SSC-338

FATIGUE PREDICTION ANALYSIS VALIDATION FROM SL – 7 HATCH CORNER STRAIN DATA

This document has been approved for public release and sale; its distribution is unlimited

SHIP STRUCTURE COMMITTEE

1990

SHIP STRUCTURE COMMITTEE

The SHIP STRUCTURE COMMITTEE is constituted to prosecute a research program to improve the hull structures of ships and other marine structures by an extension of knowledge pertaining to design, materials, and methods of construction.

RADM J. D. Sipes, USCG, (Chairman) Chief, Office of Marine Safety, Security and Environmental Protection U. S. Coast Guard

Mr. Alexander Malakhoff Director, Structural Integrity Subgroup (SEA 55Y) Naval Sea Systems Command

Dr. Donald Liu Senior Vice President American Bureau of Shipping Mr. H. T. Haller Associate Administrator for Shipbuilding and Ship Operations Maritime Administration

Mr. Thomas W. Allen Engineering Officer (N7) Military Sealift Command

CDR Michael K. Parmelee, USCG, Secretary, Ship Structure Committee U. S. Coast Guard

CONTRACTING OFFICER TECHNICAL REPRESENTATIVES

Mr. William J. Siekierka SEA 55Y3 Naval Sea Systems Command Mr. Greg D. Woods SEA 55Y3 Naval Sea Systems Command

SHIP STRUCTURE SUBCOMMITTEE

The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters by providing technical coordination for determinating the goals and objectives of the program and by evaluating and interpreting the results in terms of structural design, construction, and operation.

AMERICAN BUREAU OF SHIPPING

Mr. Stephen G. Arntson (Chairman) Mr. John F. Conlon Mr. William Hanzalek Mr. Philip G. Rynn

MILITARY SEALIFT COMMAND

Mr. Albert J. Attermeyer Mr. Michael W. Touma Mr. Jeffery E. Beach

MARITIME ADMINISTRATION

Mr. Frederick Seibold Mr. Norman O. Hammer Mr. Chao H. Lin Dr. Walter M. Maclean

NAVAL SEA SYSTEMS COMMAND

Mr. Robert A. Sielski Mr. Charles L. Null Mr. W. Thomas Packard Mr. Allen H. Engle

U.S. COAST GUARD

CAPT T. E. Thompson CAPT Donald S. Jensen CDR Mark E. Noll

SHIP STRUCTURE SUBCOMMITTEE LIAISON MEMBERS

U.S. COAST GUARD ACADEMY

LT Bruce Mustain

U.S. MERCHANT MARINE ACADEMY

Dr. C. B. Kim

U. S. NAVAL ACADEMY

Dr. Ramswar Bhattacharyya

STATE UNIVERSITY OF NEW YORK MARITIME COLLEGE

Dr. W. R. Porter

WELDING RESEARCH COUNCIL

Dr. Martin Prager

NATIONAL ACADEMY OF SCIENCES -MARINE BOARD

Mr. Alexander B. Stavovy

NATIONAL ACADEMY OF SCIENCES -COMMITTEE ON MARINE STRUCTURES

Mr. Stanley G. Stiansen

SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS -HYDRODYNAMICS COMMITTEE

Dr. William Sandberg

AMERICAN IRON AND STEEL INSTITUTE

Mr. Alexander D. Wilson

Member Agencies:

United States Coast Guard Naval Sea Systems Command Maritime Administration American Bureau of Shipping Military Sealift Command

Address Correspondence to:

Secretary, Ship Structure Committee U.S. Coast Guard (G-MTH) 2100 Second Street S.W. Washington, D.C. 20593-0001 PH: (202) 267-0003 FAX: (202) 267-0025

An Interagency Advisory Committee Dedicated to the Improvement of Marine Structures

December 3, 1990

SSC-338 SR-1297

FATIGUE ANALYSIS PREDICTION VALIDATION FROM SL-7 HATCH CORNER STRAIN DATA

The ability to predict the fatigue life of structural details is an essential element in the design of modern ships. Fatigue analyses are frequently performed to ensure the safety and reliability of these structures. There are very few instances, however, where full scale testing and instrumentation was used to validate fatigue analysis predictions. This report provides a well-documented case history of fatigue cracking experienced on the SL-7 Class container ships. Using hatch corner strain gage data obtained while the vessels were in service, fatigue damage evaluations were made for the original structural design and for subsequent modifications. The evaluation methods and results and relevant sea state and strain data are provided.

J. D. SIPES Rear Admiral, U.S. Coast Guard Chairman, Ship Structure Committee .

· · ·

Technical Report Documentation Page

1. Report No.	2. Government Acc	ession No.	3. Recipient's Catalog	No	
SSC-338					
4. Title and Subtitle			5. Report Date		
Fatigue Prediction Analysis Validation From			Decembe	er 1985	
SL-7 Hatch Corner Strain Data			6. Performing Organizat	tion Code	
			8. Performing Organizat	ion Report No.	
7. Author's)			RD-85		
Jeng-Wen Chiou and Yung-	Kuang Chen		SR-12		
9. Performing Organization Name and Address			10. Work Unit No. (TRA	IS)	
American Bureau of Shipping					
45 Eisenhower Drive	-		11. Contract or Grant N	o.	
Paramus, NJ 07653-0910					
			13. Type of Report and	Period Covered	
12. Sponsoring Agency Name and Address					
Ship Structure Committee			Final Rep	ort	
U.S. Coast Guard					
2100 Second Street, SW			14. Sponsoring Agency (Code	
Washington, DC 20593		-	G-M		
15. Supplementory Notes					
16. Abstract	• · · <u></u>				
The objective of this	report is t	o provide a c	omparison of	the	
hatch corner fatigue	cracking exp	erience of th	e SL-7 conta:	iner	
ships with theoretica.	l fatigue ca	lculations.	The fatique s	studv	
was based on hatch com	rner strain	gage data col	lected from 1	two of	
the vessels in transo	ceanic servi	ce. Strain h	istories for	the	
hatch corners as orig:	inally desig	ned and as mo	dified are		
included. Fatigue da	nage evaluat	ions were car:	ried out usir	ng:	
a) deterministic fation	gue life cal	culations, b)	probabilisti	ic	
fatigue life calculat:	ions, and c)	fracture mec	hanic calcula	ations.	
	•	· .		· , ,	
17. Key Words		18 Drathur fr			
	train Gage	National Tech	"Available to	the public from	
17. Key Words18. Distribution StatementAvailable to the publiFatigueStrain GageNational Technical Information ServiceFatigue GrackingFatigue DamageSpringfield, VA 22161 or			n service		
			Facility		
Deterministic Methods National Marine Research Center					
Rational Maticine Research				ncer	
19. Security Classif. (of this report)	20 Security Cla	ssif. (of this page)	21, No. of Pages	22. Price	
	1			44. I IICE	
UNCLASSIFIED	UNCLA	SSIFIED	170		
				1	

Form DOT F 1700.7 (8-72)

-

Reproduction of completed page authorized

METRIC CONVERSION FACTORS

When You Know	Multiply by	To Find	Symbol		22 22 21 22 21	Symbol	When You Know	Muitiç
leet	LENGTH							4 226/
leet	LENGTH				20		_	LEN
leet		~			2 219	mm cm	millimeters centimeters	0.0 0.4
leet		•				cm m	maters	3.3
	*2.5 30	centimeters centimeters	⊂m ∽ cm	7	a	m	meters	1.1
yards	0.9	contimotors motors	• CM M _ `		17	km	kilometers	0.6
miles	1.6	kilometers		, <u> </u>				
		· · ·		· _=	16		_	` AR
	AREA					•		
			•	6	Ē	cm²	equere continueters	0.1 1.2
square inches	6.5	squere centimeters	i omiti 1					1.2 0.4
square feet		squere metere			Ē14		hecteres (10,000 m ²)	
square yerde				<u> </u>		174	1 10 5000001005000000	• •
•			km* he		Ē13			
	W 1 W	1196 HEI - F	1-1-	6	<u> </u>		r	MASS
	MASS (weight)			=	12			
			-		11		- grame	0.0
			-					2.2 1.1
short tone	0.9	tonnee	t	4	E10	-	tonnes (toos ay,	
(2000 lb)		Service.	-	· _				
		•			Ē		-	VOI
	TULUME			=				
teerpoone	5	milliters	ml		Ē	mi		0.
Incoquidat	15	milliliters	ml	J		1		2.1 1.1
fluid ounces	30	milliliters	mi	<u> </u>	<u> </u>		liters	0.
cupe	0.24	liters		_=		ر س	cubic meters	36
pints					Ē	m3	cubic meters	1.
					<u> </u>			
cubic feet	0.03	eubic meteri	ر س	2	Ē6		TEM	IPERA'
cubic yards	0.76	cubic maters :	^د س	=				/ 6.111 -
•	-	````			<u> </u>	°C	Colsius	9/5
					Ē3		temperature	edd
Fahrenheit temperature	6/0 (after exbinecting	Celeius temperature	°C	1			0F	32
	32)	·		=			-40 0 11111111	140
J em (exactly). Fer a	ather exact convert	elene and more detail /	tables see		(– 1	4
	/eight and measure	A Price #2.40 au	aleg.	Inches			°C °C	ò
P	square inches square test square yerds square miles acres ounces pounds short tone (2000 lb) teespoons fluid ounces cups pints quarts ghions cubic feet cubic yards TEM Fahrenheis temperature	AREA equare inches 6.5 equare tert 0.00 equare yords 0.8 equare miles 2.6 ecres 0.4 MASS (weight) ounces 0.4 MASS (weight) ounces 0.4 encres 0.4 MASS (weight) ounces 0.4 encres 0.4 volume tempoore 6 tablespoore 5 tablespoore 15 fluid ounces 30 cups 0.24 pints 0.47 querts 0.96 gelions 3.8 cubic feet 0.03 cubic yards 0.76 TEMPERATURE (an Fabranheis 5/9 (after subtracting 32) arm (accestly). For other exact converting 32) arm (accestly). For other exact converting 32)	AREA square inches 6.5 square centimeters square feet 0.09 square meters square miles 2.6 square meters square miles 2.8 square miles square miles 2.8 squares square miles 2.8 squares short tone 0.9 stillograms (2000 fb) VOLUME stonnee tesepoone 5 milikiters fluid ounces 30 milikiters gelons <td>AREA square inches 8.5 square centimeters cm² square feet 0.08 square meters m² square miles 2.6 square meters m² scree 0.4 testares m² MASS (weight) grame 8 8 cunces 28 grame 8 pownds 0.4 testares 8 short tone 0.9 grame 8 (2000 lb) VOLUME testares milititers milititers testapoone 5 milititers milititers milititers tablespoons 15 milititers 1 tablespoons 30 milititers 1 querts 0.95 titers 1 gallons 3.8 titers 1 cubic feet 0.03 cubic meters m³ cubic yards 0.76 cubic meters m³ temperature S/9 (after 32) Celsius 0*C temperature 32) 1 temperature <td< td=""><td>AREA 8 square inches 8.5 square tect 0.00 square meters m² square miles 2.6 acres 0.4 mASS (weight) 1 ownces 20 grams 8 models 0.4 models 1 models 1 models 1 models 1 <</td><td>Approximate Conversions to Metric Messures P Approximate Conversions to Metric Messures When You Know Multiply by To Find Symbol LENGTH LENGTH LENGTH AREA Source antimaters Inches 2.5 Continuaters Inches Convert Co</td><td>Acros U.4 rectare returns <threturns< th=""> <threturns< th=""> <thr< td=""><td>Active U,4 rectand Her 6 </td></thr<></threturns<></threturns<></td></td<></td>	AREA square inches 8.5 square centimeters cm² square feet 0.08 square meters m² square miles 2.6 square meters m² scree 0.4 testares m² MASS (weight) grame 8 8 cunces 28 grame 8 pownds 0.4 testares 8 short tone 0.9 grame 8 (2000 lb) VOLUME testares milititers milititers testapoone 5 milititers milititers milititers tablespoons 15 milititers 1 tablespoons 30 milititers 1 querts 0.95 titers 1 gallons 3.8 titers 1 cubic feet 0.03 cubic meters m³ cubic yards 0.76 cubic meters m³ temperature S/9 (after 32) Celsius 0*C temperature 32) 1 temperature <td< td=""><td>AREA 8 square inches 8.5 square tect 0.00 square meters m² square miles 2.6 acres 0.4 mASS (weight) 1 ownces 20 grams 8 models 0.4 models 1 models 1 models 1 models 1 <</td><td>Approximate Conversions to Metric Messures P Approximate Conversions to Metric Messures When You Know Multiply by To Find Symbol LENGTH LENGTH LENGTH AREA Source antimaters Inches 2.5 Continuaters Inches Convert Co</td><td>Acros U.4 rectare returns <threturns< th=""> <threturns< th=""> <thr< td=""><td>Active U,4 rectand Her 6 </td></thr<></threturns<></threturns<></td></td<>	AREA 8 square inches 8.5 square tect 0.00 square meters m² square miles 2.6 acres 0.4 mASS (weight) 1 ownces 20 grams 8 models 0.4 models 1 models 1 models 1 models 1 <	Approximate Conversions to Metric Messures P Approximate Conversions to Metric Messures When You Know Multiply by To Find Symbol LENGTH LENGTH LENGTH AREA Source antimaters Inches 2.5 Continuaters Inches Convert Co	Acros U.4 rectare returns returns <threturns< th=""> <threturns< th=""> <thr< td=""><td>Active U,4 rectand Her 6 </td></thr<></threturns<></threturns<>	Active U,4 rectand Her 6

:

•

ı

.

...

.

TABLE OF CONTENTS

.

			Page
1.	INTRO	1	
11.	HISTO	4	
III.	FULL-	15	
	111.1	Full-scale Instrumentation of the SL-7 Class of Containerships	15
	III.2	Strain Gauge Data for Hatch Corner No. 1	16
IV.	ABS F	INITE ELEMENT ANALYSES	19
	IV.1	ABS Finite Element Analyses of the SL-7 Containerships	19
	IV.2	Summary of Results for the Forward Hatch Corner No. 1	21
	IV.3	Hatch Corner Stress Results from Hatch Corner Study of the SL-7 Containerships	23
٧.	REDUC	TION AND VERIFICATION OF HATCH CORNER STRAIN DATA	25
	V.1	Hatch Corner Strain Data Retrieval and Reduction	25
	V.2	Data Verification	26
	V.3	Experience Related to Data Verification	30
VI.	FATIG	UE STRESS HISTOGRAMS	32
	VI.1	Data Categorization for Fatigue Load Cases	32
	VI.2	Conversion of Amplitude Spectrum to Energy Spectrum	33
	`VI.3	Estimation of Number of Cyclic Stress Occurrences	33
	VI.4	Extrapolation of Cyclic Stress Occurrences	36
	VI.5	Long-Term Composite Histograms	38

.-

TABLE OF CONTENTS (continued)

į

ł

.

VII.	FATIGUE ANALYSIS AND RESULTS	40
	VII.1 AWS and ASME S-N Curves Based Analysis	40
•	VII.2 Wirsching's Method of Reliability-based Analysis	44
	VII.3 Munse's Method of Ship Detail Characterization	47
	VII.4 Fracture Mechanics Based Analysis	50
VIII	GENERAL DISCUSSION AND CONSLUSIONS	56
	REFERENCES	60
	TABLES	63
	FIGURES	119

Page

.•

.

.

I.INTRODUCTION

The objective of this study is to compare the hatch corner cracking experience of the SL-7 containerships with theoretical fatigue calculations. To accomplish this, a fatigue study was performed based on the hatch corner strain-gauge data collected on the SEALAND McLEAN and the SEALAND MARKET at the various stages of service and fix-ups related to hatch corner cracking experienced during their first five years of service.

The need to publish well-documented case histories of service failures is well recognized. The series of SL-7 containerships represent a major innovation in the field of ship design (see Figures 1.1 and 1.2). Because its design departs from the traditional practice in many aspects, several local structural problems arose which conventional designs had not experienced. In particular, the cracking at the hatch corners is perhaps unique in that it occurred in one of the most intensely analyzed and instrumented ships afloat. Thus, with some additional effort, the SL-7 service experience could yield invaluable information for both designers and theoreticians.

The SEALAND McLEAN was delivered in 1972, and the first season of instrumentation was the winter of 1972-73. Although no hatch corner cracks were observed during this season, strain-gauge data were obtained within 9-12 inches of the radius out of hatch corner No. 1.

During the second winter season, on December 19, 1973, a crack was discovered at hatch corner No. 1, after a severe storm. The straingauge records bear the notation "Have to, wind speed 100 knots, wave height (est.) 50 ft.", and show stress excursions of up to 51.4 ksi.

-1-

The initiation site was covered by light plating, so that the crack was not visible until it had extended some 3-6 inches. During this same period, there was also green-water damage to the forecastle and flare plating.

The crack was welded, a new extension of the box girder was constructed, and additional strain gauges were installed. Their output was recorded during the third season, 1974-75, during which time additional cracking occurred at the edge of the weld. During the 1975-76 season, a doubler was added locally, which also cracked.

The final fix was designed based on the results of both global and local finite element analyses performed by ABS for the ship structure and hatch corner. Additional data were recorded during the winter of 1977-78. No further cracking occurred.

In this study, the history of the SL-7 containerships is briefly documented, with particular emphasis on the circumstances attending the hatch-corner cracks in the McLean. The occurrence or non-occurrence of similar cracks in sister ships is also noted. For purposes of evaluating the hatch corner fatigue performance, relevant ABS finite element analyses are also retrieved and summarized.

Using measured hatch-corner strain data, fatigue damage evaluations for the hatch corner, reflecting the original structure and various modifications are made based on the following three methods:

(a) Deterministic fatigue life calculations using the stress life (S-N) curves of the American Welding Society (AWS) and the American Society of Mechanical engineers (ASME).

-2-

- (b) Probabilistic fatigue life calculations, using S-N curve based methods developed by Prof. Munse under the auspices of the ship Structure Committee (the Ang-Munse Model, Reference 1.1), and by Prof. Wirsching under the sponsorship of the American Petroleum Institute (the Lognormal Model, Reference 1.2).
- (c) Fracture mechanics calculations of fatigue life, following an approach developed by Prof. Wirsching under ABS sponsorship, Reference 1.3.

ŝ

II.HISTORY OF THE SL-7 CONTAINERSHIPS

Hatch corner damage due to stress concentration on decks of many containerships has been a well recognized problem, since the era of containership design started. With large hatch openings and usually slender fine hull form, the hull girder of a containership is subjected to torsional moment, in addition to vertical and horizontal bending moments, when the ship is heading into an oblique wave. Due attention had been given to this problem. Before the more sophisticated finite element analysis method became popular, analytical studies in this respect were limited to simplified analysis typically those performed by de Wilde and Roren based on thin-walled beam theory.

In order to meet the commercial demand of fast-going cargo ships and strong competition of sea trades, at the beginning of the 1970s, a series of eight containerships, SL-7, were built. The design of the SL-7 was started in October of 1968. Since eight ships of similar design were to be constructed during the same period of time, a great deal of effort was devoted in setting the design requirements which not only were considered to meet the need then, but also to remain competitive on the basis of speed in later years. The original design requirements as reported are as follows:

- 1) Speed: 33 knots (maximum sustained)
 - 2) Breadth: to be compatible with regular Panama Canal transit
 - 3) Number of shafts: 2

1

ł

- 4) Draft: 30 to 34 ft, depending on particular port
- 5) Stability: consistent with the requirements of smaller feeder vessels

-4-

6) Port turnaround time: 24 hours (that is, discharged and load over 2000 containers in 24 hours)

A good ship design is usually a good compromise of all technical parameters and economical conditions involved. In fulfilling the above set design requirements, the designer had carried out a quite extensive study in selecting the hull form and other geometric properties in connection with optimization of speed/power and stability/trim relationships. The principal characteristics of SL-7 are:

Length overall, ft-in	946-1 1/2	(288.38 m)
Length between perpendiculars, ft-in Length on 30-ft	880-6	(268.38 m)
Waterline, ft-in	900-0	(274.32 m)
Beam, molded, ft-in	105-6	(32.1 m)
Depth to main deck,		
forward at side, ft-in	64-0 .	(19.51 m)
Depth to main deck,		
aft at side, ft-in	68-6	(20.84 m)
Draft, scantling, ft-in	34-8	(10.57 m)
Draft, design, ft-in	30-0	(9.14 m)
Displacement at 34 ft-8 in. LT	51,815	
Light ship weight, LT	22,915	
Ballast, crew, stores, and		
lube oil, LT	1,756	
Operating light ship	·	
weight, LT	24,671	
Deadweight, LT	27,144	
Shaft horsepower	120,000	
Speed, maximum	,	
knots at 30-ft draft	33	
Gross tonnage, U.S.	41,127	
Net tonnage, U.S.	25,385	

ł

1

The structural design of the vessel followed well accepted structural analysis methods then available. The analysis of the initial design resulted in very high stresses and shape distortion. After analyzing several modifications, the most effective one chosen was to install a substantial full-width deck structure in way of the engine

-5-

room. Another structural feature worth mentioning is the longitudinal hatch girder. After careful evaluation by the designer, it was decided to install at the main deck a girder with a flexible end connection by welding the girder to the transverse hatch coaming at the upper end only and by eliminating the hatch coaming bracket at this location. The intention was to isolate the girder from the ship's strain. In addition, a longitudinal girder was installed at the second deck level. At that location, the girder is close to the ship's neutral axis so that the hull girder stresses are relatively low. As will be indicated later, even with this arrangement, fractures occurred on two of the SL-7 containerships at the welded connection of longitudinal girders on the main deck to the transverse bulkhead.

2

1

Į

1 .

ş

Among the eight SL-7 containerships, SEALAND McLEAN was one of the first two ships delivered in 1972 and the Ship Structure Committee's SL-7 Containership Instrumentation Program was initiated on this ship during the winter of 1972-73. Although no hatch corner cracks were observed during the first winter season, many occurred just one year after, repeating mostly in the same locations. In what follows, the occurrences of hatch corner or related cracks on the SEALAND McLEAN are listed in chronological order. The dates given are the survey dates, when the ship was examined and the cracks were discovered. After each occurrence, the cracks were repaired to the satisfaction of the attending surveyor of ABS. As noted later in some cases, temporary repairs were performed, with more permanent repairs being subsequently performed at a more convenient date. Summaries of hatch corner fractures and repairs are herewith described:

-6-

(1) October 31, 1973

The plating of the main deck was found cracked in the No. 1 hatch forward corners, port and starboard, and in the No. 2 hatch corner portside forward. Over the 4" to 6" length of the cracks, plating has been chipped in order to achieve a proper preparation for electric welding under pre-heated conditions. Six inch vertical cracks were found in plating of the transverse bulkhead at frame 290, just below the main deck in way of the No. 1 hatch.

The upper part of the bulkhead plating had been released from the main deck and cut-out over the width of the hatch corner. The tightness of the bulkhead was subsequently retrieved by fitting new steel boxes between frames Nos. 290/1, welded to both the bulkhead and the main deck.

(2) March 14, 1974

Cracks were found at the main deck in way of the port and starboard forward corners of the No. 1 hatch. The fractures were terminal drilled. The cracked plating was properly prepared for welding, pre-heated to 170F and welded.

The No. 1 hatch coaming was found to be fractured horizontally and vertically in way of the above deck fractures. The cracks were repaired by terminal drilling, and welding as before.

(3) March 25, 1974

1

į

The main deck in way of No. 2 hatch was found to be fractured with a 7" length crack in way of the port forward corner. The fracture was terminal drilled and repaired.

-7-

(4) <u>April 4, 1974</u>

A crack was found in the main deck, inboard of the coaming at the port side forward hatch corner No. 2. It was veed out, arrestor holes drilled and rewelded.

(5) October 8, 1974

The forward port and starboard corners of the No. 1 hatch coaming were found fractured at the weld connection to the main deck. The areas were veed out on both sides and rewelded.

(6) <u>May 8, 1975</u>

ī

The main deck plating were found fractured at the No. 1 hatch corners, port and starboard. The fractures extended from the edge of the main deck and hatch opening outboard approximated 12" starboard side and 3" forward of the previously welded fracture. The port fracture was approximately 4-1/2" long and was 5" forward of the previously welded fracture. The longitudinal hatch girders on both sides were also found fractured at the welded connection at the transverse bulkhead.

The deck fractures were drilled at ends and veed out. The areas were pre-heated to 175F and welded. The longitudinal hatch girders at the No. 1 hatch forward port and starboard, which were fractured at the welded connection, were properly rewelded and new collars fitted and welded on newly installed section of bulkhead plating.

Upon completion of all deck repairs at the No. 1 hatch port and starboard, the reinforcing welds were ground flush and adjacent areas of deck scaled and cleaned. A new doubler plate of

-8-

1" thickness was installed on main deck at the forward corners of the hatch and plug welded, as shown in Fig. 2.1.

(7) <u>October 7, 1976</u>

A fracture was found inside the coaming at the port forward corner of the No. 2 hatch. The fracture started in the curved edge of the main deck at the edge of the hatch opening and extended obliquely for approximately 8". It was found that the fracture was in the weld of a previous welded repair.

As a temporary measure, a stopper hole was drilled at each end of the crack. Subsequent examinations on November 11, 1976 and December 17, 1976 by a crack detection method showed fracture to have terminated in stopper holes and no further propagation. The final repair of this crack was carried out in April 1977, while the vessel was drydocked.

