1 11 1.00E+02 2.00E+01 9.10E+01 &.41E-02 1.00E+Q2
a2 2 Z2.00E+01 S.00E+00 2.97E+0Q 2.46E-01 2.00E+01

deterministic parameters in performance function:
dp ¢ 1) 1.000E+00
dp (¢ 2) S.000E-01

*EEE solution phase LAt

mvfosm technique: beta = 0.9806; failure probabtility = 1.434E-01

iteration no. 1
var. linearization point unit normal
= 7 alpha
1 1.000E+02 1.773E-01 0.19056
a2 2.000E+01 1.231E-01 -0.9817
reliabilty index beta = 0.2159
iteration no. a2
var. linearization point unit normal
» Yy alpha
1 F.992E+01 1.734E=-01 0.3046
=4 1.557E+01 ~-8.930E-01 ~0.9%52%5
reliabilty index beta = Q.9097
iteratien-no. 3 -
var. dinearization point unit normal o
* x ' Yy alpha . .
1 1.040E+02 3.78BE~01 0.3697 ‘.
2 1.449E+01  -1.185E+00 -0.9292 "
reliabilty index beta = = 1.2437
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iteration nc. 4

var. lineariczation point unit normal
»® Y alpha
1 1 . 0SBE+02 4. 656E-01 0.3777
2 1.455E+01 =1.170E+0Q0 -~0,925%9
reliabilty index beta = 1.2595
iteration no. S
var. linearization point unit normal
» Yy alpha
1 fLOL0E+02 4 .758E-01 0.3781 : .
2 1.456E+01 -1.1566E+00 -0.9258 .
reliabilty index beta = 1.2589
iteration no. -
var design point unit sensitivity vectors nearest pt unit rormal
X% gamma delta eta y* alpha
1 1. 060E+02 0.3782 -0.2715 -0.0841 4.751E-01 0.3782
2 1.456E+01 -0 .9257 0.9624 -0.9945 —-1.165E+00 -0.92357
reliability index beta 1.2589

failure probability 1.040E-01

XTI LTI LIS LIILILISI LRSS L IS 2SR SRR L LRl RS s

* *
* Sensitivity Analysis -
* *

e B P U A U DA eI WA U B A U3 U B 6 N B JE A 95 I 6 6 X 09 NN

#x% Sensitivity Analysis on Distribtution Parameters ##x

d(beta)/d(parameter) :
var mean std dev . par 1 par 2 par 3 par 4
1 =1.773E-02 -5.349E-03 -1.773E-02 4.157E+Q0

2 2.514E-01 -2.536E-01 3.750E+00 =4, 3B2E+00

d(pfll)l/d(parameter) : : ’
var mean std dev par 1 par 2 par 3 " par 4
1 3.202E-03 9.661E-04 3.202E-03 -7.507E-01

2 =4 . S40E-028 4.S80E-02 -56.791E-01 7.914E-01

#x¢ Sensitivity Analysis on Deterministic Farameters ##x

par d(beta)/d(parameter) d(pfl)/d(parameter)
1 -1 .880E+Q0Q : 3.39%E-01
2 i 3.760E+Q0 -6.791E-01
™ - &
o
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*!*i*********ii*l*i*************i*iii******i**i*i*l***
Second QOrder Structural Relisbility Analysis

Point Fitting Method

* ok X %k &
* & % % %

LA AR AL AR LIS I I AL I LT T LT LR DT T I LT REF PTGy

& ]
*# coordinates and ave. main curvatures of fitting points inm rotated space #%¥
- T

P

y' 1 = 1.253%4 y' 2 = 1.214377
y' 1 = -1.258944 y’ 2 = 1.217586
a1 =-0.2647618E-01

*¥#% cgecond-order approximation e#s

failure generalized

probability reliability index
Breitung asymptotic formula 1.077E-01 1.23%0
Tvedt three term formula 1.091E-01 1.2315
Tvedt single integral formula 1,090E-01 1.2316
Tvedt double integral formula 1.090E-01 1.8316

LA Al 2 AR R g o2 Al 22 2RI SISt E Y Y N

Second Order Structural Reliability Analysis

" Curvature Fitting Methad

* Kk k & K%
* K ok Kk %

LA 22 AR ST I IS I II LTI T SIS LIS LSRR S LY LR LR N AL TR
*## curvature matrix at design peint in rctated space #*«