(8) <u>December 17, 1976</u>

ţ

Fractures were found in the main deck at the port forward corner of hatch No. 1 at frame 290. Specifically,

- a) The one inch reinforcing doubler was fractured from the curved corner extending approximately 19" outboard to a plug weld in the doubler.
- b) Main deck fracture started at the curved corner in line with the doubler fracture, and extended approximately 4" outboard to the hatch coaming.

As a temporary measure, the deck and doubler fractures were properly prepared and welded. Radiographic examination revealed an additional fracture in the main deck, approximately 3" aft of those first noted, starting 2" outboard of the main deck corner

-9-

radius and extending outboard approximately 4". This appeared to be an old fracture and was temporarily repaired by drilling arrestor holes at each end. The underdeck longitudinal hatch girder at intersection with bulkhead 290 was fractured vertically. The fracture was properly veed out and welded.

(9) <u>January 15, 1977</u>

Fracture was found in the lower port forward corner of No. 1 hatch coaming, approximately 3" long and ending in the weld connecting the coaming to deck doubler.

Repairs were made by arresting fracture, scarphing out and welding.

(10) May 3, 1977

1

ŝ

While the ship was drydocking during April 1977, the hatch corner fractures of No. 1 and No. 2 hatches, which were only temporarily repaired as described in (8) and (9) above, were dealt with as follows:

a) <u>No. 1 Hatch Repairs</u>

Main deck plating at forward port corner fractured in two areas for a maximum length of approximately 20", commencing at the curved portion of the hatch opening. A section of the doubler plate was removed and the fractures veed, and welded using suitable preheat and post-heat and welding procedures. The doubler plate was renewed. The under-deck longitudinal hatch girder, found fractured at the intersection with bulkhead at frame 290, was cropped and repaired.

-10-

b) <u>No. 2 Hatch Repairs</u>

Main deck plating at forward port and starboard corners had fractured, with the cracks being approximately 12" long starting at the curved portion of the hatch opening. Both cracks were veed and welded using suitable preheat and postheat and welding procedures.

c) <u>No. 1 Hatch Modification</u>

The forward, port and starboard main deck openings at the No. 1 hatch were additionally strengthened by fitting and welding two 12" x 1-7/8" face plates of EH32 at the main deck, as shown in Figure 2.2.

(11) February 9, 1978

ŝ

Į.

ł

ş

- a) The main deck plating was found fractured in the curved corners of the No. 2 hatch at the port forward corner and at the starboard forward corner as follows:
 - Port fracture extending outboard obliquely approximately 4-3/4".
 - ii) Starboard fracture extending outboard obliquely.approximately 9-1/2".

The areas surrounding both fractures were dye checked to determine the extent of each fracture. An additional crack was found underdeck approximately 1" inboard of the above port fracture, starting 1-1/2" from curved corner and extending outboard obliquely approximately 2".

As temporary repairs, stopper holes were drilled at the ends of each fracture, properly prepared and welded using suitable preheat, post-heat and welding procedures.

-11-

b) The starboard forward corner of No. 3 hatch was found fractured near the main deck just inboard of the welded connection of the transverse box girder and the longitudinal hatch side girder.

The area surrounding the vertical crack was dye checked to determine the end of the crack and a temporary arrestor hole drilled to allow the vessel to proceed on its current voyage. A proper repair was done in April 1978, at which time the crack was veed out and rewelded using approved procedures.

(12) March 16, 1978

The main deck plating was found fractured in the starboard forward corner of the No. 1 hatch at frame 287 in way of the fillet weld of the toe of the face plate to the main deck. The fracture extended outboard obliquely approximately 1-1/2".

A stoppper hole was drilled at the end of the fracture, the fractured area was properly prepared and welded using suitable preheat, postheat and welding procedures.

(13) April 15, 1978

ş

ł

1

Examination of the area surrounding the fracture described in (11) (b) was carried out and a small crack in the hatch coaming directly above the fracture noted in (11) (b) was dye checked to determine its end. It was veed out and rewelded.

(14) October 8, 1981

Upon examination, cracked welding of 20" was found at portside forward No. 1 hatch corner doubler plate and hatch coaming reinforcement face bar alongside the coaming. A crack in

-12-

the doubler plate was found in way of the middle of the hatch coaming corner, vertical to the first crack in the horizontal plane, extending into the main deck about 4".

The cracks were veed out and rewelded after preheating welding area. Hatch coaming was partly cropped to enable repair to be carried out. After repairs the cropped coaming part was refitted.

(15) <u>October 15, 1981</u>

A crack of approximately 7" on the main deck was found at port side forward corner of the No. 2 hatch, inside the hatch coaming and diagonally towards the vertical coaming but not under the coaming.

The end of the crack was located by dye check and drilled. The deck was pre-heated and the crack was welded.

(16) <u>December 7, 1981</u>

ļ

The deck plate in way of the starboard forward corner of hatch No. 2 was found fractured over a length of approximately 10". The crack was drilled off, veed out and ground smooth. The plating was pre-heated up to 100 C and welded with low hydrogen electrodes type and slowly cooled down. Before repair the hatch coaming plate in way of the hatch corner had been cropped and partly removed. Upon completion, the removed plate of the hatch coaming had been rewelded in place, tested and proven tight.

Based on available information, the occurrence and non-occurrence of similar hatch corner cracks in other SL-7 class ships, SEALAND GALLOWAY, SEALAND COMMERCE, SEALAND EXCHANGE, SEALAND TRADE, SEALAND FINANCE, SEALAND MARKET and SEALAND RESOURCE have been reviewed. The

-13-

hatch corner damages on these vessels and the SEALAND McLEAN are summarized in Table 2.1. The data shown indicate that:

- The first two hatch openings, No. 1 and No. 2, particularly No. 1, were vulnerable to hatch corner damages.
- 2. The forward hatch corners of No. 1 and No. 2 hatch openings are far more vulnerable than the aft corners.
- 3. The forward hatch corners of No. 1 hatch opening reinforced with doublers were almost equally vulnerable as the as-built ones.
- 4. After the final fix, with the forward hatch corners reinforced with a face plate and doubler, further cracking at No. 1 hatch corner was found on the SEALAND McLEAN. Some further cracking at No. 1 hatch corner was also found on the SEALAND GALLOWAY.
- 5. Experience with the other SL-7 class containerships in general, as described in Items 1 through 4, are quite similar to the damage occurrences on the SEALAND McLEAN.
- 6. The SEALAND FINANCE had no reported local damage and the SEALAND EXCHANGE had but one reported damage occurrence which is much less than that of their sisterships. One possible reason for this may be that their trade routes were more favorable than that of the other sisterships.

-14-

í

III.FULL-SCALE INSTRUMENTATION PROGRAM

III.1 Full-Scale Instrumentation of the SL-7 Class of Containerships

Immediately after the S.S. SEALAND McLEAN, the first SL-7 containership, was delivered in 1972, a multifaceted program of data collection and analysis, coordinated by the Ship Structure Committee, was instituted to study this ship's structure and its response to. imposed loading. One important facet of this program was an extensive onboard instrumentation system with strain gauges located in various areas of interest throughout the vessel. Details of this strain gauge system are given in Reference [3.1]. In addition, a microwave radar was developed and installed to measure wave elevations. After the installation of the instrumentation was completed, a deckside calibration was carried out by Teledyne Materials Research Company and reported in Reference [3.2]. Subsequently, a large amount of stress data has been acquired for three consecutive winter seasons of operation on North Atlantic voyages between September 1972 and March 1975. Some sample results are presented in References [3.3, 3.4, and 3.5]. The wave meter data was analyzed by Dalzell [3.6].

It is noted that a significant amount of new strain gauge instrumentation was installed for the third season data acquisition program. The location of these gauges were selected based on observation of any local damage that may have occurred in the first two years of vessel operation. Specifically, radial cracks from the forward and some aft hatch corners and green water set-down of the forecastle and flare plating had been experienced. It is noted that the instrumentation at hatch corner No. 1 was not installed until 1975, the

-15-

year in which the McLEAN's third season data acquisition program was conducted.

In 1976, in order to evaluate the effects of the final fix of the crack of the hatch corner No. 1 designed according to recommendations of ABS, installation of instrumentation was made on both hatch corners of the SEALAND MARKET with one side so modified and the other unmodified. The data acquisition was carried out on the vessel's North Atlantic voyages during the last quarter of 1976. Sample results are presented in Reference [3.7].

In 1977, new gauges were reinstalled onboard the McLEAN at both hatch corners with the final fix [3.8]. This time, the measurement was conducted during the vessel's North Pacific voyages to evaluate the effect of one modified side on the other. The first set of measurements was taken during the period May 1977 to July 1977. The results were reported in Reference [3.8]. Subsequently, in order to further study the effectiveness of the improvement and facilitate comparisons between finite element calculations and full-scale strain measurements, ABS requested that strain data be acquired at several additional locations around the hatch corner modification. In September 1977, Teledyne appropriately re-configured the instrumentation on the hatch corner. The data was collected on the subsequent Pacific voyages during the period September 1977 to January 1978. Some measured results are presented in Reference [3.9].

III.2 Strain Gauge Data for Hatch Corner No. 1

The strain gauge data collected at the hatch corner as well as the other locations of the SL-7 class of containerships were obtained from an automatic turn-on every four hours with the recording lasting 32

-16-

minutes. The recording consists of 30-minutes of data recorded automatically, preceded by a one-minute electrical zero and a oneminute period of calibration signals (see Fig. 3.1). Provisions were made to carry out continuous recording during periods of rough seas.

The bulk of the data have never been reduced or analyzed prior to the present fatigue study. Data available include the following:

- SEALAND McLEAN (original design), January to March 1975, approximately 300 intervals. (Gauges mounted on port side only as shown in Fig. 3.2.)
- SEALAND MARKET, October to December 1976, 300-350 intervals. (Hatch modified on one side, with gauges mounted on both sides as shown in Fig. 3.3.)
- 3. SEALAND McLEAN, May to July 1977, approximately 300 intervals. (Hatch modified on both sides with gauges mounted on both sides as shown in Fig. 3.4.)
- 4. SEALAND McLEAN, September 1977 to January 1978, 499 intervals. (Hatch modification and gauge locations as shown in Figure 3.5, similar to Item 3.)

It is noted that readings from all gauges were recorded simultaneously for each 30-minute interval. The total number of time history records (equal to the number of gauges multiplied by the number of intervals) exceeds 15,000.

Į

With the intent to present some of the more significant trends derived from each operational season and to facilitate future retrieval of data, Teledyne has performed an analysis of certain segments of the data. The important indications from the sample analysis [3.5, 3.6, 3.7, 3.8 & 3.9] are as follows:

-17-

- The hatch corners exhibit high stress levels (especially in quartering seas) even under moderate wave conditions. The stresses are primarily induced by torsional loads arising in part from roll motions of the vessel.
- 2. The data indicates that the vessel after docking exhibits stillwater stresses up to about 10 ksi at the gauge locations.
- 3. The highest circumferential normal stresses around the forward hatch corner occur generally at or near a location 22.5° around the cut-out measured forward from abeam towards the ship centerline on both starboard and port sides (see Fig. 3.2). The gauges at these locations are gauges 2 and 8 of SEALAND MARKET and gauges 2 and 8 of SEALAND MCLEAN during the operational period May 1977 to July 1977; and gauges 3 and 8 of SEALAND MCLEAN during the period September 1977 to January 1978. The exception during MCLEAN's third operational season is the occurrence of the highest stresses at the gauge Fyb located at 45° around the cut-out measured forward from abeam toward the ship's centerline.
- 4. The reduction in stress, due to the reinforcement recommended by ABS, measured at the deck's median edge is between 10 and 25 percent and it averages about 15 percent.
- 5. A high degree of correlation exists between dynamic stresses measured at the corresponding port and starboard sides in those cases where both sides were instrumented with strain gauges.

-18-

ł

1

IV. ABS FINITE ELEMENT ANALYSES

IV.1 ABS Finite Element Analyses of the SL-7 Containership

In order to identify critical regions for installation of strain gauges, a finite element analysis of the entire ship hull [4.1], using the ABS/DAISY computer program system [4.2] was carried out at the planning and installation stage of the instrumentation program for SEALAND McLEAN in 1972. In that study [4.1], the deck longitudinal stresses accentuated due to the presence of warping restraint at the locations with abrupt changes in deck stiffness were determined. However, the analysis did not at that time include the locations in way of the forward hatch corners.

Although the predicting of structural response due to quasi-static loads using the finite element method had been well tested and verified with full-scale and model experimental results in the 1960s, it was still desirable to further validate the analysis procedure and modelling techniques in dealing with such a special structure as an open-deck containership. Accordingly, ABS performed a structural analysis of the SL-7 steel model, using a three-dimensional finite element model representing the entire steel model. The calculated results, together with a comparison with experimental data, were presented by Elbatouti, Jan and Stiansen in Reference [4.3]. The predicted hull-girder response to both bending and torsional loads was found to be generally in good agreement with the measured results. This indicated that the modelling technique employed this study were considered satisfactory. In Reference [4.3], the effect of a heavy faceplate, 12" by 2", around the

-19-

cut-out of the forward hatch corner with actual ("prototype") ship was also studied.

Wave-load prediction for the SL-7 containership using the shipmotion computer program SCORES had been successfully verified with appropriate model test results [4.4, 4.5, and 4.6]. Subsequently, a correlation study of predicted dynamic stresses with measurements onboard ships at sea was conducted by ABS. Reference [4.7] summarizes the work comparing stresses calculated using the finite element method with those measured onboard the SEALAND McLEAN during both first and second seasons between September 1972 and October 1973. Comparison was made for four different and progressively more severe conditions; namely, dockside calibration, RMS stresses in head seas and instantaneous stresses in head and oblique seas. It is noted that the calculated and measured stress results at the rosette gauge locations in way of the forward hatch corner were also included in this study.

Responding to the request of SEALAND for guidance on eliminating the cracking of the forward hatch corner, ABS performed an extensive 3-D finite element study of the hatch corner. The procedure and results of the analysis of various hatch corner configurations are presented in Reference [4.8]. Nineteen possible designs of hatch corner structural configurations were investigated to determine the most effective design for limiting the stress concentrations occurring at the hatch corner cut-out. The loads on the structure are those resulting from the vessel being subjected separately to a maximum torsional moment and a maximum vertical bending moment. The parameters considered in the models were the shape of the hatch corner cut-out, the scantlings and configuration

-20-

of the hatch coaming and hatch girder and the use of doublers or insert plates for the deck.

IV.2 <u>Summary of Results of the Forward Hatch Corner No. 1</u>

According to the review in Section IV.1 of this report, the ABS finite element analyses of the SL-7 class containership include:

- (i) Structural analysis of SL-7 containerships under combined loading of vertical, lateral and torsional moments [4.1].
- (ii) Structural analysis of a containership steel model and comparison with the test results [4.3].
- (iii) Comparison of stresses calculated using the DAISY system to those measured on the SL-7 containership instrumentation program [4.7].
- (iv) Hatch corner study for the SL-7 containership. By retrieving both published and unpublished finite element analysis results, it was found that all but item (i) have the results relevant to the forward hatch corner No. 1. The results are summarized as follows:
- IV.2.1 <u>Hatch Corner Stress Results from Structural Analysis of a</u> <u>Containership Steel Model [4.3]</u>

In the analysis of the SL-7 steel model [4.3], the hatch corner finite element model was created according to the actual ship's scantlings rather than to the steel model's. Figure 4.1 shows the calculated stress distribution around the contour of the circular cutout of Frame 290. The stress concentration factor for torsional loading (Loading Case 2) is equal to 2.3 compared with 1.33 for the vertical bending moment (Loading Case 1). Different local structural

-21-

Ŧ

modifications were investigated for both loading cases. The addition of a heavy faceplate, $12 \ge 10$, around the cut-out, has proven to be most successful in reducing the stress magnitudes. In such a case, the stress concentration factor decreases from 2.3 to 1.73 for torsional loading and from 1.33 to 1.19 for vertical bending, Fig. 4.1.

IV.2.2 <u>Hatch Corner Stresses from Correlation Study of Finite Element</u> <u>Analysis and Onboard Measurements of the SL-7 Containership at Sea</u> [4.7]

ł

į

١

ŧ

1

In Reference [4.7], the results relevant to the hatch corner at Frame 290 were only selectively presented. Through retrieving the computer print-out of the analysis, a complete set of results has been compiled for the eighteen wave load conditions given in Table 4.1. Stresses along the hatch corner cut-out, expressed in terms of RAO (stress per unit wave height), are shown in Table 4.2 for the 18 loading condition. It is noted that the first 12 wave conditions in head seas are for vertical bending only while the last 6 wave conditions in oblique seas can give rise to substantial torsional and lateral loading. An examination of the results reveals the following:

- (i) The calculated RAO stresses from the study are found to vary significantly among the 18 wave conditions considered. The RAO stresses are generally higher in the oblique sea conditions as compared to that for the head sea conditions.
- (ii) For head sea conditions (L.C. 1 to L.C. 12) in which the vessel is subjected to vertical bending, the highest stress generally occurs at the cut-out edge between 0° and 30° around the cut-out measured forward from abeam towards the ship centerline and the stress

-22-

concentration factor (SCF) for the detail is in the range of 1.48 to 1.9.

(iii) For oblique sea conditions (L.C. 13 to L.C. 18) in which the vessel is mainly subjected to torsion, the highest stress occurs at the cut-out edge between 30° and 60° around the cut-out measured from abeam towards the ship centerline, and the SCFs are in general higher than that in head seas, with the highest SCF equal to 2.6.

IV.3 <u>Hatch Corner Stress Results from Hatch Corner Study of the SL-7</u> <u>Containership [4.8]</u>

The hatch corner stress results in Reference [4.8] are obtained for the vessel subjected separately to a maximum torsional moment and a maximum vertical bending moment. Nineteen possible designs of the hatch corner structure as shown in Table 4.3 were investigated. Model 5 represents the original design and Model 13 is the design used for the "final fix" of the hatch corner crack. The stress results are given in Figure 4.2. A comparison of the two sets of results shows the following:

- (i) For the detail of original design, the highest stress induced by vertical bending occurs at the cut-out edge between 0° and 30° around the cut-out measured forward from abeam toward the ships centerline while that induced by torsion occurs at the cut-out edge between 15° and 45° .
- (ii) In both loading cases, the highest stresses for the detail of "final fix" design occur at the same locations as the highest stresses for the detail of the original design.

-23-

ł

(iii) The "final fix" reduces the stress concentration factor from 3.3 to 1.7 for torsional loading and from 2.2 to 1.2 for vertical bending.

In this study [4.8], the effects of the use of a doubler or an insert plate for the deck and the variations in other parameters were obtained. Presented in Table 4.4 is a comparison of the maximum stresses at the cut-out contour for ten of nineteen designs considered in Reference [4.8].

. '

5

į -

ì

1

ţ

á

V. REDUCTION AND VERIFICATION OF HATCH CORNER STRAIN DATA

V.1 Hatch Corner Strain Data Retrieval and Reduction

As previously stated, approximately 15,000 30-minute time histories were available for SEALAND McLEAN and SEALAND MARKET for voyages during the period from January 1975 to January 1978. To reduce the data ensemble to a manageable size, it was decided that only the data associated with locations of maximum stresses, would be evaluated. Thus, the data recorded on SEALAND McLEAN corresponding to Gauge F_yB before May 1977, and those corresponding to Gauges 2 and 8 before August 1977 and Gauges 3 and 8 after August 1977, as well as those corresponding to Gauges 2 and 8 on the SEALAND MARKET were acquired for this study. Gauge locations are shown in Figures 3.2 through 3.5.

The total number of the selected time history intervals was about 2600. However, the actual number of intervals processed was 1327 (see Table 5.1). The reason for this, in part, is that some intervals recorded on the SEALAND McLEAN did not have the needed calibration factors on the analog tapes. Furthermore, for about half the intervals, the vessel's log books did not have corresponding Beaufort sea state description indicated. Such data can not be used for construction of the composite histogram. In addition, some intervals were of questionable quality due probably to failure of tranducers during data reduction.

Using a Fast Fourier Transform (FFT) analyzer, Teledyne produced amplitude spectra from the data stored in analog form. Before reducing all needed spectra, a small sample of the selected data was first reduced for inspection.

-25-

ŧ.

ŝ

By examining the general characteristics of the sample amplitude spectra, the required resolution, and range of frequency of interest were redefined. Also, other pertinent information that should be utilized to produce the needed amplitude spectra were specified. It is noted that each spectrum was reduced from an 800-second segment of a 30minute time history. This was judged adequate by Teledyne in view of the signal stabilization characteristics in the process. Each reduced spectrum contains 256 ordinates in the frequency range of 0 to 0.32 Hertz with a frequency increment equal to 0.00125 Hertz as shown in Figure 5.1. The ordinate is in volts. A one volt RMS sinosoidal wave input to the analyzer will produce a spectral ordinate of 1 volt at the corresponding frequency. The scale factors used to convert the voltage units to stress units are given in Table 5.2. The digitized spectral data was printed in the form as in Table 5.3. It is noted that storing the digitized spectral data on a tape, in addition to plotting and printing on paper, is desirable for such large amount of data, in order to expedite data processing. Accordingly, the data was stored on Hewlett-Packard tapes. A cross reference of the H-P tapes by file number to the analog tapes and interval numbers is presented in Tables 5.4 through 5.7. In the tables, the Beaufort seastate numbers for the intervals reduced are also included. The processed data stored on the H-P tapes were finally transmitted to the IBM computer system at ABS.

V.2 <u>Data Verification</u>

4

ł,

In light of the fact that the measured data, except for limited samples found in the Teledyne reports [3.5, 3.7, 3.8, 3.9], have never been reduced from the analog tapes, a credible verification of the data was judged necessary prior to using such data in the present

-26-

investigation. Of particular importance is to ascertain the correctness and interpretation of the scale factor.

The difference between the forms in which the reduced data and the original data were given further manifests the need for verification. In addition, as noted in Section V.1, the reduced data represent just an 800-second segment of the original 30-minute time history in which the location of the segment could not be identified. The following four steps were thus taken for data verification:

4

í

1

- (i) Using the spectra, calculate the most probable extreme values
- (ii) Generate time history simulation from the spectral data (without phase angles).
- (iii) Reconstruct time histories from spectral data with corresponding phase angles.
- (iv) Independently produce spectral data from a limited sample of time histories digitized using a different FFT computer program.

The results obtained for the most probable extreme values, the time histories and the spectral data for some selected intervals were respectively compared with the maximum stresses, time histories and the spectral data for the corresponding intervals either shown in Teledyne reports [3.5, 3.7, 3.8, 3.9] or specially requested at that time. The phase angle data required in Item (iii) were also specially requested for the purpose.

-27-

V.2.1 <u>Verifying Data Through Calculation of Most Probable</u> Extreme Values

Before the calculation of the most probable extreme values of any interval record, the amplitude spectrum corresponds to the record was converted to an energy spectrum. The conversion method is described in Section VI.1.

The most probable extreme values (peak-to-trough) is given by the following equation [5.1]:

$$S_{o} = 2\sqrt{2m_{o}\ell n} \left\{ \frac{T}{4\pi} - \frac{1+\sqrt{1-\epsilon^{2}}}{\sqrt{1-\epsilon^{2}}} \sqrt{\frac{m_{o}}{m_{4}}} \right\}$$
 (5.1)

where

1

đ

ŧ

 ε = bandwidth parameter of the energy spectrum equal to

$$\int 1 - \frac{m^2}{m_0 m_4}$$

 $m_0, m_2, m_4 = 2$ zeroth, 2nd and 4th moments of the energy , spectrum, respectively. T = time in second

The most probable extreme values calculated for some selected intervals, and the maximum stresses for the corresponding intervals given in the Teledyne reports [3.5, 3.7, 3.8, 3.9] are presented in Table 5.8. Comparison of the results shows that for the same intervals the calculated most probable extreme values are generally less than the measured maximum stresses. The reasons for this are as follows:
- (a) The amplitude spectrum may not have been reduced from the 800-second segment containing the highest peak value of the original 30-minute interval record.
- (b) Theoretically, the most probable extreme value is likely to be less than the maximum value.

V.2.2 Verifying Data Through Time History Simulation

A computer program was developed which produces a sample time history from a given amplitude spectrum. It is noted that the ordinates of the spectrum are RMS values of a sine wave therefore the simulation is constructed by adding the K harmonic components:

$$y(t) = \sum_{i=1}^{K} \sqrt{2} Y_i \cos (2\pi f_i t + \phi_i)$$
 (5.2)

where

 f_i = the midpoint of a spectral frequency increment Δf y_i = ordinate of the amplitude spectrum

and

١

Į

 ϕ_{i} is a random phase angle having a uniform distribution, between 0 and 2π .

Using Eq. (5.2), time history simulations were generated from the amplitude spectra representing the selected intervals of Table 5.8. A typical time history simulation is given in Fig. 5.2 while the corresponding amplitude spectrum is shown in Fig. 5.1. A sample comparison of the simulation and the corresponding original time history can be seen in Figs. 5.2 and 5.3. Figure 5.3 is obtained from a

-29-

Teledyne report [3.5]. In general, the original and regenerated simulation of time histories are similar both in shape and in amplitude. V.2.3 <u>Verifying Data Through Reconstruction of Time History</u>

Reconstruction of a time history was again based on Eq. (5.2) except that the actual phase angle corresponding to a spectral ordinate for a selected interval as specially provided by Teledyne was used. The reconstructed time history is shown in Fig. 5.4. The reconstructed time history exhibiting a beating phenomenon and does not resemble the original time history.

V.2.4 <u>Verifying Data Through Reconstruction of Amplitude Spectrum by</u> <u>Digitizing Original Time History</u>

An FFT digital computer program was utilized to reconstruct the amplitude spectrum based on the digitized data of an original time history. It should be noted that the amplitude spectrum ordinate in this case is not the RMS value of a sine wave and is an actual amplitude of a sine wave. Figure 5.5 represents a time history plot for a set of data obtained by manually digitizing an 800-second segment from the whole interval time history shown in Fig. 5.3. An amplitude spectrum for the time history of Fig. 5.5 is given in Fig. 5.6. A comparison of the Teledyne provided spectrum shown in Fig. 5.1 and the reconstructed spectrum in Fig. 5.5 reveals that both spectra are similar in both shape and amplitude, with the sine wave amplitude value converted to the sine wave RMS value.

V.3 Experience Related to Data Verification

ţ

In the process of data verification some difficulties were encountered arising from the fact that interpretation of the spectral

-30-

data was not straightforward, and that incorrect scale factors and substituting data were sometimes provided.

Another point of note, regarding the data verification process, is that the ordinates of the reduced spectral data corresponding to the first two lowest frequencies should be disregarded since they are an aberration due to a mean value present in the analog signals.

ŧ

ţ

VI. - FATIGUE STRESS HISTOGRAMS

To obtain stress histograms for the fatigue study, the amplitude spectra provided by Teledyne, as described in Section V.1, were first converted into For a given series of strain gauge data, the number of energy spectra. occurrences of cyclic stresses were then calculated based on the characteristic parameters of the energy spectra. Since no measurement data for the selected intervals in this study refer to high Beaufort sea states, such as seastates No. 10 through 12, curve fitting of a generalized gamma distribution for the number of stress occurrences was performed. The parameters of the distribution obtained from the stress occurrences associated with the lower seastates through curve fittings were then used to extrapolate for the stress occurrences for the high seastates. Subsequently, composite stress histograms were obtained from the cyclic stress occurrences with the corresponding probabilities of occurrence of the various seastates No. 1 through No. 12. Such construction of the required histograms is described in detail below.

VI.1 <u>Data Categorization for Fatigue Load Cases</u>

4

In order to determine the fatigue damage of the hatch corner of the original design and the "final fix" as accurately as possible, the reduced data were categorized as shown in Table 6.1. Following the data categorization, five load cases were obtained for fatigue damage analysis. It should be noted that the data sets of the two seasonal operations of the SEALAND McLEAN during 1977 and 1978 were combined, since between these two operations the hatch corner cut-out details and the strain measurement system were unchanged, although the gauge numbers

-32-

may in some instances differ such as that at the starboard side hatch corner.

VI.2 Conversion of Amplitude Spectrum to Energy Spectrum

As noted in Chapter V, the amplitude spectral data provided were derived from the strain time histories using an FFT analyzer. During data reduction, for a given frequency, a spectral ordinate of one volt is produced for a one volt RMS sine-wave input to the analyzer. Thus, within a resolution bandwidth Vf centered at a frequency f, the RMS value of the time history x(t) is related to the amplitude spectrum by

$$\hat{\psi}_{x}(f,\Delta_{f}) = \left[\frac{1}{T} \int_{0}^{T} x^{2} (t,f,\Delta_{f})dt\right]^{1/2}$$
(6.1)

where $x(t,f,\Delta_f)$ represents the narrow-band filter output and T is the averaging time interval. The energy or power spectral density function can then be estimated by

$$\hat{G}x(f) = \frac{1}{\Delta_{f}T} \int_{0}^{T} x^{2} (t, f, \Delta_{f}) dt = \frac{\psi_{x}^{2}(f, \Delta f)}{\Delta_{f}}$$
(6.2)

A typical energy spectrum obtained from the amplitude spectrum shown in Fig. 5.1 is given in Fig. 6.1.

VI.3 Estimation of Number of Cyclic Stress Occurrences

For a certain specified level of a Gaussian random process x(t), the number of cyclic stress occurrences can be estimated from only the statistical properties of the maxima with positive value, since the statistical properties of the minima with negative values are the same

-33-

as those of the maxima with positive values. The cumulative

distribution of the maxima at a specified level, $x(t) = \xi$ can be defined as [5.1].

$$F(\xi) = \frac{2}{1 + \sqrt{1 - \varepsilon^2}} \left[\frac{1}{2} \left(1 - \sqrt{1 - \varepsilon^2} + \phi \left(\frac{\xi}{\varepsilon \sqrt{m_0}} \right) - \sqrt{1 - \varepsilon^2} \exp \left\{ - \frac{1}{2} \left(\frac{\xi}{\sqrt{m_0}} \right)^2 \right\} \right]$$

$$\left[\left\{ 1 - \phi \left(\frac{-\sqrt{1 - \varepsilon^2}}{\varepsilon} - \frac{\xi}{\sqrt{m_0}} \right) \right\} \right], \quad 0 \le \xi < \infty \quad (6.3)$$

where

{

ł

-

Š.

1

$$\varepsilon = \sqrt{1 - \frac{m^2}{m_0 m_4}}$$

$$\Phi(\mu) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{\frac{-\mu^2}{2}} du$$

$$m_o = \int_0^\infty \hat{G}_x(f)df$$

$$m_2 = \int_0^\infty f^2 \hat{G}_x(f) df$$

$$m_4 = \int_0^\infty f^4 \hat{G}_x(f) df$$

where ε is the bandwidth parameter of an energy spectrum, $\Phi(\mu)$ is the cumulative normal distribution function and mo, m2 and m4 are the

zeroth, second and fourth moments of the energy spectrum, respectively. Thus, the number of occurrence of maxima above the specified level x(t), ξ can be calculated as:

$$\bar{N}_{\xi} = \bar{N}_{m>0} \quad F(\xi) \tag{6.4}$$

where $\rm N_{m>o}$, the total expected number of positive maxima per unit time has the expression as

.

ł

ţ

ş

÷

$$\bar{N}_{m>0} = \frac{1}{4\pi} \left(\frac{1 + \sqrt{1 - \epsilon^2}}{\sqrt{1 - \epsilon^2}} \right) \sqrt{\frac{m_2}{m_0}}$$
 (6.5)

In case the random process x(t) has a narrow-band spectrum ε = o, the $F(\xi)$ will become the Rayleigh cumulative distribution function expressed as

$$F(u) = 1 - e^{-\xi^2/2m_0}$$
(6.6)

whereas the expression for the total number of expected positive maxima becomes

$$\bar{N}_{m>0} - \frac{1}{2\pi} \int_{-m_0}^{-m_2}$$
 (6.7)

In this study, the approach using the "equivalent narrow-band approximation method for calculating fatigue damage in a wide band

-35-

proven" [6.1] was utilized. The method utilizes cycle counts based on the Rayleigh cumulative distribution function, Eq. (6.6). A fatigue damage correction factor that depends on the proven bandwidth is used to adjust the damage calculated for the narrow-band case. The correction factors were derived in [6.1] using the rainflow cycle counting technique on simulated wideband time histories.

On the basis of the narrow band stationary Gaussian process assumptions, the results for number of cyclic stress occurrences are obtained and tabulated in Tables 6.2 through 6.6. Beside the number of stress cycles the bandwidth parameter of each interval was also calculated. Its average value was obtained for each sea state for purposes of determining the Bandwidth correction factor in the calculation of the fatigue damage.

VI.4 Extrapolation of Cyclic Stress Occurrences

1

ę.

In Tables 6.2 through 6.6, the number of cyclic stress occurrences for certain Beaufort seastates are not given due to the lack of data. To fill the gap, a statistical analysis of the cyclic stress occurrences shown in the tables is necessary at the first step.

For this purpose, the partial histogram corresponding to a typical seastate is fitted with a generalized gamma density, which is given by,

$$f(s) = \frac{q}{\Gamma(p)} r^{qp} s^{qp-1} e - (rs)^{q} \quad o \le s < \infty$$
(6.8)

in which s denotes the stress range which is equal to the double magnitude of stress amplitude, and p, q and r are the three parameters of the distribution function.

-36-

A method proposed by Stacy and Mihram [6.2] has been used for estimating the parameters of the generalized gamma distribution. The method determines the parameters by equating the three logrithmic moments of the measured data to the corresponding theoretical moments. A typical curve fitting of partial histograms is shown in Figures 6.2(a) through 6.2(c).

The fitted distribution functions for the partial histograms are then used for purposes of obtaining by extrapolation the parameters of the distribution function for the unknown partial histograms. Table 6.7 presents the values of both the fit and the extrapolated parameters for all cases. Figures 6.3(c)through 6.3(c) represent plots of extrapolating the parameters for a typical case. The extrapolated partial histogram is given by

$$n_{ij} = n_i [F(s_{i+1/2}) - F(s_{i-1/2})]$$
(6.9)

where

í

and

$$F(s) = \int_{0}^{s} f(s)ds = \frac{1}{\Gamma(p)} \int_{0}^{(rs)q} u^{p-1} e^{-u} du = \frac{\Gamma(rs)q^{(p)}}{\Gamma(p)}$$
(6.10)

is the cumulative distribution function of the generalized gamma density as given in Eq. (6.8).

In Eq. (6.9), n_j was obtained through extrapolating the total numbers of cyclic stress occurrences of the known partial histograms. The partial histograms associated with all the Beaufort sea states are obtained and presented in Tables 6.8 through 6.12.

VI.5 Long-Term Composite Histograms

VI.5.1 <u>Probability of Occurrences of Seastates</u>

The probability of occurrence P_j for Beaufort seastate j required in the construction of the fatigue histograms should be developed based on the best available information. In this study, only the North Atlantic route (New York, Northern North Sea) was considered. Due to the lack of established wave climate records, the data reduced from that recorded on SEALAND McLEAN North Pacific voyages after 1975 was utilized together with the probability of occurrence of the North Atlantic route to obtain the composite stress histogram for fatigue analysis.

Wave data and their pattern in the North Atlantic regions are relatively well established and recognized. The principal source, the Navy's Fleet Numerical Weather Central Project [6.3] was used in this study. The Marsden squares along typical shipping routes were identified and the associated probability of occurrence was properly weighed. Results were presented in Fig. 6.4 and Table 6.13, for seastates up to Beaufort 12.

VI.5.2 <u>Construction of Long-Term Composite Stress Histogram</u>

If P_j denotes the probability of occurrence of a Beaufort seastate j, the number of expected long-term composite cyclic stress occurrences

-38-

at a stress range level S_i is represented by n_i , which can be obtained as

$$n_{i} = \sum_{j=1}^{12} n_{ij} P_{j} (108 T)$$
 (6.11)

where the number of 108 represents the number of 800-second intervals per day if stress data were measured continuously. T is the total number of ship days in 20 years estimated based on the assumption that the ship operates at sea 75 percent of a year or 272 days per year, (that is, T is the product of 272 and 20).

For the five fatigue load cases, the long-term composite stress histograms calculated based on Eq. (6.11) are given in Tables 6.14 and It should be noted that these results are based on the linear 6.15. elastic theory. To convert them into a stress scale, the stress-strain relationship for the material of the hatch corner details, ABS-EH33 steel, should be employed. In this study, the nonlinear cyclic stressstrain relationship for the ABS-EH36 steel, shown in Fig. 6.5, was used instead, since the relationship for EH33 was not readily available, but the differences, if any, are thought to be small. The results for the long-term composite histograms in a stress scale based on the nonlinear stress-strain relationship are given in Tables 6.16 and 6.17. Figures 6.6 through 6.10 present histograms to which the Weibull and the generalized gamma distributions were fit. The Weibull and the generalized gamma curve fits were used in Munse's method of detail characterization for estimating the fatigue strength of the hatch corner details.

-39-

1

VII.FATIGUE ANALYSIS AND RESULTS

In this study, fatigue damage hindcast for the hatch corner of the SL-7 containerships was pursued using the following methods:

- 1) AWS and ASME S-N curve based analysis
- 2) Wirsching's method of reliability-based fatigue analysis
- 3) Munse's method of ship detail characterization
- 4) Fracture mechanics based method

A summary of the procedures are presented below together with results obtained and discussion of results.

VII.1 AWS and ASME S-N Curves Based Analysis

ł

AWS Fatigue Stress Provisions [7.11]

The AWS fatigue stress provisions, where applicable, comply with the Highway Bridge Design Standard of the American Association of State Highway and Transportation Officials (AASHTO), and the Specification for Steel Railway Bridge of the American Parkway Engineering Association (AREA). The major specifications are described as follows:

- (i) Full use of the live load and impact stress range concept, instead of the maximum allowable stress based on stress ratio R, and tensile strength of steel.
- (ii) Material subjected to fluctuating compressive stresses is exempt from fatigue design requirements.
- (iii) For bridges subjected to cyclic loading, other than highway or railway applications, stress ranges may be obtained for the appropriate condition and cyclic life using the six basic categories shown in Figs. 7.1(a) and 7.1(b).

-40-

It is noted that the S-N curves for redundant structures in Figs. 7.1(a) and those for non-redundant structures in 7.1(b) are valid for constant amplitude loading. In the case of variable amplitude loading, the S-N curves in the figures can be applied disregarding the endurance limit [7.21]. The S-N curves for redundant structures (Fig. 7.1a) represent 95% confidence limits for a 95% survival of test data [7.3], whereas the S-N curves for non-redundant structures (Fig. 7.1b) were obtained from the S-N curves for redundant structures by imposing an additional factor of safety. The factor of safety varies with fatigue stress range; for example, the value decreases from 7.6 at 60 ksi to 3.6 at 24 ksi for "Category A" S-N curve.

ASME Fatigue Stress Provisions [7.4]

ļ

ŗ

ł

1

The ASME specifications for design based fatigue analysis are mainly applicable to pressure vessels. The given design fatigue strength curves for different materials represent the strain cyclic fatigue data. In these S-N curves, as typical ones shown in Fig. 7.2, the allowable amplitude S_a of the alternating stress component (one-half of the alternating stress range) is plotted against the number of cycles. This stress amplitude is determined based on the assumption of elastic behavior and is given in terms of stress, but it does not represent a real stress when the elastic range is exceeded. The fatigue curves are obtained from uniaxial cyclic strain data in which imposed strains have been multiplied by the modulus of elasticity and a design margin has been provided.

Stresses produced by any load or thermal condition which does not vary from cycle to cycle need not be considered since they are mean

-41-

stresses and the maximum possible effect of mean stress is included in the design curves.

It is noted that the effect of cyclic compression loads considered in these provisions is different from that of AWS Code.

<u>Cumulative Damage Hypothesis</u>

With the AWS and ASME S-N curves, the Palmgren-Miner's linear cumulative damage rule is applied for the determination of fatigue damage. The Miner's rule can be expressed as:

$$D - \sum_{i=1}^{I} \frac{n_i}{N_i}$$
(7.1)

where n_i is the composite stress cycles and Ni is the stress cycles to failure at a given stress range or stress amplitude.

Selection of S-N Curves

ŧ

ŝ

In this study, two S-N curves were utilized in conjunction with the composite stress histograms obtained in Chapter 6. One is the AWS Category A S-N curve for non-redundant structures as shown in Figure 7.1(a). The other is the ASME curve for steel with ultimate strength less than 80 ksi as shown in Fig. 7.2. It is noted that the selected AWS curve gives the fatigue strength of a plain steel member with cleaned surface and oxygen-cut edges subjected to a reversal of end loads, where the member is a non-redundant structure. Although the hatch corner cut-out detail is not a non-redundant structure, to be conservative the S-N curve for non-redundant structures was selected instead of that for redundant structures.

-42-

Results of S-N Curve Based Analysis

In the fatigue damage calculation, the composite stress histograms shown in Tables 6.16 and 6.17 were employed in conjunction with the selected AWS S-N curve, while those in Tables 6.14 and 6.15 were used in conjunction with the selected ASME S-N curve. The results for five cases were obtained as shown in Table 7.1. It is noted that the rainflow correction factor λ , which is a function of both the slope of the S-N curve and the bandwidth of the stress energy spectrum (see Fig. 7.3), was used in the calculation to adjust the fatigue damage level.

The adjusted fatigue damage is equivalent to

$$D_{\rm R} = \lambda \ D_{\rm N} \tag{7.2}$$

where

I

 D_{R} = fatigue damage using rainflow counting method

 D_N = fatigue damage using equivalent narrow-band method

Prior to interpreting the results presented in Table 7.1, it should be noted that gauge F_yB of the SEALAND McLEAN and gauge 2 of the SEALAND MARKET were located at the original hatch corner cut-out while all the others were on the modified ("final fix") hatch corner cut-out. Furthermore, as noted in Section VI.1, the data sets of two operational seasons taken on the SEALAND McLEAN during 1977 and 1978 were combined in the calculation, since between these operational seasons the cut-out details and the strain gauge system were unchanged.

The results given in Table 7.1 reveal the following:

-43-

- (i) The results for fatigue life obtained by using the S-N curve of either AWS or ASME show the trend consistent with the trend of recorded hatch corner crack incidents. The predicted fatigue life in the unmodified case of the SEALAND McLEAN is close to the reported life. The case with the "final fix" design has a fatigue life considerably improved from the original design.
- (ii) In all cases, the use of the AWS S-N curve gives fatigue lives of the hatch corner shorter than that of the ASME S-N curve, with the ratio being about 2 to 3.5. This is to be expected, considering the differences in bases and safety margins inherent in the two curves.
- (iii) According to the results for both the original design and the "final fix", the fatigue life is higher on the hatch corners of the SEALAND MARKET than on that of the SEALAND McLEAN. This may be due to differences in workmanship and in environmental loads encountered.
- VII.2 <u>Wirsching's Method of Reliability-Based Analysis</u>

į

a second

í

A reliability-based fatigue analysis method developed by Wirsching [6.1] was employed in this study to cast the results of the Miner's type analysis in a probabilistic context. Wirsching recommended that the log-normal format, a full distributional procedure, in which each random variable is assumed to have a log-normal distribution, be used as a basis for fatigue reliability analysis.

Employing mathematical properties of log-normal variables, an expression for probability of failure P_f can be described as

$$P_{f} = \phi \ (-\beta) \tag{7.3}$$

-44-

where ϕ is the standard normal, and β is the safety index defined by

$$\beta = \frac{\ln(\bar{T}/T_s)}{\sigma_{\ln T}}$$
(7.4)

T_s is the intended service life, normally set equal to 20 years.

 \tilde{T} is the median value of the time to failure T and is equal to,

$$\overline{\mathbf{T}} = \widetilde{\Delta} \ \widetilde{\mathbf{K}} / (\widetilde{\mathbf{B}}^{\mathrm{m}} \Omega) \tag{7.5}$$

the tildes indicating median values, m denoting the negative reciprocal slope of the S-N curve, and Ω being the stress parameter equal to

Í

ţ

i

Į

$$\Omega = \lambda f_0 E(S^{\mathrm{III}}) \tag{7.6}$$

where λ is the rainflow correction factor, f_o is the average frequency of cyclic stress, and $E(S^m)$ is the expected value of S^m . Also, the standard deviation of lnT is given by

$$\sigma_{\ell nT} = (\sigma_{\ell n\Delta}^{2} + \sigma_{\ell nK}^{2} + m^{2} \sigma_{\ell nB}^{2})^{1/2}$$

$$\sigma_{\ell nT} = [\ell n \{ (1 + C_{\Delta}^{2}) (1 + C_{K}^{2} (1 + C_{B}^{2})m^{2} \}]^{1/2}$$
(7.7)
(7.8)

where C's are the coefficients of variation of random variables Δ , K and B, which are assumed to have log-normal distributions.

The random variable Δ denoting damage at failure is considered a random variable in order to account for the inaccuracies associated with using a simple model to describe complicated physical phenomena. The random variable K accounts for uncertainties in fatigue strength, as evidenced by scatter in S-N data. The random variable B describes inaccuracies in the process of estimating fatigue stresses from oceanographic data.

Application and Results of Wirshing's Method

Application of Wirshing's reliability-based fatigue analysis was made using Munse's "detail 1F" S-N curve shown in Fig. 7.4 for all loading cases of the hatch corner details. The coefficients of variation and median values of the random variables used are given in Table 7.2. In conjunction with the composite stress histograms shown in Tables 6.16 and 6.17, the design factor values were then employed to calculate median lives and corresponding probabilities of failure. The results obtained from this analysis are given in Table 7.3.

In interpreting the results obtained by using Wirsching's method of reliability-based analysis, it should be noted that because of (a) the assumption that V, K, and B have log-normal distributions, and the usually poor definition of distributions in the critical tail areas resulting from lack of data, computed values of probabilities of failure, p_f , do not necessarily provide precise estimates of risk; these values are however useful in a relative sense.

The results shown in Table 7.3 indicate the following:

1

Ĵ

(i) The median lives, probabilities of failure and safety indices show the correct trend for the hatch corner fatigue performance, with

-46-

the hatch corner with the "final fix" having higher fatigue lives than the original.

- (ii) For both the original and the "final fix", the hatch corner of the SEALAND MARKET has higher fatigue strength than that of the SEALAND MCLEAN.
- (iii) By comparing the results shown in Tables 7.1 and 7.3, the ratio of the median life to the S/N based fatigue life is fairly constant in all cases, about 12 for the ASME curve and 30 for the AWS curve.

VII.3 Munse's Method of Ship Detail Characterization

In Reference [7.5] Munse et al derived a simple method of estimating an allowable stress for specific ships details. The mean fatigue resistance of 69 structural details, which is the basic information used for this design method, were determined based on laboratory test data and presented in terms of stress range; the secondary effects of mean stress and in most cases the type of steel have been neglected except to the extent that they are included in the "Reliability Factors". The "Reliability Factor" and the "Random Load Factor" are two important factors in the development of this ship structure fatigue design criteria. The "Reliability Factor" is a function of the slope of the S-N curve and the required level of reliability and a coefficient of variation, where the values of coefficients of variation were provided for each detail in Reference [7.5]. The "Random Load Factor" is a function of the expected loading history and the slope of the S-N curve.

-47-

Reliability-Based Design Criteria

4

i

ļ

1

Let N be a random variable denoting the number of cycles to failure in variable amplitude fatigue. It is assumed that N has a Weibull distribution with parameters α and γ and that the coefficient of variation (COV) of N, C_N, is a constant. The parameters of the first two moments are:

$$\alpha \simeq C_{\rm N}^{-1.08} \qquad \mu_{\rm N} = \gamma \Gamma(\frac{1}{\alpha} + 1) \tag{7.9}$$

Then the distribution function of N can be written as

$$F_{N}(n) = 1 - \exp \left\{-\frac{n\Gamma (1 + C_{N}^{1.08})}{\mu_{N}}\right\}^{C_{N}^{-1.08}}$$
(7.10)

where n is a specific value of N.

The probability of failure $p_f = p(N \le n)$ or

$$P_{f}(n) = - \ln L(n) - \frac{n}{\mu_{n}} \Gamma(1 + C_{N}^{1.08})^{C_{N}^{-1.08}}$$
(7.11)

where L(n) denotes the probability of survival.

Thus for small P_f

$$\mu_{\rm N} = n\gamma_{\rm L}$$
 where $\gamma_{\rm L} = \frac{\Gamma (1 + C_{\rm N}^{1.08})}{(P_{\rm f})^{C_{\rm N}^{1.08}}}$ (7.12)

of which γ_{L} may be called scatter factor.

Then the reliability factor, R_{f} , is then given by

$$R_{f} = \left(\frac{1}{\gamma_{L}}\right)^{m}$$
(7.13)

Using a concept that for a given detail a random stress range S can be related to a constant-cycle stress range Sc with the same mean fatigue life, the random load factor is obtained by

$$\xi = \frac{S_o}{E (S^m)^{1/m}}$$
(7.14)

where S_o is the maximum stress range in a random loading. Thus the maximum allowable stress range is then given as

$$S_{\rm D} = S_{\rm N_T} \cdot \xi \cdot R_{\rm f} \tag{7.15}$$

This relationship is usually satisfied in design for a desired life of total cycles, N_T , in 20 years, and for a required level of reliability.

Application and Results of Munse's Model

ť.

The application of Munse's design method is not of direct relevance of this study. Of more interest, similar to the log-normal model, are mean fatigue lives and associated probabilities of failure. With the applied stresses known, the expected "mean" life in context of the Munse's model is given by

$$\bar{N} = \frac{K}{E(S^m)}$$
(7.16)

And the associated reliability is given by

$$L(N) = \exp \left[- \left\{ \frac{N}{N} \Gamma \left(1 + \frac{1}{\alpha} \right) \right\}^{\alpha} \right]$$
 (7.16)

the probability of failure being the complement of L (N) and α being the Weibull shape parameter.

Values for $E(S^m)$ were obtained from Weibull distributions fitted to the long-term composite histograms using the method of moments. The Weibull distributions fit the data well, especially at the tail-ends of the composite stress histograms. In all cases, the values of $E(S^m)$ are consistent with those calculated directly from the long-term histograms, the error being less than 6 percent.

Fatigue damage calculations are made based on Munse's "detail 1F" S-N curve shown in Figure 7.4, with rainflow correction factors given by Fig. 7.3. Table 7.4 shows the mean lives and probabilities of failure obtained. The results are similar to those obtained from Wirshing's log-normal reliability model, and are consistent with the trend of observed fatigue behavior.