1
1 ~2.740E-02

*#% second-crder approximation Ees

failure generalized
probability reliability index
Breitung asymptotic formula - - - 1.078E~01 1.2383
Tvedt three term formula 1.092E-01 1.2306
Tvedt single integral formula 1.092E-01 1.2306
Tvedt double integral formula 1.092E-01 1.2306
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* W input data -- problem 1 I YY

example 2.
type of first-order technique used .......ifo= 3
ife=1 ...mean-value, lst crder, 2nd mcement (mvfosm) method
ifoe=2 .l.first-crder, second moment (fosm) method
ife=3 ...firet-order, marginal distribution (fomd) method
ifo=4 ...firet-order, full dist.(Rasenblatt trans) methcod
type of cecond-order technique used .....iso= 3
iso=0 ......cece...no second-order approximation
1S6=] ..ciscarvtecnccaccss--point fitting method
18028 iuc-ccvennsssessnaaCurvature fitting method
iso=3 .......point and curvature fitting methods
type of integration schemes used in second-order
@NAlYSiS ..uiiieevevecnccasinsrassccaaansasitg= 1
itg.eq.0 ....Ereitungs Tvedt®s 3-term and single integral
itg.ne.0 ...all of the above plus Tvedt®s double integral
type of sensitivity analveis required ...isv=s 3 .
18Vv=0 L.uirecicssnceenenesntt SENEitivity analysis required
1SV=1l sheeesnssceessenNsitivity of distribution parameters
isvEl .......s€nsitivity of perfomance function parameters
1sv=3 ....distribution and performance function parameters
number of random variables ...cccicecceae XS
number of deterministic parameters .......np=
number of user preovided distribution .....nu=s
number of parameters in user-defined full
distributions teceieceersvcsncacnsacsccceeNED
correlation structure ....cccccccacnacaNCOTTE
NCETT.00.0 ceecrrsesvessaauncorrelated variables
neerr.me.0 s.aiiiivreeeenaCcoOTrelated variables
initialization Tlag sieesecccncoeccensaneinit= )
init.eq.0 ....ce....initialization at mean point
init.ne.0 .cevvecnannsescinitialization by user
cutput flag .cccvecastencecaccaasnncncaaalprs -1
1pr.egq.0 ...veessaec...cutput only final results
ipr.ne.0 ...ccieseeca..cutput at every ipr steps

0O oMhp
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optimization scheme used ....cccincuva..itpt= 1 .
Iopt=l L iiiicecercntatirnsncssnans RF~HL method
Iopt=8 siecvacnssnasecrsaeModified RF-HL methed

(lopt=3 ...ceeveeveac..Bradient Frojection method

maximum number of iteration cycles .....nitl= 20

maximum steps in line search ....0voev..nite= 4

convergence tolerance .......s0000..t01= 1,Q00E-Q4

cptimization parameter 1 ..........0pti= 1.000E+Q0
cptimization parameter 2 ..........0pt2= Q,.000E-O1}
eptimization parameter 3 .....cce..0pt3= 0.000E-01

T . .

available probability distributions: .
NOrMal vecesecsencseesssas.ndis=l
lognormal ...cesccensessa.ndis=a
QAMMA cccucvasccasvsseasssndis=3
exponential ...vciceaccana.nNdis=4s
rayleighe.veececceseceacae.ndis=S
URiforMesceeecransseenncesndis=h
beta...cveiceceseeccaveenandis=?
type 1 largest value .....ndis=11
tyvpe i smallest value ....ndis=12
type 11 largest value ....ndis=13
weibull..ieersveoeacrnsenancsndis=1s

statistical data of basic varibles:

var ndis mean st. dev. paramil parama param3 paramb init. pt
1 11 1.00E+02 2Z2.00E+01 9.10E+01 &.41E-02 1.00E+Q2
e 2 2.00E+01 GS.Q0E+Q0 2.97E+00 2.G64E-01 2.00E+01

deterministic parametere in performance function:
dp ( 1) = 1.000E+00
dp ( 2) = S.000E-Q1

corresation coefficient matrix in original space:
1 2
1 1.00 0.50
a 0.50 1.00

zerrelation cocefficient matrix in normal space:
1 a
1 1.00 ¢.51
2 0.51 1.00

XTI sovlution phase bt A
nvfesm techrigque: beta = 1.0911% failure probability = 1.374E-01
iteration no,. 1..__.
/ar. linearization point unit normal
S Y alpha
1 £ 0OCGE+02 1.773E~-01 -0,3470 =
2 2: O00E+01 3.764E-02 -0.9379 G
-eliabilty index beta = 0.1813 ;
s
“teration no,. 2
/ar . linearization point unit normal
¥ Y alpha
1 ?.078E+(1 -3.511E-01 -0.2607
2 1.519E+01 -9 .489E-01 -0.9654