VII.4 Fracture Mechanics Based Method

The development of fracture mechanics methodology in the last two decades offers considerable promise in improving our understanding of fatigue crack initiation, fatigue crack propagation, unstable propagation and in design against fatigue. Using fracture mechanics concepts, the procedure to analyze the crack-growth behavior of the hatch corner cut-out detail at the hot-spot location is described as follows.

The approach outlined by Wirsching in Reference [7.6] was used in this study. Wirsching makes the following assumptions.

-50-

- 1. Material Behavior (see Fig. 7.6):
 - a) The Paris law applies in Region II and extends through Region III.
 - b) A threshold stress intensity ΔK_{th} exists.
- 2. Loading:
 - a) Long-term statistical distribution of fatigue loading is known.
 - b) Sequences effect are ignored.
 - c) Stress ratio R effects are ignored, although they could be introduced through the constant C in the Paris equation and threshold stress intensity ΔK_{th} .

An integration of the Paris equation and the use of equivalent stress concept yields the cycles to failure

$$N = \frac{1}{cs^{m}} \int_{a_{o}}^{a_{f}} \frac{da}{G(a) Y^{m}(a) (\pi a)^{m}/2} , \quad (7.17)$$

where

$$\tilde{S}^{m} = E(S^{m}) = \int_{0}^{\infty} s^{m} f_{S}(s) ds \qquad (7.18)$$

$$G(a) = \frac{\overline{S}_{o}^{m}}{\overline{S}_{o}^{m}}$$
(7.19)

of which

Ī

Į

ł

$$\bar{s}^{m} = \int_{s_{0}(a)}^{\infty} s^{m}f_{s}(s)ds$$
 (7.20)

$$S_{o}(a) = \Delta k_{th} / Y(a) \sqrt{\pi a}$$
(7.21)

Also, Y(a) is a geometry related factor and can be estimated from Figure 7.7 and $f_S(s)$ is the probability density function of s.

Equation (7.17) can be reformulated in terms of the characteristic S-N format with the Miner's rule assumption

$$NS^{m} = A$$
(7.22)

where

$$A = \frac{1}{C} \int_{a_{0}}^{a_{f}} \frac{da}{G(a) Y^{m}(a) (\pi a)^{m}/2}$$
(7.23)

Application of Fracture Mechanics Model

In order to apply the fracture mechanics approach derived by Wirsching [7.6] to estimate crack-growth life for the hatch corner, in addition to the composite stress histogram, the suitable da/dn data, geometry factor, Y(a), threshold stress intensity, ΔK_{th} , initial crack, a_0 , and final crack, a_f , for the detail conditions should first be selected or determined.

The material used for the main deck and face plate of the hatch corner, where the gauges are located, is ABS EH33 steel. The data for the fatigue crack growth rate of this material was not available. Nevertheless, the steel used for doubler denoted as ABS CS whose yield strength is close to the ABS EH33 has been tested by Teledyne (7.7).

-52-

The approximate expression for fatigue crack growth for the ABS CS steel in kip and inch units, is

ţ

Ì

1

$$\frac{da}{dn} = .254 \times 10^{-8} (\Delta K)^{2.53}$$
(7.24)

These data are based on constant-amplitude tests at stress ratios R = 0.05, 03 and 0.6.

The geometry factor for the hatch corner can be obtained from Fig. 7.7. Since the cracks of the face plate and the main deck cut-out are different in nature, the geometry factor of the original design detail _ is obtained from the curve in the figure corresponding to the member with edge crack while that of the "final fix" the curve corresponding to the member with line crack at middle.

The threshold stress intensity ΔK_{th} for CS material determined by Teledyne [7.7] is the magnitude between 10 and 11 ksi \sqrt{in} for a crack growth rate of 10^{-6} in/cycle. The crack growth rate, at which the threshold stress intensity was determined by Teledyne, seems to be faster than that in the region of slow crack growth (see Fig. 7.6) where the threshold stress intensity for steels is usually found. In addition, many references show that typical thresholds for steels are in the range of 2 to 5 ksi \sqrt{in} without much effect due to alloying or strength level [7.8] as shown in Fig. 7.8. In the present investigation, the threshold stress intensity was varied parametrically in the range of 2 and 5 ksi \sqrt{in} .

-53-

The initial crack length a_0 is an important factor in the calculation of crack growth life. A small change in value of a_0 could produce large differences in calculated crack growth life. In addition, there is no general agreement on sizes of initial crack to be used in specific situations (see Fig. 7.9). In this connection, the values of 0.00394 in. (0.1 mm), 0.01 in., and 0.1 in. were selected for parametric study of the crack growth life of the hatch corner.

The final crack length a_f which is not important as compared to the initial crack length in this calculation, can be determined when the quantity

$$(N_{i+1} - N_i)/(a_{i+1} - a_i) \le \varepsilon$$
 (7.25)

ε is a small real number where

Į

ł

Į.

1

$$N_{i} = \frac{1}{CS^{m}} \int_{a_{0}}^{a_{i}} \frac{da}{G(a) Y^{m}(a) (\pi a)^{m}/2}$$
(7.26)

Results of Fracture Mechanics Model

After the da/dn data, Y(a), ΔK_{th} , a_0 and a_f are determined, Eq. (7.20) is used in conjunction with the composite histograms of Tables 6.18 through 6.23 to obtain the crack growth life for the hatch corner. The results for the crack growth life are presented in Table 7.5. As noted in Section VII.3.2 in the calculation, the rainflow correction factor λ was used to adjust the fatigue crack growth life.

In interpreting the obtained results for crack growth, it should be noted that the selected crack grown rate da/dn was obtained by a

-54-

constant amplitude test with R = 0.05, 0.3 and 0.6. However, in the structure subjected to load sequences characteristic of those experienced by ocean-going vessels, the crack growth retardation can occur. Since in the present case retardation is not assumed, the calculated results may show shorter crack growth lives. Thus, care should be exercised in interpreting the results given in Table 7.5.

An examination of the results in the table reveals the following:

- (i) For each case, as expected, the crack growth life increases as the threshold stress intensity increases or as the initial crack size decreases.
- (ii) For all cases, except in the case of initial crack size $a_0 = 0.00394$ in (1 mm) and threshold stress intensity $\Delta K_{th} = 5$ ksi /in, the computed crack growth lives are in the same order of magnitude as those determined by using AWS and ASME S-N curves. The results for the crack growth life show the correct trend of the hatch corner fatigue performance.
- (iii) In comparing the crack growth lives associated with both threshold stress intensity values $\Delta K_{th} = 2$ and 5 ksi /in, it is noted that the difference in magnitudes of crack growth lives is insignificant for an initial crack $a_0 = 0.1$ in. Differences increase as the initial crack size decreases.

-55-

1

VIII GENERAL DISCUSSION AND CONCLUSIONS

In this study, four different approaches to fatigue life determination have been used to assess their ability to predict the trends of fatigue behavior observed at the forward hatch corner of the SL-7 containerships. Through these varied approaches, predictions of fatigue lives were made for the original configuration of the hatch corner, and for a "modified" hatch corner configuration employing doublers at the corners together with face plates. The long term dynamic stress histograms were obtained from actual strain measurements made during operation of two SL-7 vessels with and without the hatch corner modifications. Comparisons can be made of the predicted fatigue lives with observed incidences of hatch corner cracking as indicated by the survey data given in this report.

In making such comparisons, the following sources of uncertainty must be noted.

1) The first source of uncertainty concerns the fatigue stress histograms. In the case of the original unmodified hatch corner, it may be recalled that strain measurements for the highest stressed midsurface of the hatch corner deck plating were used in the study. In the case of the modified hatch corner, strain measurements for a similar highest stressed location on the face plate was used. While the former measurements can yield direct indications of fatigue behavior, the latter case cannot since the structural detail in the latter instance also contains a weld which has not been considered. Any assessment of fatigue performance of the weld would have been complicated not only by the lack of measured strain data at the appropriate location, but also by local differences in workmanship, etc.

-56-

ş

â

2) As yet another source of uncertainty in the strain data used in the present study, it is of interest to note that the locations of the highest stressed point for identical details (of the original unmodified hatch corner) on two sister vessels operating in the same general area are somewhat different, see figures for the SEA-LAND McLEAN and the SEA-LAND MARKET.

3) An additional source of uncertainty in the fatigue stress histograms arises from the probabilities of occurrences of the Beaufort wind measures used. It is to be noted that while the SEA-LAND McLEAN operated in the Pacific some of the time, it has always been the Beaufort wind probabilities for the North Atlantic that has conservatively been used in this study.

i

ţ

ł

f

Ī

Ę

4) Another source of uncertainty in the fatigue stress histograms concerns the use of random process theory related to stationary Gaussian processes with consideration of zero crossing rates for the purpose of obtaining the number of fatigue cycles from the hatch corner stress spectra available. Any approximations in this regard, however, are thought not to be of major consequence. A more direct method would have been to obtain such information from the original strain time histories by a cycle counting procedure.

5) Another broad class of uncertainties concerns certain details of the fatigue life prediction methodologies used. It will be appreciated, for example, that the AWS and ASME S-N curves used are lower bound design curves obtained from different sets of data. The AWS S-N curve used, that for non-redundant structures, contains an additional factor of safety imposed on a lower bound S-N curve obtained from fatigue test data. The use of such lower bound curves in the prediction of actual

- 57 -

fatigue performance is conservative, as the results show. In contrast, the S-N curve used in the fatigue reliability models, namely the Munse "detail 1F" for flame cut plain material, represents mean life on a Log S Log N scale. Also, except for the case of the ASME curve, mean stress effects have been generally neglected.

6) The use of the fatigue damage accumulation model in the case of the variable amplitude loading, including Miner's hypothesis and the rainflow correction factor, has its own uncertainty. Similarly, the fracture mechanics model has its uncertainties, e.g., in neglecting any possible crack growth retardation effects. These uncertainties, namely those related to the treatment of fatigue damage accumulation, as well as the scatter in S-N data, were accounted for in the probabilistic treatment of fatigue damage through the Wirsching and Munse reliability models used in this study. A measure of uncertainty in the fatigue stresses was also included in those models. It is of some interest to note that the two models, although based on different approaches and assumptions, give comparable values for probabilities of failure in the The average lives predicted from these models are present case. considerably higher than those from the AWS and ASME S-N curves reflecting the fact that the latter represent lower bound performance.

As demonstrated in this study both the deterministic S-N and the probabilistic fatigue reliability models adequately predict the general trend of the hatch corner fatigue behavior. The fatigue lives predicted from the deterministic S-N curve approaches in the case of original unmodified design are in line with observed cracking incidents. In addition, a third and entirely different deterministic approach, viz. fracture mechanics based calculations of fatigue performance also yield

-58-

ş

lives comparable to those observed for the unmodified hatch corner. This, of course, reflects the fact that the validation study performed is essentially more accurate for the original unmodified case.

In making any comparisons with data related to observed incidences of cracking it should be noted that generally survey dates rather than dates of crack occurrence are reported. Also that the characteristics of the cracks that occurred would normally not be consistent with the definitions of fatigue failure underlying either the S-N curves or the fracture mechanics model. Thus, in summary, it is emphasized that although predictions of fatigue behavior as made in this study do indicate the general trend of observed incidences of hatch corner cracking, any comparisons related to the exact times to crack occurrence are considerably more difficult because of the various uncertainties in fatigue stresses and fatigue strength.

ŝ

REFERENCES

- 1.1 Munse, W.H., Wilbur, T.W., Tellalian, M.L., Nicoll, K. and Wilson, K., "Fatigue Characterization of Fabricated Ship Details for Design". Ship Structure Committee Report No. 318, 1983.
- 1.2 Wirsching, P.H., "Probability Based Fatigue Design Criteria for Offshore Structures". Final Project Report on API PRAC 81-15. University of Arizona, Tucson, 1983.
- 1.3 Wirsching, P. H., "A Fracture Mechanics Based Life Prediction Model for Components of Marine Structures," Aerospace and Mechanical Engineering Department, University of Arizona, Technical Report No.'9 to ABS, 1984.
- 3.1 Fain, R.D., "Design and Installation of a Ship Response Instrumentation System Aboard the SL-7 Class Containership S.S. SEALAND McLEAN", Ship Structure Committee Report SSC-238, 1974.
- 3.2 Boentgen, R.R. and Wheaton, J.W., "Static Structural Calibration of Ship Response Instrumentation System Aboard the SEALAND McLEAN", Ship Structure Committee Report SSC-263, 1976.
- 3.3 Boentgen, R.R., Fain R.A. and Wheaton, J.W., "First Season Results from Ship Response Instrumentation Aboard the SL-7 Class Containership S.S. SEALAND McLEAN in North Atlantic Service", Ship Structure Committee Report SSC-264, 1976.
- 3.4 Wheaton, J.W. and Boentgen, R.R., "Second Season Results from Ship Response Instrumentation Aboard the SL-7 Class Containership S.S. SEALAND McLEAN in North Atlantic Service", Teledyne Material Research Technical Report TR-1559, 1975.
- 3.5 Boentgen, R.R., "Third Season Results from Ship Response Instrumentation Aboard the SL-7 Class Containership S.S. SEALAND McLEAN in North Atlantic Service", Teledyne Materials Research Technical Report TR-2058, 1975.
- 3.6 Dalzell, J.F., Correlation and Verification of Wave Meter Data from the SL-7", Davidson Laboratory Report Nos. SIT-DL-77-1931, 1933 and 19, January & February 1976.
- 3.7 Teledyne Engineering Services "Instrumentation of Modified and Unmodified Forward Hatch Corners Aboard the Containership S/L MARKET", Vols. I and II, Teledyne Engineering Services Report TR-2399, April 1977.

ſ

Į

ş

3.8 Teledyne Engineering Services, "Instrumentation of Forward Hatch Corner Aboard the SL-7 Containership SEALAND McLEAN in Pacific Service"' Vols. I and II, Teledyne Engineering Services Report TR-2448, Dec. 1977.

- 3.9 Teledyne Engineering Services, "Modified Instrumentation of the Forward Hatch Corners on the Containership "SEALAND McLEAN", Teledyne Engineering Services Report TR-2719-2.
- 4.1 Elbatouti, A.M., Liu, D., and Jan, H.Y., "Structural Analysis of SL-7 Containership Under Combined Loading of Vertical, Lateral and Torsional Moments Using Finite Element Techniques", Ship Structure Committee Report SSC-243, 1974.
- 4.2 American Bureau of Shipping, "ABS/DAISY System of Computer Programs for Ship Structural Analysis", 1975.
- 4.3 Elbatouti, A.M., Jan, H.Y. and Stiansen, S.G., "Structural Analysis of a Containership Steel Model and Comparison with the Test Results", SNAME Transactions, 1976.
- 4.4 Dalzell, J.F., and Chiocco, M.J., "Wave Loads in a Model of the SL-7 Containership Running at Oblique Headings in Regular Waves", Ship Structure Committee Report SSC-239, 1974.
- 4.5 Kaplan, P., Sargent, T.A. and Cilmi, J., "Theoretical Estimates of Wave Loads on the SL-7 Containership in Regular and Irregular Seas", Ship Structure Committee Report SSC-246, 1974.
- 4.6 Kaplan, P., Sargent, T.A. and Silbert, M., "A Correlation Study of SL-7 Containership Loads and Motions - Model Test and Computer Simulation", Ship Structure Committee Report SSC-271, 1977.
- 4.7 Jan, H.Y., Chang, K.T., and Wojnarowski, M.E., "Comparison of Stresses Calculated Using the DAISY System to Those Measured on the SL-7 Containership Program", Ship Structure Committee Report SSC-282, 1979.
- 4.8 Chiou, J., "Hatch Corner Study for the SL-7 Containerships", American Bureau of Shipping, Technical Report OE-79001, January 1979.
- 5.1 Ochi, M.K., "On the Prediction of Extreme Values", Journal of Ship Research, Vol. 17, No. 1, March 1973, pp 29-37.
- 6.1 Wirsching, P.H. "Probability-based Fatigue Design Criteria for Offshore Structures", API-PRAC Project No. 81-15 Report, January 1983.
- 6.2 Stacy, E.W. and Mihram, G.A., "Parameter Estimation for a Generalized Gamma Distribution", Technometrics, Vol. 7, No. 3, 1965, pp. 349-358.

I

Ĩ

- 7.1 <u>Structural Welding Code-Steel</u>, American Welding Society ANSI/AWS D1.1-8, 1982.
- 7.2 <u>Bridge Fatigue Guide/Design and Details</u>, American Institute of Steel Construction, 1221 Avenue of The Americas, New York, NY, 10020, 1977.

- 7.3 Fisher, J.W., et.al., "Fatigue Strength of Steel Beam with Transverse Stiffeners and Attachments, <u>National Cooperative Highway Research</u> <u>Program</u> Report 147, 1974.
- 7.4 <u>Pressure Vessel Code</u>, American Society of Mechanical Engineering Section, VIII, Division 2, 1983.
- 7.5 Munse, et.al. "Fatigue Characterization of Fabricated Ship Details for Design", Ship Structure Committee Report SSC-318, 1983.
- 7.6 Wirsching, P.H., "A Fracture Mechanics Based Life Prediction Model for Components of Marine Structures", Aerospace and Mechanical Engineering Department, University of Arizona, Technical Report No. 9 to ABS, 1984.
- 7.7 "Fatigue Consideration in View of Measured Load Spectra, Vol. I", Teledyne Engineering Service Technical Report TR-3049-5, December 1980.
- 7.8 Barsom, J.M., Novak, S.R., "Subcritical Crack Growth and Fracture of Bridge Steels", <u>National Cooperative Highway Research Program</u> Report 181, Transportation Research Board, Washington, DC 1977
- 7.9 Wirsching, P.H., "A First Iteration of Developing Probability Based Fatigue Design Rules for TLP Components Using Lognormal Format", Aerospace and Mechanical Engineering Dept., University of Arizona, Technical Report No. 1, January 1985.

Į

ł

NAME OF SL-7	REPORT	FIRST HATCH		SECOND HATCH		OTHER HATCH	REMARKS	
CONTAINERSHIP	DATE	FORWARD	AFT	FORWARD	AFT			
MCLEAN	7311	X					AS BUILT	
	7403	X					AS BUILT	
	7410	X					AS BUILT	
	7610			X			AS BUILT	
	7612	X					DOUBLER	
	7701	X					DOUBLER	
COMMERCE	7501	x					AS BUILT	
	7502	X					AS BUILT	
i	7611			X			AS BUILT	
-	8003			X			AS BUILT	
TRADE	7501	- X					AS BUILT	
	7610	X					AS BUILT	
	7803	X				X	AS BUILT	
-	7805			X X		AS BUILT		
	7810	x					DOUBLER	
EXCHANGE	7502	X		·			AS BUILT	
MARKET	7309	X					AS BUILT	
	7506			X			AS BUILT	
	7509	X		·			AS BUILT	
	7602			x			AS BUILT	
RESOURCE	7312	X	X				AS BUILT	
	7504	X					AS BUILT	
	7602			x			AS BUILT	
	7801	x					DOUBLER	
	8001			x	ŀ	x	AS BUILT	
	8104			X	X	.	AS BUILT	
GALLOWAY	7404	X					AS BUILT	
	7502	X					AS BUILT	
	7802	X					DOUBLER	
	8105	X	X				FP/DBLR*	
	8105			X	X	X	AS BUILT	

Table 2.1 Damage at Hatch Corners of SL-7 Containerships

- -

ŝ

ł

ł

* FACE PLATE AND DOUBLER WERE ADDED

Loading Condition	61. /	t 1	7 3		d = distance	ABS/SHIPMOTION Calculation		
	Ship Speed (knots)	Wave Frequency (Rad/Sec)	Wave Length (ft)	Wave Height (P-T) (ft)	from Wave Crest to AP (ft)	Reave (ft.)	Pitch (Degrees)	Roll (Degrees)
1	Stillwat	er Condition	(Mean Draft	= 30.57 ft.)				
2	10.9	0,50	808.5	20.92	473.14	-3.931	2,06	0
3		0.35	165.1	51,2	253.08	-15.87	-2.80	0
4	•			71	* 473.14		1,482	0
5	18.7	0.50	808.5	21.97	693.23	-7.3	3.27	0
6	28.1	1,60	561.5	16,47	473.14	-0.84	0.01	0
7	•	0.50	608.5	30.6	693.23	-15.64	-1.908	0
0	T			₹	473.14	4.64	5.4	0
9	10.9	0.606	550.4	19.68	n	-1.74	0,96	0
10	18.7	0.56	644.56	10 10	,	-2.14	1.97	0
11	28.1	0,539	695.7		,	1,52	1.3	0
12	*	0.65	478.4		₩	-1.03	-0.01	0
13	32.3	0.435	540,15	30.18	253.08	-21,46	3.145	-0.27
14	•			•	473.14	-3.99	5.76	1.412
15	•				693.23	18.0	1.85	1,495
16	31,8	0.344	880.29	33.46	253,08	-17.5	-0.944	-0,457
17	*	M	· •	M	473.14	-20,35	5.317	1.252
18	#		*		693.23	1.8	5.048	1.421

т

Table 4.1 Wave Characteristics and Ship Motions of the

18 Loading Conditions Analized in [4.7]

-64-

.

1

-

7
Point L.C.	1	2	3	4	5	6	7	8	SCF	
1	197	224	409	401	44	-53	-108	-19	1.8	
2	222	252	438	415	33	-67	-119	-20	1.7	
3	219	249	444	428	41	-61	-118	-20	1.8	
4	247	281	489	465	39	-73	-133	-22	1.8	
5	141	161	286	269	21	-42	-75	-12	1.8	
6	209	239	422	405	36	-62	-114	-19	1.8	
7	269	309	606	616	89	-61	-154	-29	1.9	
8	83	97	171	159	11	-25	-43	-7	1.8	
9	188	214	376	357	29	-57	-102	-17	1.8	
10	63	73	108	76	14	-27	-28	-3	1.5	
11	182	208	355	327	18	-60	-98	-16	1.6	
12	196	224	401	387	37	-57	-109	-19	1.8	
13	50	59	71	60	27	24	24	6	1.2	
14	167	222	417	577	310	193	88	8	2.6	
15	327	400	776	919	300	86	-70	-21	2.3	
16	264	294	518	482	24	-93	-152	-25	1.8	
17	186	230	393	467	186	87	14	-1	2.0	
18	131	171	311	400	184	98	30	1	2.6	
	5									
	7									
0 8 N										
					ά μ					

.

Table 4.2 Stress RAO (in psi) along Hatch-corner Cut-out

i.

1

š

Ş

?

į

Ť

	Cut-out		Main Deck Reinforcement		Hat	Hatch Coaming			Hatch Girder	
Model No.	Shape	Size in radius	Insert Plate	Doubler	Туре	Modeling Beam	Element Plate	Туре	Micole Line Bloam	
1	Circular	61.0mm			As built			As built Extended		
3				<u> </u>				Longit		
4	••					1 :		Deep gird er		
5	H	400mm			11			As built		
6	, , , , , , , , , , , , , , , , , , ,	*			Partially reinforced			With tapered extension		
. 7	10	*						н		
8	#	40			As built	/		As built	7	
9		1		<u> </u>	Extended to Fr. 291		/	Deep girder		
10	H				Reinforced		· ·	With tapered extension		
11	*	H	1		Ext. to Fr.291		1	1 11		
12	Parabolic		· /		n		/	11		
13	Circular	400mm			H				ļ	
14		*			Bracket Addod		/			
15		*			Partially reinforced		/	61		
16					Extended		/	H	I{	
17	parabolic								┠╼────{	
16				ļ			<u>↓</u>	N	┠━━━━┣	
19				1	"		_ ≁			

-

Table 4.3 Special Features of Models

ļ

_

.

.

b-1

Table	4.4	
-------	-----	--

Comparison of Maximum Stresses at Hatch Corner Cut-Out Contour

A (BASE)	MODEL 6 (T)-2226 (B) 889	MODEL 7 -1883 687	MODEL 8 -2009 986	MODEL 9 -2423 1013	MODEL 10 -1877 605	MODEL 12 ~2355 895	MODEL 13 -1286 539	MODEL 14 -1910 662
MODEL 5 -2580(T) 1332(B)	(1) -14% -33%		(2) -22% -26%			,	(3) -50% -60%	
MODEL 6 -2226(T) 889(B)		(4) -15% -23%		(5) 9% 14%				
MODEL 7 1883(T) 687(B)					(6) 0% -12%			
MODEL 11 -1953(T) 734(B)		(7) -4% -7%				(8) 21% 22%	(9) - 34% - 27%	(10) -2% -10%
MODEL 15 -2580(T) 1332(B)	(11) -3% -3%				• <u> </u>			

Remarks:

ţ

į

- (1)Effect of stiffened coaming and tapered extended girder
- (2) Effect of doubler
- Total effect of insert plate, face plate, extended coaming and tapered (3) extended girder
- Effect of insert plate (4)
- Effect of deep girder while compared to tapered extended girder (5)
- Effect of extended stiffened coaming (6)
- Effect of stiffened coaming (7)
- Effect of parabolic cut-out (8)
- (9) Effect of face plate
- (10) Effect of bracket
- (11) Effect of discontinuity of hatch coaming

	Date		Total Intervals	
Ship	Recorded		Est.	Act.
	Jan-Mar 75	FyB	300	214
SEALAND MCLEAN	May-Jul 77	2&8	600	400
·	Sep-Jan 78	3&8	1000	425
SEALAND MARKET	Oct-Dec 76	2&8	700	288

Table 5.1 Data of Selected Intervals and for this Study

,

SHIP	DATE RECORDED	GAUGE	HP FILE	
			FROM	то
SEALAND MCLEAN	Jan - March 75	FyB	FyB-1	FyB-22
* *	May - July 77	2 6 8	MCL-1A	MCL-40A
	Sept. 77 - Jan. 78	3	SLM-1A Int. 1 & 2 SLM-3A Int. 7 & 8 SLM-16A Int. 3 & 4 SLM-27A Int. 7 & 8	SLM-16A Int. 1 & SLM-27A Int. 5 &
		8	SLM-1A Int. 1 & 2 SLM-16A Int. 3 & 4 SLM-27A Int. 7 & 8	SLM-27A Int. 5 &
SEALAND MARKET	Oct Dec. 76	2 & 8	MKT-1	МКТ-29

-

.

Table 5.2 Scale Factors for Reduced Data

.

-69-

--- *

.

.423217773438	.207057572351	2.78116701242E-02	1.64400436593E-02
3.95855323705E-02	3.98784299527E-02	5.706508322555-02	.055437874932
4.81570450382E-02	2.59375941393E-02	1.945/6853071E-02	1.38257362501E-0_
3.80471795045E-02	1.70173300837E-02	4.34446253612E-02	3.05359537263E-02
3.15717915335E-02	2.86229328095E-02	2.743028248995-02	3.86728101691E-02
4.09855697103E-02	.035966584745	4.90803813143E-02	5.26215109326E-02
4.00917670645E-02	7.81364317085E-02	8.96276884467E-82	4.68190245539E-02
9.83452025939E-02	.174188664792	.20861056815	.118655566156
9.64357340635E-02	.196493057185	178558370635	.222594955994
8.91363380108E-02	.141823058167	8.94567249439E-03	.148135128433
.137769622399	.124323847454	3.47811524567E-02	9.41507916677E-02
9.910620681238-02	.866382337247	4-12932125374E-02	.059700458269
3.993311030E-02	7.49674854697E-02	6.56779423802E-02	6.28062722019E-02
3.87634956241E-02	2.170039081955-02	3.350843111876-02	1.23935375426E-02
33889909157E-02	9.83241325432E-02	.122764343455	9.28735595293E-02
7.72177301203E-02	6.90673838279E-02	4.41303200004E-02	3.34663054396E-02
1.910 - 397621E-02	4.22042300678E-02	2.760358172526-02	1.04552644184E-02
18 593049E-02	1.24835150666E-02	3.28582531255E-02	4.61 3110384E-02
3. 34(7115188E-02	2.26309447951E-02	.017799991323	3.0: 2278655-82
2. 42 319E-02	3.06132495573E-02	.015313119494	2.4 40952E-02
2.1 20821E-02	1.83369926432E-02	1.69895010774E-02	3.21469239716E-02
2.76796939724E-02	1.59806773598E-02	2.452188453558-82	2.15454488456E-02
1.59480343829E-02	1.44868208312E-02	1.23251106656E-03	8.53836838984E-03
			8.82554059734E-03
1.62492057547E-02	.016137747541	1.58227149876E-02	
2.17691320493E-02	.023163088715	2.48343850006E-02	2.28761501664E-02
9.97993174594E-03	3.65847790237E-03	7.44543341821E-03	1.43241470964E-02
1.46542125561E-02	8.05628119702E-03	7.72357036677E-03	1.41353405222E-02
1.12777626735E-02	8.92961232045E-03	2.53849006119E-02	2.14257361222E-02
2.09820376017E-02	1.41264585491E-02	2.72570864363E-03	8.42440638857E-03
3.81361913050E-03	1.34423003522E-02	9.44685921532E-03	8.11772600204E-03
7.33503642391E-03	3.43861739875E-03	6.42885248781E-83	7.64316865268E-03
2.79958173986E-03	3.62588128936E-03	3.59608847816E-03	8.87324508569E-03
1.08667050111E-02	2.82618869791E-03	5.47314247519E-03	7.56911304781E-03
4.37170542070E-03	7.15781362438E-83	1.52184525448E-02	.016817671802
1.22358386798E-02	8.67748517796E-84	9.74224989683E-83	9.44764984852E-83
4.53993771675E-03	6.98448099625E-03	3.60176314410E~03	5.583422934 34 E-03
8.80013039722E-03	.81106473482	1.75865249915E+03	4.43498548279E-03
4.46520336511E-03	5.39582557531E-03	1.08337509601E~02	1.13838454346E-02
.015076639205	1.33311485911E-02	6.63292382172E-03	1.31329498849E-02
1.12191537167E-02	5.66575002376E-03	5.67281365429E-03	3.63632853119E-03
1.36041394957E-02	1.37029511799E-02	9.69511896683E-03	8.23864797401E-03
3.09456368061E-03	6.35387873891E-03	5.23545485361E-0 3	1.39256828593E-03
4.83118721865E-03	5.05792611242E-03	6.57141313638E-03	4.39627599679E-03
5.31133000731 E-0 3	6.92999738517E-03	6.12073377025E-03	7.25091822685E-03
5.86487591335E-03	5.53329267881E-03	7.54399714704E-03	1.65080060134E-03
4.66833928147E-04	7.02413667607E-04	2.42641198904E-03	1,03063297104E-03
7.12822246201E-03	1.32229937041E-02	1.12230863642E-02	6.00141236163E-03
5.50692212908E-03	3.75568191274E-03	2.18380757361E-03	2.76188362473E-03
3.18514201187E-03	3.70121629046E-03	1.89928148893E-03	1.07529750153E-03
1.52442863211E-03	3.69452494908E-03	5.55507422972E-03	4.99151351569E-03
3.57898375884E-03	4.13344584819E-03	6.54371511212E-03	5.55649647510E-03
4.53676414407E-03	2.78507322241E-03	8.82667286321E-03	7.30688766375E-03
7.70190637874E-03	8.09672527508E-03	5.52759901508E-03	4.58165985537E-03
4.25368675360E-03	3.04342802251E-03	3.41875215199E-03	4.50506541313E-03
4.71274778837E-83	6.58908375773E-03	7.32738463899E-03	5.20262297582E-03
3.68247300066E-03	4.61353452740E-03	7.17988657717E-03	7.00162717634E-03
6.34780411813E-03	6.14306037113E-03	5.58449954764E-03	5.82844816195E-03
5.40425332855E-03	2.69580162563E-03	3.63341854536E-03	6.22898481759E-03
6.15253791551E-03	1.76887629425E-83	6.17388887826E-03	4.43009713381E-03
6.82919779354E-03	4.11998607339E-03	3.02182418363E-03	3.48253343168E-03
8.92997734887E-04	5.61873699909E-03	5.31164522601E-03	3.79469059916E-03
3.64107758428E-03	4.47748618890E-03	4.05029176620E-03	3.83915499371E-03
5.63973061246E-03	5.41289277534E-03	1.055508050652-03	1.23238975344E-03
7.23249198196E-03	6.56548465204E-03	3.20398237801E-03	2.32435640752E-03

3

Į

1

ł

ŧ

.

۰.,

ş

ł

ş

į

ł

Ì

ANALOG TAPE

1141 4			ANAL VI	a IAFL
FILE	INT#	BEAUFORT	TAPE	INDEX
FYB-1	1	1	202	1
FYB-1	2	1 4	202	2
FYB-1	3 4		202	3
FYB-1		6	202	4
FYB-1	5	7	2 02	5
FYB-1	6	5 6 7 7 7 7	2 02	1 2 3 4 5 6 7
FYB-1	7	7	202	7
FYB-1	8	7	202	8
FYB-1 FYB-1	9	7 7	202	9
FYB-2	10 1	7	2 02	10
FYB-2		7	202 202	11
FYB-2	2 3	6	202	12 13
FYB-2	4	ő	202	13
FYB-2	5	6	202	15
FYB-2	6	3	204	16
FYB-2	7	2	204	17
FYB-2	8	3	204	18
FYB-2	9	6 6 3 2 3 2 4	204	19
FYB-2	10	4	204	20
FYB-3 FYB-3	1	3 1 1 1 2 3 5 5 5 5 5 5 5 5 7	204	21
FYB-3	2 3	1	204	22
FYB-3	4	1	204 204	23
FYB-3	5	1	204	24 25
FYB-3	ě	2	204	26
FYB-3	7	3	204	27
FYB-3	· 8	5	204	28
FYB-3	9	5	204	29
FYB-3	10	5	204	30
FYB-4	1	5	206	31
FYB-4 Fyb-4	1 2 3 4	5	206	32
FYB-4	3	6	206 206	33 34
FYB-4	•		206	- ·
FYB-4	5 6 7 8 9	2 4 3 2	206	35 36
FYB-4	7	3	206	37
FYB-4	8	2	206	38
FYB-4	9	· 4	206	39
FYB-4	10	3	206	40
FYB-5	1	5	206	41
FYB-5	1 2 3 4	5	206	42
FYB-5	5	4	206	43
FYB-5 FYB-5	4 5	2	208	5
FYB-5	5	4 3 5 5 4 5 7 7	208	5 6 7
FYB-5	7	6	208 208	8
, 10-0		v	200	Ö

٠

.

•

i

ţ

1

į

H.P. TAPE

ANALOG TAPE

FILE	INT#	BEAUFORT	TAPE	INDEX
FYB-5 FYB-5 FYB-6 FYB-7 FYB-7 FYB-7 FYB-7 FYB-7 FYB-7 FYB-8 FYB-8 FYB-8 FYB-8 FYB-8 FYB-8 FYB-8 FYB-8 FYB-8 FYB-8 FYB-9 FYB-9 FYB-9 FYB-9 FYB-9 FYB-9	8901234567890123456789012345678901234567	BEAUFORT 6 7 7 7 7 5 6 6 6 4 6 8 8 9 7 5 7 7 7 5 7 7 7 6 6 6 6 6 6 6 6 6 6 6	208 208 208 208 208 208 208 208 208 208	9 10 11 12 13 14 15 16 17 18 19 20 21 22 34 25 26 27 28 9 30 31 32 33 46 17 18 19 20 21 22 34 25 26 27 28 9 30 31 32 33 46 17 18 19 20 21 22 34 25 26 27 28 9 30 31 22 23 42 52 62 7 28 9 30 31 22 23 24 52 62 7 28 9 30 31 22 22 24 25 26 27 28 9 30 31 22 22 24 25 26 27 28 9 30 31 22 22 24 25 26 27 28 9 30 31 22 22 24 22 24 25 26 27 28 9 30 31 22 22 24 22 24 25 26 27 28 9 30 31 22 22 24 22 24 25 26 27 28 9 30 31 22 22 24 25 26 27 28 29 30 31 22 22 24 25 26 27 28 29 30 31 22 22 22 24 25 26 27 28 29 30 31 22 22 22 22 24 25 26 27 28 29 30 31 22 22 22 24 25 26 27 28 29 30 31 22 22 22 22 22 22 22 22 22 22 22 22 22
FYB-9 FYB-9 FYB-9	8 9	6 5 5 6	214 216 216 216 216	29 31 32 33
FYB-10 FYB-10 FYB-10 FYB-10 FYB-10	10 1 2 3 4	3 5 5 4	216 216 216 216 216	33 34 35 36 37

.

.

.

H.P. TAPE

ANALOG TAPE

	_		•	
FILE	INT#	BEAUFORT	TAPE	INDEX
FYB-10	5	5	216	38
FYB-10	5 6	5	216	39
FYB-10	7	5 . 5 . 5	216	40
FYB-10	8	4	216	41
FYB-10	9	3	216	42
FYB-10	10	4	216	43
FYB-11	1	2	216	
FYB-11	2	2	218	1
FYB-11	1 2 3 4	5	218	44 1 2 3 4
FYB-11		4	218	3
FYB-11	5	2	218	4
FYB-11	5 6	· 2	218	5 6 7
FYB-11	7	5	218	6
FYB-11	8	· 2	218	7
FYB-11	9	6	218	8
FYB-11	10	4 3 4 2 2 5 4 2 2 5 4 2 2 5 2 6 6 2 0	218	9
FYB-12	1	2	218	10
FYB-12	2	0	218	11
FYB-12	1 2 3 4	·	218	12
FYB-12		5 7	218	13
FYB-12	5 6		218	14
FYB-12	6	6 6 8 7 1 1 3 2 2 7 8 8 4	218	15
FYB-12	7	6	220	16
FYB-12	8	8	220	17
FYB-12	9	7	220	18
FYB-12	10	1	220	19
FYB-13	1	1	220	20
FYB-13	2	3	220	21
FYB-13	2 3 4	2	220	22
FYB-13	4	2	220	23
FYB-13	5 6	1	220	24
FYB-13	0	. 8	220	25
FYB-13	7	ð A	220	26 27
FYB-13 FYB-13	8		220 220	28
FYB-13	9	2	220	29
FYB-14	10	2	220	30
FYB-14	2	. 5 . E	222	31
FYB-14	2	3	222	32
FYB-14	4	6 2 5 5 3 0	222	33
FYB-14	10 1 2 3 4 5 6 7		222	34
FYB-14	6	ŏ	222	35
FYB-14	ž	2	224	1
FYB-14	8	2	224	2
FYB-14	ğ	0 0 2 2 2 2	224	2 3 4
FYB-14	10	2	224	4
/				-

.

-

H.P. TAPE

ANALOG TAPE

.

.

FILE	INT#	BEAUFORT	TAPE	INDEX
FYB-15	1	4	224	5
FYB-15	2	7	224	5 6 7 8 9
FYB-15	2 3	8	224	7
FYB-15	4	8 8	224	8
FYB-15	5	8	224	9
FYB-15	5 6 7	6	<u>224</u>	10
FYB-15		6	224	11
FYB-15	B	6	224	11
FYB-15	9	6 3	224	12 13
FYB-15	10	3	224	13
FYB-16	1 2 3 4	4	224 224	14 15
FYB-16	2	· 4 6	226	15
FYB-16 FYB-16	3	6	226	17
FYB-16		2	226	18
FYB-16	5	3	226	19
FYB-16	5 6 7	Ă	226	20
FYB-16	8	6 3 3 4 3 4	225	21
FYB-16	9	Ă.	226	21 22
FYB-16		4	226	23
FYB-17	1	3	225	24
FYB-17	2	3	226	25
FYB-17	10 1 2 3 4 5 6 7	4 3 3 2 2 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	226	26 27
FYB-17	4	2	226	2/
FYB-17	5	2	226 226	28 29
FYB-17	0	4	226	30
FYB-17 FYB-17	8	4 2	228	31
FYB-17	9	3	228	32
FYB-17	10	3	228	33
FYB-18	1	3	228	. 34
FYB-18	2	. 3	228	35
FYB-18	1 2 3 4	3	228	36
FYB-18	4	_	228	37
FYB-18	5	3	228	38
FYB-18	5 6 7 8 9	2	228	39
FYB-18	/	Ž	230 230	1 2
FYB-18	P	4	230	2
FYB-18 FYB-18	10	2	230	4
FYB-10 FYB-19	1	Д	230	5
FYB-19	2	4	230	1 2 3 4 5 6 7
FYB-19	3	4	230	7
FYB-19	Ā	1	230	8
FYB-19	1 2 3 4 5 6	3 2 4 2 3 4 4 4 1 4 1	230	9
FYB-19	6	1	230	11

.

-

-

.

-

_

÷

٠

1

-

.

H.P. TAPE

ANALOG TAPE

,

•

FILE	INT#	BEAUFORT	TAPE	INDEX
FYB-19 FYB-19	7 8	3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	230	12
FYB-19	9	2	230 230	13 14
FYB-19	10	2	230	15
FYB-20	1	2	230	16
FYB-20	2	2	232	17
FYB-20	1 2 3 4	2	232	18
FYB-20 FYB-20		1	232	19
FYB-20	5	5	232 232	20 21
FYB-20	5 6 7	5	232	22
FYB-20	8	3	232	23
FYB-20	9	2	23 2	24
FYB-20	10	. 5	232	25
FYB-21	1	6	232	26
FYB-21 FYB-21	2	7	232 232	27
FYB-21	4	7	232	28 29
FYB-21	2 3 4 5 6	ģ	232	30
FYB-21	6	8	234	31
FYB-21	7	7	234	32
FYB-21	8	6	234	33
FYB-21 FYB-21	9 10	5	234	34
FYB-22		5 ▲	234 234	35 36
FYB-22	ź	3	234	37
FYB-22	1 2 3 4	9 8 7 6 5 4 3 1 1	234	38 -
FYB-22	4	1	234	39
		· .		•

•

ţ

ĩ

Î

ANALOG TAPE

FILE	INT#	BEAUFORT	TAPE	INTERVAL
MKT-1	1&2	6	1	1
MKT-1	3&4	7	1	2
MKT-1	5& 6	7	1	3
MKT-1	7&8	7	1	4
MKT-1	9&10	7	1	5
MKT-2	1&2	7	1	6
MKT-2	3&4	7 7 7 8 7 7 7 7 7 7	1	1 2 3 4 5 6 7 8 9
MKT-2	5 &5	/	1	8
MKT-2	748	/	1 1 1 1	
MKT-2 MKT-3	9&10	1	ļ	10
MKT-3	1&2 3&4	7	1.	11
MKT-3	3&4 5&6			. 12
MKT-3	748	8 7	1	13
MKT-3	9&10	6	1 1 1	14 15
MKT-4	142	6	1	15
MKT-4	3&4	6	1	18
MKT-4	546	6 6		19
MKT-4	748	• 6	i	20
MKT-4	9&10	• 6 ·	ī	· 21
MKT-5	1&2	7	ī.	22
MKT-5	3&4	.7	ī	23
MKT-5	586	`8	ī	24
MKT-5	788	8	ī	25
MKT-5	9&10	8	1	26
MKT-6	1&2	8	ī	27
MKT-6	3&4	7	1	28
MKT-6	546	7	1	29
MKT-6	7& 8	7	1	30
MKT-6	9&10	8	1	31
MKT-7	1&2	7	1	32
MKT-7	3&4	7	1	33
MKT-7	5&6	· 8	1	34
MKT-7	788	7	1	35
MKT-7	9&10	7	1 .	36
MKT-8 MKT-8	1&2	5	2	13
MKT-8	3&4 5&6	5 E	2	14
MKT-8	540 7&8	5 5 4 5 5 6 7 7	4	15
MKT-8	9&10	7 5	2 2	21
MKT-9	1&2	5	2	22 23
MKT-9	3&4	ő	2	25
MKT-9	5&6	ž	2	26
MKT-9	748	7	2	28
MKT-9	9&10	6	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	29
_		-	—	

•

ì

į

ANALOG TAPE

FILE	INT#	BEAUFORT	TAPE	INTERVAL
MKT-10 MKT-10 MKT-10 MKT-10 MKT-11 MKT-11 MKT-11 MKT-11 MKT-12 MKT-12 MKT-12 MKT-12 MKT-12 MKT-12 MKT-13 MKT-13 MKT-13 MKT-13 MKT-14 MKT-14 MKT-14 MKT-14 MKT-15 MKT-15 MKT-15	INT# 1&2 3&4 5&6 7&8 9&10 1&2 3&4 5&6 7&8 7&8 7&8 7&8 7&8 7&8 7&8 7&8	BEAUFORT 5 4 5 5 6 5 8 9 5 6 3 2 2 2 2 2 3 3 6 6 3 5 5 9 4 2 2 2 2 2 2 2 2 2 2 2 2 2	TAPE 2 2 2 2 2 2 2 2 2 2 2 2 2	INTERVAL 32 33 41 42 44 45 46 47 48 49 50 51 52 54 55 56 57 58 59 60 61 62 63 64 66 7 17 23 24
MKT-15 MKT-16 MKT-16 MKT-16 MKT-16 MKT-17 MKT-17 MKT-17 MKT-17 MKT-17 MKT-18 MKT-18 MKT-18 MKT-18 MKT-18	9&10 1&2 3&4 5&6 7&8 9&10 1&2 3&4 5&6 7&8 9&10 1&2 3&4 5&6 7&8 9&10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	25 26 28 29 30 31 32 33 34 35 36 37 38 40 41 42

ļ

Ì

*

ŧ

ł

Ī

ş

-

-

ANALOG TAPE

• •

FILE	INT#	BEAUFORT	TAPE	INTERVAL
MKT-19	1&2	5	3	43
MKT-19	3&4	5	3 3 3 3 3 3 3 3 4	44
MKT-19	5&6	6	3	45
MKT-19	74 8	5	3	46
MKT-19	9&10	5 5 5 6	3	47
MKT-20	1&2	5	3	48
MKT-20	3&4	6.	3	49
MKT-20	546	6 7	3	50
MKT-20	788	7	3	51
MKT-20	9&10	4		15
MKT-21	1&2	4	4	17
MKT-21	3&4	4	4	18
MKT-21	546	2	4	19
MKT-21	7&8	2	4	20
MKT-21 MKT-22	9&10 1&2	2 2 8 5 5 5 5 6	4	23
MKT-22	3&4	5	4	49
MKT-22	546	2	- ⁻ •4 4	50 51
MKT-22	748		4	55
MKT-22	9410	6	4	- 56
MKT-23	142	6 7	4	57
MKT-23	3&4		4	6 0
MKT-23	546	7	4	62
MKT-23	748	8 7 3 2 3 2 3 2 3 4 5 7		
MKT-23	9810	3	5	2
MKT-24.	1&2	2	5 5 5 5 5 5 5 5 5 5 5 5 5	1 2 3 4
MKT-24	3&4~	3	5	Ă.
MKT-24	5&6	3	5	5
MKT-24	788	2	5	5 6 7
MKT-24	9&10	3 - ,	5	7
MKT-25	1&2	4	6	19
MKT-25	3&4	5	6	24
MKT-25	546	7	6 6 6	25
MKT-25	7&8	9		26
MKT-25	9&10	10	6	27
MKT-26	182	10	6	29
MKT-26 MKT-26	3&4 5&6	9	0	31
MKT-26	748	0 5	5	32
MKT-26	9&10	10 9 8 6 3 3 6 6 4 3	6 6 6 6 6 6 6 6 6 6	44 46
MKT-27	1&2	2	6	
MKT-27	3&4	5	6	47 48
MKT-27	546	6	6	49
MKT-27	748	4	6	51
MKT-27	9&10	3	6	52
		-	-	* •

•

• .:

:

,

ŧ

į

Ĩ

ſ

ŧ

H.P. TAPE			ANALOG TAPE		
FILE	INT#	BEAUFORT	TAPE	INTERVAL	
MKT-28 MKT-28 MKT-28 MKT-28 MKT-29 MKT-29 MKT-29 MKT-29 MKT-29	1&2 3&4 5&6 7&8 9&10 1&2 3&4 5&6 7&8	2 6 7 7 6 7 7 7	6 6 6 7 7 7 7 7	53 54 56 57 58 1 2 3 4	

....

.

.

i

ł

1

-

ANALOG TAPE

FILE	INT#	BEAUFORT	TAPE	INTERVAL
MCL-1	1&2	3 3 4 3 6 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18
MCL-1	3&4	3	1	19
MCL-1 MCL-1	5&6 7&8	4	1	20 21
MCL-1	9&10	5	1	22
MCL-2	1&2	Ă,	i	23
MCL-2	3&4	4	ī	24
MCL-2	546		1	25
MCL-2	748	3	1	26
MCL-2	9&10	3	1	32
MCL-3	1&2	2	1	33
MCL-3 MCL-3	3&4 5&6	2	1 2	34 6
MCL-3	728	3	2	7
MCL-3	7&8 9&10	3	2	8
MCL-4	1&2	3	2	9
MCL+4	3&4	3	2	10
MCL-4	586	5	2	11
MCL-4	7&8 9&10	5	2	12
MCL-4 MCL-5	122	5	2	13
MCL-5	3&4	4 5	2	14 15
MCL-5	546	4 3 3 2 2 3 3 3 3 5 5 5 4 5 4 2 4 2 2 2 2 2 2 2 2 6	2	16
- MCL-5	748	2	2	17
MCL-5	748 9410 142	4	2	18
MCL-6	162	2	2	19
MCL+6	3&4	2	2	20
MCL-6	5&6	2	2	21
MCL-6 MCL-6	7& 8 9& 10	2	2	22 23
MCL-0	1&2	2 ·	.2	23
MCL-7	3&4	2	2	25
MCL-7	5&6	2 .	ž	26
MCL-7	748	6	2	27
MCL-7	9&10	3	2	28
MCL-8	1&2	3	2	29 30
MCL+8	3&4	5	2	30
<pre>/ MCL-8 MCL-8</pre>	5&6 7&8	3 3 5 4 5 4 6 6 6 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31 32
MCL-8	9&10	4	2	33
MCL-9	142	6	2	34
MCL-9	3&4	Ğ	Ž	35
_MCL-9	5&6	6	2	36
MCL-9	7&8	7	2	37
MCL-9	9&10	6	2	38

.

_

,

.

ţ

ţ

1

ANALOG TAPE

. .