‘eliabilty index beta = 1.0117
- T 331 ] @U-S



*+% Sensitivity Analysis on Deterministic Ferameters #*+#+

par d(beta)/d(parameter) d(pfl)/d(parameter)
1 =2.328E+00 2.732E-01
2 4. 6SLE+00 -5.563E-01

FEERFELEFEEELEEFREREREEE R R RESEEEREEEXRREEREREF T EFEEE

Wi

Second Order Structural Reliability Analysis «

x ok x ¥

Feint Fitting Methed

' EEERE

¥

********ﬁ*‘-***{-**‘.‘**********i****-l FR YL SRR RES RS

#¥ ccordinates and ave. main curvatures of fitting poi-its in rotated SRE&ECE **%

y* 1 = 1.552842 y* 2 = 1.453146
vl 1l = -1, 552842 y* 2 = 1.4346239
a l =-0.3245328E-01 ‘
#£ee cocond-orier aporoximation  #E%
failure gerneralired
probasility reliability irde:x:

Breitung asymptotic formula 6.352E-02 1.5259 )
Tvedt three term formula 6.443E-C2 1.518&
Tvedt eingle inteoral formula. 6 .442E-02 1.5187
Tvedt double integrazl for-mula &.442E-02 1.5187

S~

»

bt AL S 2 X LS 2L St L A S 2T AL 2L IS L3I E LR Y
Second Order Structurael Reliability Analyeis

Curvature Fitting Method

£ % % ¥ %
* K k Kk %

b e d 2 2 2 2 i S R IS R St e T 2SR I XY S L L S TR T L oL L

%% curvature matrix at design puint in rotated space #«*
1 .
1 -2.272E-02

bed

i
-y

xx% second-order approximation #%%

failure generalized

prebability reliability index
Ereiturng asymptotic formula &.355E-02 1.3257
Tvedt three term formula b.446E-02 1.518¢4
Tvedt =ingle integrel formula &.445E-02 1.518%5
Tvedt double integral formula &.445E-02 1.5184
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20

function g(x,dp)

implicit real#8 (a-h,o-z)

dimencsien %(1),dp(1)

g = dp(1) - dp(2)#x(1) ~ dp(3)*#x(2) g =6-X, _X
return \ z
end

subroutine df(par.x.nd.cdf,pdf)
implicit real#*8 (a-h,c~z)
dimensicn par(4)

rekurn

end,

"

subroutine hfun(x,ih,ds,h)
implicit real*8(a~h.o=2)
dimension x(1),ds(1)

go to (10,20) ih
h = l-dexp(-x(1))

return

A = 1-(1+ds(1)%:(2) ) xdexp(—x(2)—da(1)*x{1)%x(2)) &QC‘) = 1'O
return

end

Input File ‘@w'EKWMple. 3
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example
tvpe of
ive=1
ife=2
ifo=3
1Fe=4
type of
isc=0
iso=1
igo=2
igsc=3
type of
analyesis
itg.eq
jtg.re
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HEFFEFEEREEERFEREERFNEERERESRERF R REREFEEFREERERFFEREE R F LA LSS

LAl s input data == problem 1 R

3
first-order technique used .......:fo= 4

.eemEai—value, let order. 2nd moment (mvfosm) method

«..first-crder, second moment (fosm) method
csafirst-ovrcder, marginal distribution (foma) method
es-firgt-cirder, full dist.(Rogemblatt trans) methaod
second-order technique used .....is6= 3
cercenceaneesI SECcOoNd~orcer approximation
cectccarasnsssancssassplint fitting method
ricinmasensernnessCUrvature fitting method
cvesse-point and curvature fitting methods
integraticn echemes used in second-order