FILE	INT#	BEAUFORT	TAPE	INTERVAL
MCL-10	182	4	2	39
MCL-10	3&4		2	40
MCL-10	5&6	5	2	41
MCL-10	748	6	2	42
MCL-10	9&10	7	2	43
MCL-11	1	5	2	44
MCL-11 MCL-11	2 3 4	2	2	49
MCL-11	3	2	2	50
MCL-11	5	2	4 2	51 58
MCL-11	5 6	3	2	59
MCL-11	ž	3	2	6 0
MCL-11	8	ī	2	61
MCL-11	9	ī	ž	62
MCL-11	10	3	2	63
MCL-12	1	5	2	64
MCL-12	2	3	2	65
MCL-12	2 3 4	3	2	66
MCL-12		3	2	67
MCL-12	2	3	2	68 60
MCL-12 MCL-12	5 6 7	2	2	69 9
MCL-12	8	256752232331135333324543333345436	222222222222222222222222223333333333333	10
MCL-12	9	5	3	11
MCL -12	10	5	3 .	12
MCL-13		4	3	13
MCL-13	2	3	3	14
MCL-13	1 2 3 4	3	3	15
MCL-13		3	3	16
MCL-13	5 6 7	3 .	3	17
MCL-13	5	4 . F	3	18
MCL-13 MCL-13	8	5	3	19 20
MCL-13	9	4	2.	20
MCL-13	10	6	3	30
MCL-14		_	3	31
MCL-14	1 2 -3 4	3	3	31 32
MCL-14	-3	2	3	39
MCL-14	4	5	3	40
MCL-14	5 6 7	6 3 2 5 3 3 3 3 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	41
MCL-14	5	3	3	42
MCL-14 MCL-14	2	3	. 3	43 44
MCL-14 MCL-14	89	3 2	2 2	44
MCL-14	10	2	- 3 - 3	46
		-	~	٧F

Table 5.6 (Continued)

-

H.P. TAPE

\$

ş

į

ł

1

ł

-

ANALOG TAPE

•

FILE	INT#	BEAUFORT	TAPE	INTERVAL
MCL-15 MCL-15 MCL-15 MCL-15 MCL-15 MCL-15 MCL-15 MCL-15 MCL-16 MCL-16 MCL-16 MCL-16 MCL-16 MCL-16 MCL-16 MCL-16 MCL-16 MCL-16 MCL-16 MCL-16	1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10	2 2 1 2 2 2 2 3 3 3 3 3 3 3 3 5 5 5 5 5 4 4 4	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
MCL-17 MCL-17 MCL-17 MCL-17 MCL-17 MCL-17 MCL-17	1 2 3 4 5 6 3 8	4 2 2 1 2 2 2 3 4	3 3 3 4 4 4 4 4	68 69 70
MCL-17 MCL-17 MCL-18 MCL-18 MCL-18 MCL-18 MCL-18 MCL-18	9 10 2 3 4 5	4 3 3 1 2	4 4 4 4 4 4	1 2 3 4 5 6 7 8 9 22 23
MCL-18 MCL-18 MCL-18 MCL-18 MCL-19 MCL-19 MCL-19 MCL-19 MCL-19 MCL-19	6 7 8 9 10 1 2 3 4 5 6	3 3 4 4 4 4 4 2 0 5	4 4 4 4 4 4 4 4 4 4 4 4 4	24 25 26 27 28 29 30 31 32 39 40

;

ţ

Ì

.

ANALOG TAPE

FILE	INT#	BEAUFORT	TAPE	INTERVAL
MCL-19	- 7	3	4	41
MCL-19	8	3 3	4	55
MCL-19	ĝ		4	56
MCL-19	10	4	4	57
MCL-20	1	5	4	58
MCL-20	2	5 6 6 4	4	59
MCL-20	3	6	4	60
MCL-20	4	4	4	61
MCL-20	2 3 4 5 6 7	2	4	62
MCL-20	6	2 2 3 4	4	63
MCL-20		3	4	64
MCL-20	8	4	4	65
MCL-20	9	4	4	6 5
MCL-20	10	2	4	6 8
MCL-21	1 2 3 4	24325555773333333333333	4	69
MCL-21	2	3	4	70
MCL-21	3	2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 2 3 4 5 6 7 8 9
MCL-21	4	5	5	2
MCL-21	5 6	5	5	3
MCL-21	6	5	5	4
MCL-21	7	/	5	5
MCL-21	8	/	5	6
MCL-21	9	3	2	/
MCL-21	10	3	5	8
MUL-22	Ţ	3	2	y
MCL-22	1 2 3 4	3	2	10
MCL-22	3	3	2	11
MCL-22		3		12
MCL-22	5 6	3	5	13
MCL-22 MCL-22	7	3	2 E	14 15
MCL-22 MCL-22	8	2	2 E	15
MCL-22	9	2	5	17
MCL-22	10	1	5	18
MCL-22 MCL-23		—	—	19
MCL-23	2	2	· 5	20
MCL-23	3	3	5	20 21 22 23
MCL-23	4	3	5	22
MCL-24	5	2	5	23
MCL-23 MCL-24 MCL-23	1 2 3 4 5 6 7	1 3 3 2 2 0 2 5 5 4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	24
MCL-23	7	Ō	5	25
MCL-23 MCL-23	8 9	2	5	26 27
MCL-23	9	5 '	5	27
MCL-23	10 1	5	5	28
MCL-24	1	4	5	29

Table 5.6 (Continued)

H.P. TAPE

,

.

ł

.

ANALOG TAPE

•

FILE	INT#	BEAUFORT	TAPE	INTERVAL
MCL-24	2	4	5	30
MCL-24	2 3	4	5	31
MCL-24	4	4	5	32
MCL-24	5	6	5	33
MCL-24	5 6 7	6	5	34
MCL-24	7	4	5	40
MCL-24	8	3	5	41
MCL-24	9	5	5	51
MCL-24	10	5	5	52
MCL-25	1 2 3 4	6	5	. 53
MCL-25 MCL-25	2	0	• •	54
MCL-25	3	5 E	5	55
MCL-25		5	5	56
MCL-25	5	4	5 5	57
MCL-25	5 6 7	2	5	58 59
MCL-25	8	5	5	6 0
MCL-25	9	Š	Š	6 1
MCL-25	10	3	5	62
MCL-26	182	3	6	
MCL-26	3&4	3	6	4
MCL-26	5&6	643556655544355533333323333433333	5555555555555566666	3 4 5 6 7 8 9
MCL-26	7& 8	3	6	6
MCL-26	9&10	3	6	7
MCL-27	182	2	6 6	8
MCL-27	384 -	3	6	9
MCL-27	546	3	6	10
MCL-27	748	3.	6	11
MCL-27	9&10 ·	3	6 6	12
MCL-28 MCL-28	1&2 3&4	4 ·	b	13
MCL-28	546	2	6 6 6 6	14
MCL-28	748	2	6	15 16
MCL-28	9&10	3	· 6	25
MCL-29	182	3	Ğ.	26
MCL-29	3&4	3	6	27
MCL-29	546	2	6	27 32
MCL-29	74 8	5	6	33
MCL-29	9&10	3255565555	6	34
MCL-30	182	5	6	35
MCL-30	3&4	6	6	36
MCL-30	546	5	6	37
MCL-30	748	2	6	38
MCL-30 MCL-31	9&10 1&2	5	6 6 6 6 6 6 6	39
LICE-31	197	4	D	40

Table 5.6 (Continued)

H.P. TAPE

\$

- ----

ŝ

ŝ

ANALOG TAPE

.

-

FILE	INT#	BEAUFORT	TAPE	INTERVAL	
MCL-31	3&4	3	6	41	
MCL-31	546	4	6	42	
MCL-31	748	4	6	43	
MCL+31	9&10	2	6 6 6 6	44 .	
MCL-32	1&2	_ 4	6	45	
MCL-32	3&4	4	6	46	
MCL-32	5&6	3 3 3 3 4 5 4	6	47	
MCL-32	748	3	6 6	48	
MCL-32	9& 10	3	5	49	
MCL-33	182	3	6	50	
MCL-33	3&4	3	6	51	
MCL-33	5&6	4	6	52	
MCL-33	748	5	6 6	53	
MCL-33	9&10		b	54	
MCL-34	1&2	3	6 6	55	
MCL-34	344	4	D	56	
MCL-34	5&6	4		57	
MCL-34	768	4	6 6 6	58 59	
MCL-34	9&10 1&2	5	C C	60	
MCL-35 MCL-35	384	7	6	61	
MCL-35	546	4	6	62	
MCL-35	748	4	6	63	
MCL-35	9410		6	64	
MCL-36	1&2	5 5 4	6	65	
MCL-36	384	Ă	6	66	
MCL-36	546	3	- 6	67	
MCL-36	748	3 .	6	68	
MCL-36	9&10	3 2 2 2 2 2 2 2 2 2 2	6	69	
MCL-37	182	2	6 6	70	
MCL-37	3&4	2	6	71	
MCL-37	5&6	ž	6	72	
MCL-37	748	· 2	6 7	73	
MCL-37	9810	2	7	12	
MCL-38	142	<u> </u>	7	13	
MCL-38	3&4	2 3 3 4	777	14	
MCL-38	546	3	7	15	
MCL-38	748	4	7	16	
MCL-38	9& 10	7	7	17	
MCL-39	142	7.	7	18	
MCL-39	3&4	6	7	19	
MCL-39	5&6	7 7. 6 1 0	7	20 21	
MCL-39	748		7	21	
MCL-39	9&10	0	7 7 7 7 7 7 7 7 7 7 7 7 7	22	
MCL-40	122	2 1 1 1 3	7	23	
MCL-40	3&4	1	7	31	
MCL-40	546	1	7	32	
MCL-40	7&8	1	7	33	
MCL-40	9&10	3	7	34	

- 85 -

÷

•

.

÷

•

.

t

ŝ

-

1

1

ANALOG TAPE

	FILE	INT#	BEAUFORT	TAPE	INTERVAL
		•			
	SLM-1A	182	4	11	8 9
	SLM-1A	3&4	4	11	
	SLM-1A	5&6	5	11	10
	SLM-1A	748	5	11	11
	SLM-1A	9&10	5	11	12
	SLM-2A	1&2	5	11	13
	SLM-2A	3&4	3	11	14
	SLM-2A	5&6	2	11	15
	SLM-2A	. 7 & 8	2	11	16
	SLM-2A	9&10	3	11	25
	SLM-3A	1&2	4	11	26
	SLM-3A	3&4	4	11	27
	SLM-3A	5&6	4	11	35
	SLM-3A	74 8	2	11	36
	SLM-3A	9&10	3	11	37
	SLM-4A	182	3	11	38
	SLM-4A	. 3&4	4	11	39
	SLM-4A	5& 6	4	11	40
	SLM-4A	7&8	4	11	41
	SLM-4A	9&10	4	11	42
	SLM-5A	1&2	3	11	44
	SLM-5A	3&4	5 5 5 3 2 2 3 4 4 4 4 2 3 3 4 4 4 4 3 3 3 4 5 5 4	11	45
	SLM-5A	5 & 6 .	. 3	11	46
-	SLM-5A	7 8 8	4	11	47
	SLM-5A	9410	5	11	48
	SLM-6A	1&2	5	.11	49
	SLM-6A	3&4	- 4	11	50
	SLM-6A	5&6	4	11	51
	SLM-6A	7 & 8	3 .	11	52
	SLM-6A	.9&10	2.	11	5 3
	SLM-7A	1&2	2	11	54
	. SLM-7A	3&4	4	11	55
	SLM-7A	5&6	4 3 2 2 4 4 4	11	56
	SLM-7A	748	4	11	57
	SLM-7A	9410	4	11	58
	SLM-8A	182	5	11	59
	SLM-8A	3&4	6	. 11	60
	SLM-8A	5&6	5	11	61
	SLM-8A	* 7& 8	4	11	62
	SLM-8A	9&10	5 6 5 4 3 2 2 3 4 3	11	63
	SLM-9A	1&2	2	11	64
	SLM-9A	3&4	2.	11	65
	SLM-9A	5&6	3	11 .	66 :
	SLM-9A	7& 8	4	11	68
	SLM-9A	9&10	3	11	69

Table 5.7 (Continued)

H.P. TAPE

. .

- - -

- and

ļ

i

t

į

?

ş

ł

Ī

ANALOG TAPE

SLM-10A 1&2 3 11 70 SLM-10A 3&4 3 11 71 SLM-10A 5&6 3 11 72 SLM-10A 7&8 4 11 73 SLM-10A 7&8 4 12 9 SLM-11A 1&2 4 12 9 SLM-11A 3&4 5 12 10 SLM-11A 5&6 5 12 11 SLM-11A 5&6 5 12 13 SLM-11A 5&6 6 12 14 SLM-12A 1&2 13 14 SLM-12A 5 12 13 SLM-12A 5 12 15 SLM-12A 5 12 16 SLM-13A 1&2 8 12 38 S		FILE	INT#	BEAUFORT	TAPE	INTERVAL
SLM-11A 7&8 4 12 12 SLM-11A 9&10 5 12 13 SLM-12A 1&2 6 12 14 SLM-12A 3&4 5 12 15 SLM-12A 5&6 6 12 16 SLM-12A 5&6 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 5&6 3 12 37 SLM-13A 7&8 7 12 39 SLM-13A 7&8 7 12 39 SLM-13A 7&8 7 12 39 SLM-14A 1&2 6 12 40 SLM-14A 1&2 6 12 42 SLM-14A 5 12 40 12 SLM-14A 5 12 43 12 SLM-15A 5 12 44 12 SLM-15A 5 12 47 14		SLM-10A	1&2	3		
SLM-11A 748 4 12 12 SLM-11A 9&10 5 12 13 SLM-12A 1&2 6 12 14 SLM-12A 3&4 5 12 15 SLM-12A 5&6 6 12 16 SLM-12A 5&6 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 5&6 3 12 37 SLM-13A 5&6 3 12 39 SLM-13A 7&8 7 12 39 SLM-13A 7&8 7 12 39 SLM-14A 1&2 6 12 40 SLM-14A 1&2 6 12 42 SLM-14A 5 12 40 12 SLM-14A 5 12 43 12 SLM-15A 5 12 47 12 SLM-15A 5 12 47 14				3		
SLM-11A 748 4 12 12 SLM-11A 9&10 5 12 13 SLM-12A 1&2 6 12 14 SLM-12A 3&4 5 12 15 SLM-12A 5&6 6 12 16 SLM-12A 5&6 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 5&6 3 12 37 SLM-13A 5&6 3 12 39 SLM-13A 7&8 7 12 39 SLM-13A 7&8 7 12 39 SLM-14A 1&2 6 12 40 SLM-14A 1&2 6 12 42 SLM-14A 5 12 40 12 SLM-14A 5 12 43 12 SLM-15A 5 12 47 12 SLM-15A 5 12 47 14				3		
SLM-11A 7&8 4 12 12 SLM-11A 9&10 5 12 13 SLM-12A 1&2 6 12 14 SLM-12A 3&4 5 12 15 SLM-12A 5&6 6 12 16 SLM-12A 5&6 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 5&6 3 12 37 SLM-13A 7&8 7 12 39 SLM-13A 7&8 7 12 39 SLM-13A 7&8 7 12 39 SLM-14A 1&2 6 12 40 SLM-14A 1&2 6 12 42 SLM-14A 5 12 40 12 SLM-14A 5 12 43 12 SLM-15A 5 12 44 12 SLM-15A 5 12 47 14				4		73
SLM-11A 748 4 12 12 SLM-11A 9&10 5 12 13 SLM-12A 1&2 6 12 14 SLM-12A 3&4 5 12 15 SLM-12A 5&6 6 12 16 SLM-12A 5&6 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 5&6 3 12 37 SLM-13A 5&6 3 12 39 SLM-13A 7&8 7 12 39 SLM-13A 7&8 7 12 39 SLM-14A 1&2 6 12 40 SLM-14A 1&2 6 12 42 SLM-14A 5 12 40 12 SLM-14A 5 12 43 12 SLM-15A 5 12 47 12 SLM-15A 5 12 47 14				5		8
SLM-11A 748 4 12 12 SLM-11A 9&10 5 12 13 SLM-12A 1&2 6 12 14 SLM-12A 3&4 5 12 15 SLM-12A 5&6 6 12 16 SLM-12A 5&6 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 5&6 3 12 37 SLM-13A 5&6 3 12 39 SLM-13A 7&8 7 12 39 SLM-13A 7&8 7 12 39 SLM-14A 1&2 6 12 40 SLM-14A 1&2 6 12 42 SLM-14A 5 12 40 12 SLM-14A 5 12 43 12 SLM-15A 5 12 47 12 SLM-15A 5 12 47 14				4		10
SLM-11A 748 4 12 12 SLM-11A 9&10 5 12 13 SLM-12A 1&2 6 12 14 SLM-12A 3&4 5 12 15 SLM-12A 5&6 6 12 16 SLM-12A 5&6 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 5&6 3 12 37 SLM-13A 5&6 3 12 39 SLM-13A 7&8 7 12 39 SLM-13A 7&8 7 12 39 SLM-14A 1&2 6 12 40 SLM-14A 1&2 6 12 42 SLM-14A 5 12 40 12 SLM-14A 5 12 43 12 SLM-15A 5 12 47 12 SLM-15A 5 12 47 14				·	12	10
SLM-11A 9&10 5 12 13 SLM-12A 1&2 6 12 14 SLM-12A 3&4 5 12 15 SLM-12A 3&4 5 12 16 SLM-12A 7&86 6 12 17 SLM-12A 7&8 6 12 17 SLM-12A 7&8 6 12 19 SLM-13A 1&2 8 12 37 SLM-13A 5&6 3 12 38 SLM-13A 7&8 7 12 38 SLM-13A 9&10 8 12 40 SLM-13A 9&10 8 12 40 SLM-14A 1&2 6 12 42 SLM-14A 1&2 6 12 43 SLM-14A 1&2 6 12 43 SLM-15A 1&2 45 12 44 SLM-15A 1&2 5 12 46 SLM-15A 3&4 5 12				D 4 .	12	
SLM-12A 1&2 14 SLM-12A 3&4 5 12 15 SLM-12A 5&6 6 12 16 SLM-12A 5&6 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 3&4 3 12 38 SLM-13A 3&4 3 12 39 SLM-13A 5&6 3 12 39 SLM-13A 7&8 7 12 39 SLM-13A 9&10 8 12 40 SLM-13A 9&610 8 12 40 SLM-14A 1&2 6 12 42 SLM-14A 3&4 6 12 42 SLM-14A 3&4 5 12 44 SLM-15A 1&2 5 12 45 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 46				5		
SLM-12A 7&88 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 3&4 3 12 37 SLM-13A 3&4 3 12 38 SLM-13A 5&6 3 12 39 SLM-13A 7&8 7 12 39 SLM-13A 9&10 8 12 40 SLM-14A 1&2 6 12 41 SLM-14A 3&4 6 12 42 SLM-14A 3&4 6 12 43 SLM-14A 3&4 5 12 44 SLM-14A 9&10 5 12 44 SLM-15A 1&2 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 1 12 60 SLM-15A 3&4 1 12 60 SLM-15A 3&4 1 12		SLM-12A		š	12	
SLM-12A 7&88 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 3&4 3 12 37 SLM-13A 3&4 3 12 38 SLM-13A 5&6 3 12 39 SLM-13A 7&8 7 12 39 SLM-13A 9&10 8 12 40 SLM-14A 1&2 6 12 41 SLM-14A 3&4 6 12 42 SLM-14A 3&4 6 12 43 SLM-14A 3&4 5 12 44 SLM-14A 9&10 5 12 44 SLM-15A 1&2 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 1 12 60 SLM-15A 3&4 1 12 60 SLM-15A 3&4 1 12		SLM-12A		5	12	
SLM-12A 7&88 6 12 17 SLM-12A 9&10 7 12 18 SLM-13A 1&2 8 12 19 SLM-13A 3&4 3 12 37 SLM-13A 3&4 3 12 38 SLM-13A 5&6 3 12 39 SLM-13A 7&8 7 12 39 SLM-13A 9&10 8 12 40 SLM-14A 1&2 6 12 41 SLM-14A 3&4 6 12 42 SLM-14A 3&4 6 12 43 SLM-14A 3&4 5 12 44 SLM-14A 9&10 5 12 44 SLM-15A 1&2 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 1 12 60 SLM-15A 3&4 1 12 60 SLM-15A 3&4 1 12				6	12	
SLM-13A 1&2 8 12 19 SLM-13A 3&4 3 12 37 SLM-13A 5&6 3 12 38 SLM-13A 7&8 7 12 39 SLM-13A 9&10 8 12 40 SLM-13A 9&10 8 12 40 SLM-13A 9&10 8 12 41 SLM-13A 9&10 8 12 41 SLM-14A 1&2 6 12 42 SLM-14A 5 12 44 SLM-14A 7&8 4 12 44 SLM-15A 1&2 5 12 45 SLM-15A 1&2 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 1 12 50 SLM-15A 3&4 1 12 62 SLM-16A 3&4 1 12 66 <td></td> <td></td> <td></td> <td>6</td> <td>12</td> <td>17</td>				6	12	17
SLM-13A 3&44 3 12 37 SLM-13A 5&6 3 12 38 SLM-13A 7&8 7 12 39 SLM-13A 9&10 8 12 40 SLM-13A 9&10 8 12 41 SLM-14A 1&2 6 12 42 SLM-14A 3&4 6 12 43 SLM-14A 7&8 4 12 44 SLM-14A 7&8 4 12 44 SLM-14A 7&8 4 12 45 SLM-14A 9&10 5 12 45 SLM-15A 1&2 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 49 SLM-15A 3&4 1 12 50 SLM-15A 3&4 1 12 62 SLM-16A 3&4 1 12 62 SLM-16A 3&4 12 66		SLM-12A		7	12	18
SLM-13A 5&6 3 12 38 SLM-13A 7&8 7 12 39 SLM-13A 9&10 8 12 40 SLM-13A 9&10 8 12 41 SLM-14A 1&2 6 12 42 SLM-14A 3&4 6 12 42 SLM-14A 5&6 6 12 43 SLM-14A 5&6 6 12 43 SLM-14A 5&6 6 12 44 SLM-14A 9&10 5 12 45 SLM-14A 9&10 5 12 46 SLM-15A 1&2 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 49 SLM-15A 9&10 4 12 50 SLM-16A 1&2 2 12 56 SLM-16A 3&4 1 12 62 SLM-16A 9&10 4 12				8	12	19
SLM-14A 3&4 6 12 42 SLM-14A 5&6 6 12 43 SLM-14A 7&8 4 12 44 SLM-14A 7&8 4 12 44 SLM-14A 9&10 5 12 45 SLM-15A 1&2 5 12 46 SLM-15A 1&2 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 9&10 4 12 50 SLM-16A 1&2 2 12 56 SLM-16A 1&2 2 12 66 SLM-16A 3&4 1 12 64 SLM-16A 5&6 4 12 66 SLM-16A 9&10 4 12 67 SLM-17A 1&2 2 12 67 SLM-17A 5&6 13 1 <				3	12	37
SLM-14A 3&4 6 12 42 SLM-14A 5&6 6 12 43 SLM-14A 7&8 4 12 44 SLM-14A 7&8 4 12 44 SLM-14A 9&10 5 12 45 SLM-15A 1&2 5 12 46 SLM-15A 1&2 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 9&10 4 12 50 SLM-16A 1&2 2 12 56 SLM-16A 1&2 2 12 66 SLM-16A 3&4 1 12 64 SLM-16A 5&6 4 12 66 SLM-16A 9&10 4 12 67 SLM-17A 1&2 2 12 67 SLM-17A 5&6 13 1 <				3	12	- 38
SLM-14A 3&4 6 12 42 SLM-14A 5&6 6 12 43 SLM-14A 7&8 4 12 44 SLM-14A 7&8 4 12 44 SLM-14A 9&10 5 12 45 SLM-15A 1&2 5 12 46 SLM-15A 1&2 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 9&10 4 12 50 SLM-16A 1&2 2 12 56 SLM-16A 1&2 2 12 66 SLM-16A 3&4 1 12 64 SLM-16A 5&6 4 12 66 SLM-16A 9&10 4 12 67 SLM-17A 1&2 2 12 67 SLM-17A 5&6 13 1 <				/	12	39
SLM-14A 3&4 6 12 42 SLM-14A 5&6 6 12 43 SLM-14A 7&8 4 12 44 SLM-14A 7&8 4 12 44 SLM-14A 9&10 5 12 45 SLM-15A 1&2 5 12 46 SLM-15A 1&2 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 9&10 4 12 50 SLM-16A 1&2 2 12 56 SLM-16A 1&2 2 12 66 SLM-16A 3&4 1 12 64 SLM-16A 5&6 4 12 66 SLM-16A 9&10 4 12 67 SLM-17A 1&2 2 12 67 SLM-17A 5&6 13 1 <				8	12	
SLM-14A 5&6 6 12 43 SLM-14A 7&8 4 12 44 SLM-14A 9&10 5 12 45 SLM-15A 1&2 5 12 46 SLM-15A 1&2 5 12 46 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 5&6 4 12 48 SLM-15A 5&6 4 12 49 SLM-15A 9&10 4 12 50 SLM-16A 1&2 2 12 56 SLM-16A 3&4 1 12 62 SLM-16A 3&4 1 12 64 SLM-16A 9&10 4 12 66 SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 70 5 SLM-17A 1&2 2 13 3 SLM-17A 5 13 1				D C	12	
SLM-14A 7&8 4 12 44 SLM-14A 9&10 5 12 45 SLM-15A 1&2 5 12 46 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 5&6 4 12 48 SLM-15A 7&8 6 12 49 SLM-15A 9&10 4 12 50 SLM-16A 1&2 2 12 56 SLM-16A 1&2 2 12 62 SLM-16A 3&4 1 12 64 SLM-16A 7&8 2 12 65 SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 67 SLM-17A 1&2 2 70 SLM-17A 5&6 6 13 1 SLM-17A 5 13 3 3				5 5	12	
SLM-14A 9&10 5 12 45 SLM-15A 1&2 5 12 46 SLM-15A 3&4 5 12 47 SLM-15A 3&4 5 12 47 SLM-15A 5&6 4 12 48 SLM-15A 7&8 6 12 49 SLM-15A 9&10 4 12 50 SLM-16A 1&2 2 12 56 SLM-16A 1&2 2 12 62 SLM-16A 3&4 1 12 62 SLM-16A 3&4 1 12 64 SLM-16A 5&6 4 12 66 SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 12 67 SLM-17A 1&2 2 12 70 SLM-17A 5&6 6 13 1 SLM-17A 5&6 6 13 3 SLM-17A 5 13 3 3	•			. 0 . A	12	
SLM-15A 1&2 5 12 46 SLM-15A 3&4 5 12 47 SLM-15A 3&6 4 12 48 SLM-15A 5&6 4 12 49 SLM-15A 7&8 6 12 49 SLM-15A 9&10 4 12 50 SLM-16A 1&2 2 12 56 SLM-16A 1&2 2 12 62 SLM-16A 3&4 1 12 62 SLM-16A 3&4 1 12 64 SLM-16A 5&6 4 12 65 SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 12 67 SLM-17A 1&2 2 12 70 SLM-17A 3&4 5 13 1 SLM-17A 5&6 6 13 2 SLM-17A 5&6 6 13 3 SLM-18A 1&2 6 13 5				5	12	
SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 12 67 SLM-17A 3&4 5 12 70 SLM-17A 3&4 5 12 70 SLM-17A 5&6 6 13 1 SLM-17A 5&86 6 13 2 SLM-17A 7&8 6 13 3 SLM-17A 9&10 5 13 3 SLM-18A 1&2 6 13 4 SLM-18A 3&4 6 13 5 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 7&8 6 13 7				5	12	
SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 12 67 SLM-17A 3&4 5 12 70 SLM-17A 3&4 5 12 70 SLM-17A 5&6 6 13 1 SLM-17A 5&86 6 13 2 SLM-17A 7&8 6 13 3 SLM-17A 9&10 5 13 3 SLM-18A 1&2 6 13 4 SLM-18A 3&4 6 13 5 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 7&8 6 13 7				5	12	
SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 12 67 SLM-17A 3&4 5 12 70 SLM-17A 3&4 5 12 70 SLM-17A 5&6 6 13 1 SLM-17A 5&86 6 13 2 SLM-17A 7&8 6 13 3 SLM-17A 9&10 5 13 3 SLM-18A 1&2 6 13 4 SLM-18A 3&4 6 13 5 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 7&8 6 13 7				· 4	12	
SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 12 67 SLM-17A 3&4 5 12 70 SLM-17A 3&4 5 12 70 SLM-17A 5&6 6 13 1 SLM-17A 5&86 6 13 2 SLM-17A 7&8 6 13 3 SLM-17A 9&10 5 13 3 SLM-18A 1&2 6 13 4 SLM-18A 3&4 6 13 5 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 7&8 6 13 7				6	12	
SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 12 67 SLM-17A 3&4 5 12 70 SLM-17A 3&4 5 12 70 SLM-17A 5&6 6 13 1 SLM-17A 5&86 6 13 2 SLM-17A 7&8 6 13 3 SLM-17A 9&10 5 13 3 SLM-18A 1&2 6 13 4 SLM-18A 3&4 6 13 5 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 7&8 6 13 7				4		
SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 12 67 SLM-17A 3&4 5 12 70 SLM-17A 3&4 5 12 70 SLM-17A 5&6 6 13 1 SLM-17A 5&86 6 13 2 SLM-17A 7&8 6 13 3 SLM-17A 9&10 5 13 3 SLM-18A 1&2 6 13 4 SLM-18A 3&4 6 13 5 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 7&8 6 13 7				. 2	12	
SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 12 67 SLM-17A 3&4 5 12 70 SLM-17A 3&4 5 12 70 SLM-17A 5&6 6 13 1 SLM-17A 5&86 6 13 2 SLM-17A 7&8 6 13 3 SLM-17A 9&10 5 13 3 SLM-18A 1&2 6 13 4 SLM-18A 3&4 6 13 5 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 7&8 6 13 7				1	12	
SLM-16A 9&10 4 12 66 SLM-17A 1&2 2 12 67 SLM-17A 3&4 5 12 70 SLM-17A 3&4 5 12 70 SLM-17A 5&6 6 13 1 SLM-17A 5&86 6 13 2 SLM-17A 7&8 6 13 3 SLM-17A 9&10 5 13 3 SLM-18A 1&2 6 13 4 SLM-18A 3&4 6 13 5 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 6 SLM-18A 7&8 6 13 7				4	12	
SLM-17A 1&2 2 12 67 SLM-17A 3&4 5 12 70 SLM-17A 5&6 6 13 1 SLM-17A 5&6 6 13 2 SLM-17A 7&8 6 13 2 SLM-17A 7&8 6 13 3 SLM-17A 9&10 5 13 3 SLM-18A 1&2 6 13 4 SLM-18A 3&4 6 13 5 SLM-18A 3&4 6 13 5 SLM-18A 5&6 5 13 6 SLM-18A 5&6 5 13 7		.		A .	12	
SLM-18A1&26134SLM-18A3&46135SLM-18A5&65136SLM-18A7&86137				7	12	67
SLM-18A1&26134SLM-18A3&46135SLM-18A5&65136SLM-18A7&86137				5	12	70
SLM-18A1&26134SLM-18A3&46135SLM-18A5&65136SLM-18A7&86137				ő	13	1
SLM-18A1&26134SLM-18A3&46135SLM-18A5&65136SLM-18A7&86137			748	Ğ	13	2
SLM-18A1&26134SLM-18A3&46135SLM-18A5&65136SLM-18A7&86137				5	13	3
SLM-18A3&46135SLM-18A5&65136SLM-18A7&86137SLM-18A9&106138		SLM-18A	182	6	13	4
SLM-18A 5& 13 6 SLM-18A 7&8 6 13 7 SLM-18A 9&10 6 13 8			3&4	6	13	5
SLM-18A 7&8 6 13 7 SLM-18A 9&10 6 13 8			5&6	5	13	5 i
SLM-18A 9&10 6 13 8				6		
		SLM-18A	9&10	D .	13 [ŏ

۰.

·

÷

.

ł

Ĩ

÷

ANALOG TAPE

FILE	INT#	BEAUFORT	TAPE	INTERVAL
SLM-19A	182	4	13	· 9
SLM-19A			13	10
SLM-19A		3 5 4 5 3 3 4 3 7 7 7 8 9 7	13	11
SLM-19A		J A	13	11
SLM-19A			13	12
SLM-19A			13	13
· SLM-20A		3	13	14
		3	13	15
SLM-20A		3	13	16
SLM-20A		4	13	17
SLM-20A		3	13	18
SLM-21A		1	13	19
SLM-21A		7	13	20
SLM-21A		7	13	21
SLM-21A		8	13	2 2
SLM-21A		9	13	23
SLM-22A		7	13	24
SLM-22A	3&4	7	13	25
SLM-22A	5&6	7	13	26
SLM-22A	748	6	13	
SLM-22A	9&10	6	13	28
ŞLM-23A	1&2	5	13	29
SLM-23A	3&4	2	13	30
SLM-23A	5&6	6 5 2 4 5 5 6 2 4	13	31
SLM-23A		5	13	32
SLM-23A		Š	13	33
SLM-24A		6	13	35
SLM-24A		2	14	9
SLM-24A		· ·	14	10
SLM-24A		ŝ	14	11
SLM-24A	9810	5 3 3 3 3 4	- 14	12
SLM-25A		2	14	12
SLM-25A		2	14	13
SLM-25A		3	14	
SLM-25A		3		15
SLM-25A			14	16
SLM-25A	9210	0	14	17
		2	14	18
SLM-26A		3	14	19
SLM-26A		3	. 14	20
SLM-26A		6 2 3 3 0 6 5 4 5 2 2	14	21
SLM-26A		b	14	30
SLM-27A		5	14	31 32 33 7
SLM-27A		4	14	32
SLM-27A		5	14	33
SLM-27A		2 ·	15 .	7 '
SLM-27A	9&10	2.	· 15 - +	8
			÷.	

H.P. TAPE

· •

;

ì

•

?

ANALOG TAPE

.

· · · · ·

FILE	INT#	BEAUFORT	TAPE	INTERVAL
SLM-28A	1&2	4	15	9
SLM-28A	3&4	4	15	10
SLM-28A	5&6	3	15	11
SLM-28A	748		15	12
SLM-28A	9&10	4	15	13
SLM-29A	1	3	15	14
SLM-29A	1 2 3 4	3 4	15	15
SLM-29A	3	4	15	16
SLM-29A		3	15	17
SLM-29A	5 6	5	15	18
SLM-29A	6	6	15	19
SLM-29A	7	6	15	20
SLM-29A	8	9	15	21
SLM-29A	9	9	15	22
SLM-29A	10	3 5 6 9 9 9 8 7	15	23
SLM-30A	1 2 3		15	24
SLM-30A	<u>2</u>	4	15	25
SLM-30A SLM-30A	3	4	15	26
SLM-30A	4 5 6	4 6 7 7	15	27
SLM-SUA	. E	/ 7	15	28
SLM-30A	7 -		15 15	29
SLM-30A	· 8	0	15	30 31
SLM-30A	9	8 8 7 7	15	32
SLM-30A	10	' 7	15	33
SLM-31A	ĩ	5	15	34
SLM-31A	2	5 4 4	· 15	35
SLM-31A	2 3 4	4	15	36
SLM-31A		5	15	37
SLM-31A	- 5 - 6 - 7	Â.	15	38
SLM-31A	6	4	15	39
SLM-31A		4	15	40
SLM-31A	8	4	15	41
SLM-31A	9	4	15	42
SLM-31A	10	8	15	43
SLM-32A	1		15	44
SLM-32A SLM-32A	2	4	15	45
SLM-32A	3	<i>,</i>	15 15	46
· SLM-32A	10 1 2 3 4 5 6 7 8 9	8 4 2 7 9 9 9 9 8 6 5 7	15	47 48
SLM-32A	ě	Q	15	- 49
SLM-32A	7	Å	15	50
SLM-32A	8	Ğ	15	51
SLM-32A	9	5	15	52
SLM-32A	10	7 .	15	53
		÷ -	<u> </u>	

Table 5.7 (Continued)

H.P. TAPE

ι.

.

.

ANALOG TAPE

4.8e-

FILE	INT#	BEAUFORT	TAPE	INTERVAL
SLM-33A SLM-33A SLM-33A SLM-33A SLM-33A SLM-33A SLM-33A SLM-33A SLM-33A SLM-33A SLM-34A SLM-34A SLM-34A SLM-34A SLM-34A SLM-34A SLM-34A SLM-34A SLM-35A SLM-35A SLM-35A SLM-35A SLM-35A SLM-35A SLM-35A SLM-35A SLM-35A SLM-35A SLM-36A SLM-37A SLM-37A SLM-37A	123456789012345678901234567890123456789012345	7 6 7 4 2 6 5 4 3 4 6 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	15 15 15 15 15 15 15 16 1	54 55 56 57 58 63 64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 35 36 37 38 39 40 41 42 47 48 49 50 54 55 57 58 57 58 57 58 57 58 57 58 63 64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 29 30 31 32 33 45 56 57 58 57 58 57 58 57 58 56 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 55 56 57 58 56 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 55 56 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 55 56 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 35 36 37 38 39 40 31 32 33 34 35 36 37 38 39 40 31 32 33 34 35 36 37 38 39 40 31 32 33 34 35 36 37 38 39 40 55 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57 57 57 57

٠,

H.P. TAPE

ł

í

ł

į

ł

Į

Į

í

.

÷

ANALOG TAPE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FILE	INT#	BEAUFORT	TAPE	INTERVAL
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SLM-37A	6	5	16	59
SLM-37A 8 5 16 61 SLM-37A 9 6 16 62 SLM-37A 10 6 16 63 SLM-37A 10 6 16 64 SLM-38A 1 8 16 66 SLM-38A 2 8 16 66 SLM-38A 3 8 16 67 SLM-38A 5 10 16 67 SLM-38A 6 10 16 69 SLM-38A 7 10 16 70 SLM-38A 9 9 16 71 SLM-38A 9 9 16 72 SLM-38A 9 9 16 73 SLM-39A 1 10 16 74 SLM-39A 1 10 16 73 SLM-39A 9 9 17 1 SLM-39A 9 9 17 7 SLM-39A 8 8 17 6		7	5		
SLM-38A 1 8 16 64 SLM-38A 2 8 16 65 SLM-38A 3 8 16 66 SLM-38A 4 9 16 67 SLM-38A 5 10 16 68 SLM-38A 6 10 16 69 SLM-38A 7 10 16 70 SLM-38A 8 9 16 71 SLM-38A 9 9 16 71 SLM-38A 9 9 16 72 SLM-39A 1 10 16 73 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 6 7 17 2 SLM-39A 8 8 17 5 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 S			5		
SLM-38A 1 8 16 64 SLM-38A 2 8 16 65 SLM-38A 3 8 16 66 SLM-38A 4 9 16 67 SLM-38A 5 10 16 68 SLM-38A 6 10 16 69 SLM-38A 7 10 16 70 SLM-38A 8 9 16 71 SLM-38A 9 9 16 71 SLM-38A 9 9 16 72 SLM-39A 1 10 16 73 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 S			6		
SLM-38A 1 8 16 64 SLM-38A 2 8 16 65 SLM-38A 3 8 16 66 SLM-38A 4 9 16 67 SLM-38A 5 10 16 68 SLM-38A 6 10 16 69 SLM-38A 7 10 16 70 SLM-38A 9 9 16 71 SLM-38A 9 9 16 72 SLM-38A 10 10 16 73 SLM-39A 1 10 16 74 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 6 7 17 2 SLM-39A 6 7 17 4 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 9 9 17 10 <t< td=""><td></td><td></td><td>6</td><td></td><td>63</td></t<>			6		63
SLM-38A 4 9 16 67 SLM-38A 5 10 16 68 SLM-38A 6 10 16 69 SLM-38A 7 10 16 70 SLM-38A 8 9 16 71 SLM-38A 9 9 16 72 SLM-38A 10 10 16 73 SLM-39A 1 10 16 74 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 4 6 17 2 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 10 8 17 10 SLM-39A 10 8 17 10 SLM-40A 1 7 17 12 <			8		64
SLM-38A 4 9 16 67 SLM-38A 5 10 16 68 SLM-38A 6 10 16 69 SLM-38A 7 10 16 70 SLM-38A 8 9 16 71 SLM-38A 9 9 16 72 SLM-38A 10 10 16 73 SLM-39A 1 10 16 74 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 4 6 17 2 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 10 8 17 10 SLM-39A 10 8 17 10 SLM-40A 1 7 17 12 <	SLM-38A	2	8	16	65
SLM-38A 5 10 16 68 SLM-38A 6 10 16 70 SLM-38A 7 10 16 70 SLM-38A 9 16 71 SLM-38A 9 9 16 72 SLM-38A 9 9 16 72 SLM-38A 9 9 16 72 SLM-39A 1 10 16 74 SLM-39A 1 10 16 75 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 4 6 17 2 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 8 8 17 7 SLM-39A 9 9 17 7 SLM-39A 10 8 17 10 SLM-40A 1 7 17 12 SLM-40A		3	8		
SLM-38A 9 9 16 72 SLM-38A 10 10 16 73 SLM-39A 1 10 16 74 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 3 9 17 2 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 6 7 17 4 SLM-39A 8 8 17 5 SLM-39A 9 9 17 7 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 10 8 17 10 SLM-40A 1 7 17 10 SLM-40A 2 17 13 11 SLM-4		<u> </u>			
SLM-38A 9 9 16 72 SLM-38A 10 10 16 73 SLM-39A 1 10 16 74 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 3 9 17 2 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 6 7 17 4 SLM-39A 8 8 17 5 SLM-39A 9 9 17 7 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 10 8 17 10 SLM-40A 1 7 17 10 SLM-40A 2 17 13 11 SLM-4		5	10		
SLM-38A 9 9 16 72 SLM-38A 10 10 16 73 SLM-39A 1 10 16 74 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 3 9 17 2 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 6 7 17 4 SLM-39A 8 8 17 5 SLM-39A 9 9 17 7 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 10 8 17 10 SLM-40A 1 7 17 10 SLM-40A 2 17 13 11 SLM-4		6			
SLM-38A 9 9 16 72 SLM-38A 10 10 16 73 SLM-39A 1 10 16 74 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 3 9 17 2 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 6 7 17 4 SLM-39A 8 8 17 5 SLM-39A 9 9 17 7 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 10 8 17 10 SLM-40A 1 7 17 10 SLM-40A 2 17 13 11 SLM-4		7			
SLM-38A 10 10 16 73 SLM-39A 1 10 16 74 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 4 6 17 2 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 6 7 17 4 SLM-39A 7 8 17 5 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 10 8 17 8 SLM-40A 1 7 17 10 SLM-40A 2 6 17 10 SLM-40A 2 17 13 3 SLM-40A 7 2 17 13 SLM-40A 7 2 17 16 SLM-4		8	9	10	/1
SLM-39A 1 10 16 74 SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 4 6 17 2 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 7 8 17 5 SLM-39A 8 8 17 7 SLM-39A 9 9 17 7 SLM-39A 8 8 17 6 SLM-39A 10 8 17 7 SLM-40A 1 7 17 9 SLM-40A 2 6 17 10 SLM-40A 3 4 17 11 SLM-40A 5 2 17 13 SLM-40A 6 5 17 14 SLM-40A 8 3 17 16 SLM-40A 9 4 17 19 SLM-40A				10	
SLM-39A 2 9 16 75 SLM-39A 3 9 17 1 SLM-39A 4 6 17 2 SLM-39A 5 5 17 3 SLM-39A 6 7 17 4 SLM-39A 6 7 17 4 SLM-39A 8 8 17 5 SLM-39A 9 9 17 7 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 9 9 17 7 SLM-39A 10 8 17 8 SLM-39A 10 8 17 10 SLM-40A 1 7 11 11 SLM-40A 2 17 12 13 SLM-40A 5 2 17 13 SLM-40A 8 3 17 16 SLM-40A 9 4 17 19 17 17					73
SLM-39A 7 8 17 5 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 10 8 17 9 SLM-40A 1 7 17 10 SLM-40A 2 6 17 10 SLM-40A 4 2 17 13 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 9 4 17 17 SLM-40A 9 4 17 17 SLM-40A 9 4 17 18 SLM-41A 1 4 17 20 SL		. 2		16	
SLM-39A 7 8 17 5 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 10 8 17 9 SLM-40A 1 7 17 10 SLM-40A 2 6 17 10 SLM-40A 4 2 17 13 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 9 4 17 17 SLM-40A 9 4 17 17 SLM-40A 9 4 17 18 SLM-41A 1 4 17 20 SL			Ğ	17	1
SLM-39A 7 8 17 5 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 10 8 17 9 SLM-40A 1 7 17 10 SLM-40A 2 6 17 10 SLM-40A 4 2 17 13 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 9 4 17 17 SLM-40A 9 4 17 17 SLM-40A 9 4 17 18 SLM-41A 1 4 17 20 SL		Ă	6	17	2
SLM-39A 7 8 17 5 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 10 8 17 9 SLM-40A 1 7 17 10 SLM-40A 2 6 17 10 SLM-40A 4 2 17 13 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 9 4 17 17 SLM-40A 9 4 17 17 SLM-40A 9 4 17 18 SLM-41A 1 4 17 20 SL		5	5	17	3
SLM-39A 7 8 17 5 SLM-39A 8 8 17 6 SLM-39A 9 9 17 7 SLM-39A 10 8 17 9 SLM-40A 1 7 17 10 SLM-40A 2 6 17 10 SLM-40A 4 2 17 13 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 9 4 17 17 SLM-40A 9 4 17 17 SLM-40A 9 4 17 18 SLM-41A 1 4 17 20 SL		6	· 7	17	
SLM-40A 2 6 17 10 SLM-40A 3 4 17 11 SLM-40A 4 2 17 12 SLM-40A 5 2 17 13 SLM-40A 6 5 17 14 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 8 3 17 16 SLM-40A 9 4 17 17 SLM-40A 9 4 17 19 SLM-40A 10 4 17 19 SLM-41A 1 4 17 20 SLM-41A 2 4 17 21 SLM-41A 3 3 17 21 SLM-41A 5 5 17 33 SLM-41A 5 17 34 SLM-41A 7 5 17 36 SLM-41A 9 5 17 36 <td></td> <td>· 7</td> <td>8</td> <td>17</td> <td>5</td>		· 7	8	17	5
SLM-40A 2 6 17 10 SLM-40A 3 4 17 11 SLM-40A 4 2 17 12 SLM-40A 5 2 17 13 SLM-40A 6 5 17 14 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 8 3 17 16 SLM-40A 9 4 17 17 SLM-40A 9 4 17 19 SLM-40A 10 4 17 19 SLM-41A 1 4 17 20 SLM-41A 2 4 17 21 SLM-41A 3 3 17 21 SLM-41A 5 5 17 33 SLM-41A 5 17 34 SLM-41A 7 5 17 36 SLM-41A 9 5 17 36 <td></td> <td></td> <td>. 8</td> <td>17</td> <td>6</td>			. 8	17	6
SLM-40A 2 6 17 10 SLM-40A 3 4 17 11 SLM-40A 4 2 17 12 SLM-40A 5 2 17 13 SLM-40A 6 5 17 14 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 8 3 17 16 SLM-40A 9 4 17 17 SLM-40A 9 4 17 19 SLM-40A 10 4 17 19 SLM-41A 1 4 17 20 SLM-41A 2 4 17 21 SLM-41A 3 3 17 21 SLM-41A 5 5 17 33 SLM-41A 5 17 34 SLM-41A 7 5 17 36 SLM-41A 9 5 17 36 <td></td> <td></td> <td>9</td> <td>17</td> <td>7</td>			9	17	7
SLM-40A 2 6 17 10 SLM-40A 3 4 17 11 SLM-40A 4 2 17 12 SLM-40A 5 2 17 13 SLM-40A 6 5 17 14 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 8 3 17 16 SLM-40A 9 4 17 17 SLM-40A 9 4 17 19 SLM-40A 10 4 17 19 SLM-41A 1 4 17 20 SLM-41A 2 4 17 21 SLM-41A 3 3 17 21 SLM-41A 5 5 17 33 SLM-41A 5 17 34 SLM-41A 7 5 17 36 SLM-41A 9 5 17 36 <td></td> <td>10</td> <td>8</td> <td></td> <td>8</td>		10	8		8
SLM-40A 4 2 17 12 SLM-40A 5 2 17 13 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 8 3 17 16 SLM-40A 9 4 17 17 SLM-40A 9 4 17 16 SLM-40A 9 4 17 17 SLM-40A 10 4 17 18 SLM-40A 10 4 17 19 SLM-41A 1 4 17 20 SLM-41A 2 4 17 21 SLM-41A 3 3 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 9 5 17 36		1			. 9
SLM-40A 4 2 17 12 SLM-40A 5 2 17 13 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 8 3 17 16 SLM-40A 9 4 17 17 SLM-40A 9 4 17 16 SLM-40A 9 4 17 17 SLM-40A 10 4 17 18 SLM-40A 10 4 17 19 SLM-41A 1 4 17 20 SLM-41A 2 4 17 21 SLM-41A 3 3 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 9 5 17 36		2		17	10
SLM-40A 5 2 17 13 SLM-40A 6 5 17 14 SLM-40A 7 2 17 15 SLM-40A 8 3 17 16 SLM-40A 9 4 17 17 SLM-40A 9 4 17 18 SLM-40A 10 4 17 19 SLM-40A 10 4 17 20 SLM-41A 1 4 17 21 SLM-41A 2 4 17 21 SLM-41A 3 3 17 22 SLM-41A 4 17 22 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 7 5 17 36 SLM-41A 9 5 17 37		3	4		10
SLM-40A 10 4 17 18 SLM-41A 1 4 17 19 SLM-41A 2 4 17 20 SLM-41A 3 3 17 21 SLM-41A 4 4 17 22 SLM-41A 4 4 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 7 5 17 35 SLM-41A 9 5 17 36		4 E	2		
SLM-40A 10 4 17 18 SLM-41A 1 4 17 19 SLM-41A 2 4 17 20 SLM-41A 3 3 17 21 SLM-41A 4 4 17 22 SLM-41A 4 4 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 7 5 17 35 SLM-41A 9 5 17 36		. 5	2 E		
SLM-40A 10 4 17 18 SLM-41A 1 4 17 19 SLM-41A 2 4 17 20 SLM-41A 3 3 17 21 SLM-41A 4 4 17 22 SLM-41A 4 4 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 7 5 17 35 SLM-41A 9 5 17 36		7	2		
SLM-40A 10 4 17 18 SLM-41A 1 4 17 19 SLM-41A 2 4 17 20 SLM-41A 3 3 17 21 SLM-41A 4 4 17 22 SLM-41A 4 4 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 7 5 17 35 SLM-41A 9 5 17 36			3	17	
SLM-40A 10 4 17 18 SLM-41A 1 4 17 19 SLM-41A 2 4 17 20 SLM-41A 3 3 17 21 SLM-41A 4 4 17 22 SLM-41A 4 4 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 7 5 17 35 SLM-41A 9 5 17 36		9	Ă	17	17
SLM-41A 1 4 17 19 SLM-41A 2 4 17 20 SLM-41A 3 3 17 21 SLM-41A 4 4 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 7 5 17 35 SLM-41A 7 5 17 36 SLM-41A 9 5 17 37		10			18
SLM-41A 2 4 17 20 SLM-41A 3 3 17 21 SLM-41A 4 4 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 34 SLM-41A 7 5 17 35 SLM-41A 7 5 17 35 SLM-41A 8 5 17 36 SLM-41A 9 5 17 37	SLM-41A		- 4	17	19
SLM-41A 3 3 17 21 SLM-41A 4 4 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 7 5 17 35 SLM-41A 8 5 17 36 SLM-41A 9 5 17 37			4	17	20
SLM-41A 4 17 22 SLM-41A 5 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 34 SLM-41A 7 5 17 35 SLM-41A 8 5 17 36 SLM-41A 9 5 17 36 SLM-41A 9 5 17 37 SLM-41A 10 5 17 38		3	3	17	21
SLM-41A 5 17 33 SLM-41A 6 5 17 34 SLM-41A 7 5 17 35 SLM-41A 7 5 17 35 SLM-41A 8 5 17 36 SLM-41A 9 5 17 37 SLM-41A 10 5 17 38		- 4	4	17	22
SLM-41A651734SLM-41A751735SLM-41A851736SLM-41A951737SLM-41A1051738		5	5	17	33
SLM-41A 7 5 17 35 SLM-41A 8 5 17 36 SLM-41A 9 5 17 37 SLM-41A 10 5 17 38		6	5	17	34
SLM-41A 8 5 1/ 36 SLM-41A 9 5 17 37 SLM-41A 10 5 17 38			5	17	35
SLM-41A 9 5 1/ 3/ SLM-41A 10 5 17 38			5	1/	30
Pru-41V 10 D 1/ 20			5 E	1/ 17	3/
	364-41V	tu	D	1 /	90

٠

Table 5.7 (Continued)

- - - **-** - -

H.P	_	TAPE
	۰.	