+ asssesrsssmssscenseansseasanseltg= b
0 L...Breitungs, Tvedt®s 3-term and single integreal
L0 ...2l1 «¢f the above plus Tvedt’s double integral

type of

igv=0

isv=1
iev=gE
isev=3

=emsitivity analysie required ...isv= 3

cetesacsanvancansasenit s@Msitivity analysis required
rerarvecnsese-SENSItivity of distributien parameters
eeee-s.SENEitivity of perfomance function parameters
ssedistribution and performance function parameters

numher of random variables c.eeecencnenesaiu=
number of deterministic parameters .......np=
number of user provided distributieon .....nu=
number of paremetere in uvser-defirned full
Oistributicie ..cicerveroaccnssncsnnseraacsNEE 1
correlation struCture .ceeccveeroacsaaa NCOTTS 1
NCOTr.€0.0 .vvecacvssen-asuncorrelated variables
MCOVT.NE.Q ,eeueeeenansernsCOrrelated variables
initialization flag ceeviavvennencenanaainits 1
inrit.equ(® ..i.iceva.einitializetion at mean point
Finit.nesd Ji.iiveieseeeaesinitialization by user
output Tlag ...ccvvccrevsrenscrsscarvasasasipI'= 1
Ipr.eq.d s..ccicencasscoutput orly final results
Iprovme.0 siveacersesesstitput at every ipr steps

oW
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ICPET] Liinstscntancarsnerennaaasn..RF~HL method
10Ppt=2 cievsscnaccsrseraneMedified RF-HL methad
iopt=3 ....iiinenss...Bradient Projection method
papimum number of iteration cycles .....nitl=s 20
mayimum steps in lire searth .. v.ieeee..nitB= 4
convergence® tolersnte c.v.eeasenacetol®m 1, 000E-04
cptimization parameter 1| ..........cptl= 1.000E+0Q
cptimization parameter 2 (... 0pt2s 0,000E-08

optimization parameter 3 ...... ree.0pt3= 0,.000E-01
- FEEE restart ccolution * %N
iteration no. 1
var. linearization point unit normal
u Y alpha
1 1.825E-01 =-9.589E-01 -0, 4254
2 4.818E+00 2. V64E+0G 0,9050
reliabilty index bteta = z2.2788
iteration rno. e
var. linearization point unit normal
® Yy alpha
1 1.817E-01 -9.695E-01 ~2.a424k
2 4,818E+00Q 2.06ZE+00Q 0.9054
relizbilty index beta = 2.2788
iteration no. 3
VT lirnearization point un:it nermal
b Y alpha
1 1.823E-01 -9.67SE-01 -0.4252
2 4,815E+00 2.0&3E+00 0.9051
reliabilty index beta = 2.2788
iteratior no. 4
Var. linearization goint unit normal
b Yy alpha
b 1.818E-01 -9.670E-01 -0.4247
2 4.818E+00 2.06ZE+Q0 0.9053
relisbilty index beta = 2.2788
iteration no. =]
Var. linearization point unit normal
b Y alpha
1 1.8R2E-01 -9.5679E-01 -0.4251
a2 4 .818E+00 2 .Q&3E+00 0.9051
reliabilty inde:n beta = z2.2788
iteration no. &
Var. lirearization point unit normal
= x y alpha
1 = 819E-01 -9.687E-01 -0 .4248
2 4.81BE+C0O 2.063E+00 0.9053
reliabilty inde: beta = 2.2738
iterstion no. 7
Var . lingarizaticn point unit normal
pH y ) alpha
1 1.821E-01 -9.,681E-01 -0.4250
2 4.218E+00 2.083E+00 0.9052
reliabilty index beta = 2.2788




val . LiNEal dlatiun [T RS —iaow - _——

! % Yy dlpha
L 1.820E-01 -9.686E-01 =0.4249
4.818E+00 2.063E+00 0.9052
reflabllty index beta = 2.2788
jteration no. 9
var. lingarization point unit normal
» ' alpha
1 1.821E-01 -9.682E-01 -0.4250
2 4,818E+00 2.063E+00 0,9052
reliabilfy index beta = 2.2788
iteration no. 10
var. linearization point unit normal
» Yy alpha
1 1.820E-01 -9.4685SE-01 -0.4249
e 4.818E+0Q0 2.063E+Q0 00,9082
reliabilty index beta = 2.2788
iteration no. 11
var. lingarization point unit normal
b Yy alpha
1 1.821E-01 -9 .483E-01 -0.4250
2 4 .B18E+00Q 2.043E+00 0.90%2
reliabilty index beta = 2.2738
iteratien no. 12
var . linearization point unit normal
» Yy alpha .
1 1.820E-01 -9 .684E-01 —-0.4249
= 4.818E+00 2.063E+0Q0 0.9052
reliabilty index beta = 2.2788
reliability index beta = 2.2788
failure prabability = 1.134E-02

FE IR I I I TN PSRN AN I IS SIS N IE N I 5 B IR AR IR 6 UG A 4 A

* +*
* Sensitivity Analysis *
* *

bd e 2 A S 2L L LIS SIS RIS R L L Y Y R R

*%% Sensitivity Analysis on Distribution Parameters ##«

par d(beta)/d(parameter) d(pfl)/d(parameter)
1 1.825E-02 . -5 .427E-04

* %% Sensxt:vxty fnalysis on Deterministic Parameters ,Ex
k-

108 ST

par d(beta)/d(parameter) dipfl)/d(parameter) >
1 2.765E-01 -1.119E-0Q2 .
e -6.8S3E-02 2.038E-03
3 -1.814E+00Q S5.393E-02
336
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Second Order Structural Feliability Analysis

Feint Fitting Method

* ok ¥ Kk ¥

*
*
*
%
*
TEFERP SR R AR SRR R R AR LS RS EEEF R LR A RS AR EEREELE LS EE XX

-y
-

**> coordinetes and ave. main curvatures of fitting points im rotated op

y' 1 = 2.278824 y* 2 = B.S565030
vy’ 1 = -2.278824 y* 2 = 2.99930%
a1 = 0,90422482E-C1

S — T — T i ] T T ok . . "

*i%  cspcond—order approcimation  #%e

failure generaliczed
prebability - reliability index
Breiturng szymprtotic formula ?.54:2E-03 2.343%
Tvedt three term formula 9.2885E-03 2.3941
Tvedt cirngle integral formula ?.291E-03 2.3538
Tvedt double integral formula .2FEE-C3 2.3538

AEEREEEEREERE R R RSP RS ER R R LS ERLEREXEREFFERLEEEEF

»

Second Grder Structurzl Reliability Anzlysis

Curvature Fitting Method

x ¥ x %
* ¥ & ok oF

FrErA N RE LI ERIXEREFEEESREEEF LTSRS LRSS SENEFSEET >SS x
*¥% curvature mat-i1x at design point in rotated space *¥s .

1
1 1.638BE-01

*%¥ cecond-order approximation weE

failure general:ized

probability reliability inde:x:
Breitung asymptetic formula " B.580E-03 2.3833
Tvedt three term formula 8.212F~03 2.2992
Tvedt zinjle integral fFarmula 8,229E-03 2.398s8
Tvedt daé@le integral formula £.223E-03 2.3%9e4

*e

337 %‘{77



Te run CALREL, do the following:

(1)

(2)

(3)

(4)

(6)

(7)

(8)

(2)

(10)

Wb

(11)

(12)

Turn en the power of IBMPC and VCR terminal.

Create a temporary directory in.drive C and make it your
working directory.
[C:\]> ™MD CE249
CC:\1> CD CE249

_r: My,

Copy all files in D:\CE249 to drive C.
(C:\CE249)> COPY D:\CER49\#.% .,

Reset the search path.
[C:\CE249]> START

Edit the three subroutines in user.for such that they work
in the same manner as indicated in the class handout.
To edit the subroutinec, key in:
CC:\CE2491> FE USER.FOR
To display the help file in PE, press <F1> key.

Compile user.for and link the program.
[C:\CE2491> CUSER
If there are errors, use *TYFE ERR® to examine them, and
correct the errors in user.for. Then compile user.for again.
Once a correct user.for is compiled, link the program.
[(C:\CE2491> LREL

Create an input data file.
CC:\CE2421> FE IN
Ta exit the editor, type *<F3> IN NOTABRS <RETURN>*. If ’*NOTARS®
is skipped, some spaces in the input file will be replaced
by tab’s. That messes up the input file.

Run program CALREL.
[C:\CE2493> LALREL < IN (output on screen)
[C:\CE2491> CALREL < IN > OUT " (output to file *0UT*)
Make sure you leave spaces between file names and the symbols
< and >.

Read cutput file (if the ocutput is routed to a file)
[E:\CE24%1> TYFE OUT (read the fTile *0UT’ on screen)
(C:\CE2491> NETPRINT OUT (get a hardcopy of the output file)

Befcre the print queue is subaitted, make sure that the line

printer is enline.

Store your files in a floppy disk and delete all files in

the working directory.
[C:\CE2491> COPY (your file) A:
[C:\CER249]> ERASE #®.#»

b M S

Delete the temp&rary directory.
[C:\CE249]> CD \
[C:\J> RD CE24%

Te shut down the machine, take your diskette ocut and turn
off the power.
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