ł

1

i

t

ł

÷

-

ANALOG TAPE

-- --

FILE	INT#	BEAUFORT	TAPE	INTERVAL
SLM-42A	1	5	17	39
SLM-42A	Ž	5	17	40
SLM-42A	3	4	17	41
SLM-42A	Ā	5	17	42
SLM-42A	5	2	17	43
SLM-42A	6	3	17	55
SLM-42A	7	5	17	56
SLM-42A	8	5 .	17	. 57
SLM-42A	· 9	5	17	58
SLM-42A	10	3	17	. 69
SLM-43A	1	5	1 7	70
SLM-43A	2	7	17	71 [•]
SLM-43A	3	5	17	72
SLM-43A	4	Å	17	73
SLM-43A	5	4	18	1

Table 5.8 Calculated and Measured Extreme Values for 30 Minutes

~**T**

•

SHIP	GAUGE .	H.P.	H.P. TAPE		G TAPE	MOST PROBABLE VALUE FOR For 800-sec interval	
		FILE	INT. NO.	тарв	INDEX	(ksi)	
NeLEAN	₽ _y B	FyB-9	5 6	214	27 28	45 37	
1975		₽ _y B-15	8.9.	224	11 12	47 65	
	2	MCL-1	1	1	18	31	
MCLEAN	8	•	23	1	18	34	
May-June 1977	2 6		3		19 20	26 27	
McLEAN	3	SLM-1	7	11	11	22	
Sept. 77-Jan. 78	6	•	8	11	11	25	
MARKET	2	MKT-19	5	3	45	39	
1976	6	•	5 6	L 3	45	33	

I

93 -

		· .	
Table (6.1 Cases Studied for Fatigue Damage		

L

94 _

· · ·

.

SHIP	PERIOD	GAUGE	NUMBER OF 800-SEC INTERVALS SELECTED	REMARKS
	JanMarch 19	75 FyB	214	Gauge on unmodified hatch corners, North Altantic Data
SEA-LAND MCLEAN	May-July 19 Sept.77-Jan. 19		265	Gauge on modified hatch corners, Pacific Data.
	May-July 19 Sept.77-Jan. 19		560	Gauge on modified hatch corners, Pacific Data,
	OctDec. 19'	76 2	144	Gauge on unmodified side of hatch corner, North Atlantic Data.
SEA-LAND MARKET	OctDec. 197	76 8	144 .	Gauge on modified side of hatch corner, North Atlantic Data

•

t

ł

ł

ł

ł

ļ

ł

į

Ī

STRS. AMPL. (KSI)	5.5 .	S.S. 2	\$.\$. 3	5.5. 4	S.S. 5	S.S. 6	\$.5. 7	S.S. 8	\$.5. 9
1	354.9 245.5	414.1	207.2 271.6	106.7 228.8	413.3 341.8	175.3 279.8	184.9 185.2	24.9 64.9	2.8 8.0
3	164.6	344.8	266.5	219.0	284.5	236.3	233.1	83.5	12.6
4	101.6	228.1	222.3	172.1	196.0	224.0	249.6	84.4	16.1
5	56.9 29.3	138.6	163.6 118.0	138.2	137.3 105.1	207.4	234.4 205.7	77.9	18.4
7	16.2	55.9	90.0	100.4				70.7 64.5	19.6 19.6
8	11.3	40.0	73.4	86.2	74.7	139.1	150.4	58.7	18.7
9 10	10.1	31.1 25.8	62.4	73.1 61.0	65.8	122.6	130.4	52.9	17.3
11 1	10.1	22.5	54.1 47.3	50.4		108.4		47.0 41.3	15.5 13.7
12	10.4	20.1	41.4	41.4	46.6	84.3	91.7	35.9	11.9
13 14	10.5	18.2 16.7	36.3 32.0	33.9 27.9		73.9 64.5	82.1	30.9	10.2
15	10.1	15.3	28.3	23.0	33.4	56.0	73.3 65.1	26.4 22.3	8.7 7.4
16	9.8	14.1	25.1	19.2 16.2	29.9	48.5	57.4	18.7	6.2
17 18	9.4	13.1 12.1	22.4	16.2		41.9		15.5	5.2
19	8.3	12.1	19.9 17.8	13.8 11.8	24.2	36.0 30.9	43.9 38.1	12.8 10.5	4.4
20	7.7	10.3	15.9	10.2	19.9	26.4	32.9	8.5	3.0
21	7.1	9.5			18.1	22.6		6.8	2.4
22 23 .	6.5 5.9	8.7 8.0	12.8 11.4	7.8 6.9	16.5	19.2 16.4	24.4 20.9	5.4	2.0 1.6
24 -	5.3	7.3	10.2	6.2	13.7		17.9	3.3	1.2
25	4.7	6.7	9.1	5.5	12.5	12.0	15.4	2.5	0.9
26 27	4.1	6.1 5.6	8.1 7.3	4.9	11.3 10.3	10.3	13.2 11.3	1.9	0.7 0.5
28	3.1	5.1	6.5	4.0	9.4	7.6	9.7	1.1	0.4
29	2.7	4.6	5.8	3.7	8.5	6.6	8.4	0.8	0.3
30 31	2.3 2.0	4.2	5.2	3.3 3.0	7.7 5.9	5.7 5.0	7.2 6.2	0.6 0.4	0.2
32	1.7	3.4	4.1	2.8	6.3	4.4	5.4	0.3	0.1
33	1.4	3.1	3.7	2.5	5.6	3.8	4.6	0.2	0.1
34 25	1.2	2.8 2.5	3.3 3.0	2.3 2.1	5.1 4.6	3.3		0.1	0.1
36	0.8	2.3	2.7	1.9	4.1	2.9 2.6	3.5 3.0	0.1 0.1	0.0 0.0
37	0.6	2.1	2.4	1.8	3.8	2.3	2.6	0.1	0.0
· 38 39	0.5	1.9	2.2 2.0	1.6	3.4 3.1	2.0	2.3 2.0	0.0	0.0
40	0.3	1.5	1.8	1.3	2.8	1.6	1.8	0.0	0.0
41	0.3	1.4	1.6	1.2	2.5	1.4	1.6	0.0	0.0
42 43	0.2	1.3	1.5 1.3	1.1 1.0	2.3 2.1	1.3	1.4	0.0	0.0
44	0.1	1.0	1.2	0.9	1.9	1.0	1,1	0.0	0.0 0.0
45	0.1	0.9	1.1	0.8	1.7	0.9	0.9	0.0	0.0
46 47	0.1	0.9	1.0	0.7	1.5	0.8 0.7	0.8	0.0	0.0
48	0.1	0.7	0.9	0.6	1.3	0.6	0.7	0.0	0.0 0.0
49	0.0	0.6	0.8	0.5	1.1	0.6	0.6	0.0	0.0
50 51	0.0 0.0	0.6 0.5	0.7 0.7	0.4	1.0 0.9	0.5	0.5	0.0	0.0
52	0.0	0.5	. 0.6	0.3	0.9			0.0	0.0
53	0.0	0.4	0.6	0.3	0.8	0.3	0.4	0.0	0.0
54 55	0.0 0.0	0.4	0.5	0.3 0.2	0.7 0.6	0.3 0.3	0.4	0.0 0.0	0.0 0.0
56	0.0	0.3	0.5	0.2	0.6	0.2	0.3	0.0	0.C
57	0.0	0.3	0.4	0.2	0.5	0.2	0.3	0.0	0.0
58 59	0.0	0.2 0.2	0.4	- 0.1	0.5	0.2 0.2	0.2 0.2	0.0 0.0	0.0
60	0.0	0.2	0.3	0.1	0.4	0.1	0.2	0.0	0.0
61	0.0	0.2	0.3	0.1	0.4	0.1	0.2	0.0	0.0
62 63	0.0 0.0	0.1	0.3	0.1 0.1	0.3 0.3	0.1	0.1	0.0 0.0	0.0 0.0
64	0.0	0.1	0.2	0.1	0.3	0.1	0.1	0.0	0.0
65	0.0	0.1	0.2	0.1	0.2	0.1	0.1	0.0	0.0
66 67	0.0	0.1	0.2	0.0 0.0	0.2	0.1	0.1	0.0 0.0	0.0 0.0
68	ŏ.ŏ	0.1	0.2	0.0	0.2	0.1	0.1	0.0	0.0
69	0.0	0.1	0.1	0.0	0.2	0.0	0.1	0.0	0.0
70	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.0	0.0
TOTAL INT.	16	31	35	29	30	33	29	9	2

Table 6 3(a) Cyclic Stress Occurrences, Gage 2 on McLean, May-July 1977

.

į

ł

ŝ

1

ţ

}

STRS. AMPL (KSI)	. S.S. 1	S.S. 2	S.S. 3	\$.5. 4	5.5. 5	\$.S. 6	\$.\$. 7
(XSI) 123456789001123456789001232222222222222222222222222222222222	1 64995256921000000000000000000000000000000000000	590.4 599.9 319.9 319.9 3115.1 70.2 214.8 4.3 10.0 0.0 <	3 903448395753881742110000000000000000000000000000000000	4 0695458378448531100000000000000000000000000000000000	5 1 5 8 3 5 5 5 8 1 6 2 9 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	124.6 971.0 92.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	7 4.77544935658396319754321110000000000000000000000000000000000
	2					-	-

_ 96 _

Table 6 . 3(b) Cyclic Stress Occurrences, Gage 3 on McLean, Sep-Jan 1978

STRS. AMPL. (KSI)	S.S. 1	. S.S. 2	\$.S. 3	5.5. 4	5.S. 5	5.5. 6	5.5 . 7	S.S. 8	5.5. 9
1 2 3 4 5	111.2 52.0 31.5 10.4 1.9	309.0 202.0 189.3 136.1 82.6	341.9 498.2 385.7 266.8 175.6	650.4 819.3 655.5 414.1 235.5	340.5 371.4 341.0 277.7 209.7	183.6 289.3 270.3 209.8 150.8	21.2 57.9 80.0 84.9 76.3	13.8 36.4 47.1 45.8 37.6	1.9 5.3 8.1 9.9 10.6
5 7	0.2	46.6 25.8	112.0 70.1	130.7 74.5	147.7	105.0 72.3	60.8	27.9 19.6	10.3 9.3
8	0.0	14.3	43.4	44.2	68.8	49.5	44.5 31.1	13.5	7.8
9 10	0.0	8.1 4.9	26.5 15.9	27.2 17.2	47.2 33.8	33.8 23.3	21.8	9.1 6.0	6.1 4.5
11 12 ·	0.0	3.2	9.5	11.1	24.3	16.4	12.7	3.8	3.2
13	0.0	2.4 1.9	5.6 3.3	7.1	17.6 12.9	12.0 9.1	10.9 9.8	2.3 1.3	2.1 1.3
14 15	0.0	1.6 1.4	2.0	3.0	9.5	7.2	9.0	0.7	0.8
16	0.0 0.0	1.2	1.3 0.8	1.9 1.2	7.0 5.1	5.8 4.8	8.4 7.8	0.4	0.4
17 18	0.0	1.0	0.5	0.8	3.8	4.1	7.2	0.1	0.1
19	0.0 0.0	0.8 0.6	0.3	0.5 0.3	2.8 2.0	3.5 3.0	6.5 5.9	0.0	0.1 0.0
20 21	0.0	0.5	0.1	0.2	1.4	2.6	5.3	0.0	0.0
21	0.0	0.4	0.1	0.1	1.0 0.7	2.2 1.9	4.6 4.0	0.0	0.0 0.0
23	0.0	0.2	Q.O	0.0	0.5	1.6	3.5	0.0	0.0
24 25	0.0	0.1 0.1	0.0 0.0	0.0 0.0	0.4 0.3	1.4	3.0 2.5	0.0 0.0	0.0 0.0
26	0.0	0.1	0.0	0.0	0.2	1.0	2.1	0.0	0.0
27 28	0.0 0.0	0.1 0.0	0.0	0.0 0.0	0.1 0.1	0.9 0.8	1.7	0.0	0.0 0.0
29	0.0	0.0	0.0	0.0	0.1	0.7	1.2	0.0	0.0
30 31	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.6	0.9	0.0	.0.0 0.0
32	0.0	0.0	0.0	0.0	0.0	Q.4	0.6	0.0	0.0
33 34	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.4	0.5	0.0	0.0 0.0
35	0.0	0.0	0.0	0.0	0.0	Q.3	0.3	0.0	0.0
36 37	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.2 0.2	0.2	0.0	0.0 0.0
38	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0
39	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.1	0.1	0.0	0.0 0.0
41	0.0	0.0	0.0	0.0	0.0	0.1	Q.1	0.0	0.0
42 43	0.0	0.0	0.0	0.0 0.0	0.0	0.1 0.1	0.0	0.0 0.0	0.0 0.0
44	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
45 46	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
47	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
48 49	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
51 52	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0
53	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
54 55	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0
56	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
57 58	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
59	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60 61	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0
62	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
63 64	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0
65	0.0	0.0	0.0	0.0	0.0	0.0	ō.ō	0.0	0.0
66 67	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0
68	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
69 70	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0
TOTAL INT.	2	15	27	38	27	19	8	3	1

.

í

ŧ

Table 6. 4(a) Cyclic Stress Occurrences, Gage 8 on McLean, May-July 1977

•

-

.

;

ł

ŧ

.

i. .

STRS. AMPL. (KSI)	, S.S. 1	5.5. 2	S.S. 3	5.5. 4	\$.\$. 5	5.S. 6	\$.\$. 7	
· 1	572.1	1221.0	2886.3	1325.0	999.6	215.0	25.7	
2			2205.0			276.2	54.6	
3 4	95.5 40.2	498.0		716.4 359.1	626.4 338 0	194.6 136.7	53.7 44.4	
5	15.5	81.1	119.7	179.2	172.9	98.9	33.9	
6	4.8	46.3	54.5	89.0	89.0	70.6	23.3	
7 8	1.2	30.5	30.8	45.3	48.4	49.4 34.7	14.7	
Š	0.0	13.6	14.6	13.3	18.3	24.8	5.6	
10	0.0	8.5	10.5	7.4	12.0	18.1	3.8	
11	0.0	5.0	7.6	4.1	8.1	13.6	2.9	
13	0.0	1.4	3.7	1.2	3.9	8.1	2.4 2.0	
14	0.0	Q.7	2.5	0.6	- 2.9	6.4	1.7	
15 16	0.0	0.3	1.6	0.3	2.2	5.2	1.5	
10	0.0	0.1	1.1	0.2	1.7	4.2	1.2	
18	0.0	0.0	0.4	0.0	1.0	2.9	0.8	
19	0.0	0.0	0.2	0.0	0.8	2.4	0.6	
· 20 21	0.0 0.0	0.0	0.1	0.0	0.6	2.0	0.5 0.4	
22	ŏ.ŏ	0.0	0.0	0.0	0.4	1.4	0.3	
23	0.0	0.0	0.0	0.0	0.3	1.1	0.2	
24 25	0.0	0.0	0.0	0.0	0.2	. 0.9	0.1	
26	0.0	0.0	0.0	0.0	0.1	0.7	0.1 0.1	
27	0.0	0.0	0.0	0.0	0.1	0.5	0.1	
28	0.0	0.0	0.0	0.0	0.0	0.4	0.0	
29 30	0.0	0.0	0.0	0.0	0.0	0.3	0.0	
.31	0.0	0.0	0.0	0.0	0.0	70.6 4 79.4 7.8 13.6 4 13.6 4 13.6 4 13.6 4 13.6 4 13.6 4 13.6 5 2.2 1.1 9.7 6 5.2 2.1 1.1 9.7 6 5 2.2 1.1 1.0 0.0 0.0 0.0 <	0.0	
32	0.0	0.0	0.0	0.0	0.0	0.1	0.0	
33 34	0.0	0.0	0.0	0.0	0.0	0.1	0.0	
35	0.0	0.0	0.0	0.0	0.0	0.1	0.0 0.0	
36	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
- 37	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
38 39	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
41	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
42 43	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	
44	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
45								
46 47	0.0	0.0 0.0	0.0	0.0		0.0	0.0	
48	0.0	0.0	0.0	0.0	0.0	0.0	0.0	· ·
49	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	
50 51	0.0	0.0	0.0		0.0	0.0	0.0	
52	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	
53	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
54 55	0.0	0.0	0.0		0.0	0.0	0.0	
55	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	
57	0.0	0.0	0.0		0.0	0.0	0.0	•
58	0.0	0.0	0.0		0.0	0.0	0.0	
59 60	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	
61	0.0	ŏ.ŏ	ŏ.ŏ		0.0	0.0	0.0	
62	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
63 64	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	
65	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	
66	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
67 69	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
68 69	0.0	0.0	0.0		0.0 0.0	0.0	0.0 0.0	
70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOTAL INT.								
IVIAL INI.	15	52	90	56	39	17	6	

Table 6.4(b) Cyclic Stress Occurrences, Gage 8 on McLean, Sep-Jan 1978

STRS. AMPL. (KSI)	\$.\$. 1	<u>s</u> .s. 2	5.5. 3	5.5. 4	s.s. 5	5.5. 6	5.5. 7	\$.S. 8	5.5. 9	S.S. 10
1	256.7	461.2		1558.8	610.7	252.7	30.6	20.2	4.9	1.1
2 3	55.4 35.1	253.7 207.6	755.4	1204.3	728.7 652.8	330.6 325.3	85.3 123.2	54.8 75.9	14.4 22.8	2.1 5.1
4	17.6	176.0	354.9	621.3	526.4	288.0	140.1	82.9	29.8	6.9
5	5.8	128.3	243.1	410.8	404.9	233.7	138.3	80.6	34.9	8.6
€ 7	1.3	84.5 52.6	162.7 105.9	271.4 184.9	298.0	180.7 136.3	124.2	74.7 68.1	38.1 39.5	10.0 11.1
8	0.0	32.2	68.1	131.6	148.3	101.8	84.9	61.8	39.4	12.0
9	0.0	19.9	43.8	97.2	105.0	75.9	67.8	55.7	38.2	12.6
10 11	0.0 0.0	12.7 18.5	28.3 18.2	73.4 55.9	76.2 57.0	56.8 42.9	54.3 44.1	49.7 43.9	36.1 33 <i>.</i> 6	12.9 13.0
12 -	0.0	6.0	11.8	42.6	43.8	32.8	36.6	38.4	31.0	12.9
13	0.0	4.5	7.6	32.2	34.4	25.5	31.0	33.4	28.3 25.8	12.6 12.1
14 15	0.0 0.0	3.5 2.8	4.9	24.1 17.8	27.5 22.3	20.2 16.3	26.8 23.5	24.6	23.5	11.6
16	0.0	2.2	2.1	13.1	18.2	13.4	20.7	20.9	21.4	11.0
17	0.0	1.8	1.4	9.4	15.0 12.3	11.2 9.4	18.3 16.1	17.7	19.5 17.8	10.3 9.6
18 19	0.0	1.4	1.0 0.7	6.8 4.8	10.2	8.1	14.2	12.4	16.2	8.9
20	0.0	0.9	Q.5	3.3	8.4	6.9	12.5	10.3	14.8	8.2
21	0.0	0.7	0.3	2.3	6.9 5.7	6.0 5.3	10.9	8.4 6.9	13.5 12.4	7.6 6.9
22 23	0.0	0.6	0.2	1.6	4.7	4.6	8.3	5.6	11.3	6.4
24	0.0	0.3	0.1	0.7	3.9	4.0	7.1	4.5	10.3	5.8
25	0.0	0.2	0.1	0.5	3.2	3.6	6.1	3.6	9.4 8.5	5.3 4.B
26 27	0.0	0.2	0.0 0.0	0.3 0.2	2.6 2.1	3.1 2.8	5.3 4.5	2.9 2.3	8.3 7.7	4.4
- 28	0.0	0.1	0.0	0.1	1.7	2.4	3.8	1.8	7.0	4.0
29	0.0	0.1	0.0	0.1	1.4	2.1	3.2	1.4	6.4 5.7	3.6
30 31	0.0 0.0	0.1 0.0	0.0	0.1	1.1	1.9 1.6	2.7 2.3	1.1	5.2	3.3 3.0
32	0.0	0.0	0.0	0.0	0.7	1.4	1.9	0.7	4.7	2.7
33	0.0	0.0	0.0	0.0	0.6	1.3	1.6	0.5	4.2	2.5
34 35	0.0	0.0 0.0	0.0	0.0	0.4	1.1	1.3	0.4 0.3	3.8 3.4	2.3 2.1
36	0 .0	0.0	0.0	0.0	0.3	0.8	0.9	0.2	3.0	1.9
37	0.0	0.0	0.0	0.0	0.2	0.7	0.7	0.2	2.7	1.7
38 39	0.0 0.0	0.0	0.0	0.0	0.2 0.1	0.6 0.5	0.6	0.1 0.1	2.4	1.6
40	0.0	0.0	0.0	0.0	0.1	0.4	0.4	0.1	1.9	1.3
41	0.0	0.0	0.0	0.0	0.1	0.4	0.3	0.1	1.7	1.2
42 43	0.0	0.0 0.0	0.0	0.0	0.1 0.0	0.3 0.3	0.2	0.0	1.5	1.1 1.0
44	0.0	0.0	0.0	0.0	0.0	0.2	0.1	0.0	1.2	0.9
45	0.0	0.0	0.0	0.0	0.0	0.2	0.1	0.0	1.1	0.8
46 47	0.0 0.0	0.0 0:0	0.0 0.0	0.0	0.0 0.0	0.2	0.1	0.0	0.9 0.8	0.7 0.6
48	0.0	0.0	0.0	0.0	0.0	0.1	0.1	.0.0	0.7	0.6
49	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.6	0.5
50 51	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.1	0.0 0.0	0.0	0.6 0.5	0.5
52	0.0	0.0	0.0	0.0	ŏ.ŏ	0.1	0.0	0.0	0.4	0.4
53	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.3
54 55	0.0	0.0 0.0	0.0 0.0		0.0	0.0 0.0	0.0 0.0	0.0	0.3 0.3	0.3
56	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.3	0.2
57	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.2	0.2
58 59	0.0	0.0 0.0	0.0 0.0		0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.2 0.2	0.2 0.1
60	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.1	O. 1
61	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.1	0.1
62 63	0.0	0.0 0.0	0.0		0.0	0.0	0.0 0.0	0.0 0.0	0.1	0.1
64 64	0.0	0.0	0.0		0.0	0.0	ŏ.ŏ	0.0	0.1	0.1
65	0.0	0. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
66 67	0.0	0.0 0.0	0.0 0.0		0.0 0.0	0.0	0.0 0.0	0.0	0.1	0.1 0.1
68	0.0	0.0			.0.0	0.0	0.0	0.0	0.0	0.0
69	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL INT.	4	23	45	76	55	31	20	14	12	5

į

í

1

1

÷

í

i

1

1

ŧ

į

•

STRS. AMPL. (KSI)	S.S . 1	\$.5. 2	5.5. 3	S.5. 4	5.5. 5	5.5. 6	5.5 . 7	5.5. 8	5.5. 9	5.5. 10	
1	´ o.o	493.9	152.0	332.4	601.1	141.6	40.4	12.1	7.0	0.8	
2	Ó.0	352.7	225.5	178.3	266.4	327.5	108.4	32.8	19.5	2.5	
-3	0.0	183.1	209.3	133.7	218.7	348.2	148.0	45.4	28.0	4.0	
4	0.0 0.0	109.4 67.0	176.8 130.4	98.1 66.6	182.6	286.7	161.0 158.1	50.2 49.5	31.7 31.3	5.4	
6	0.0	41.1	\$6.3	41.9	115.2	153.5	148.2	46.0	28.3	7.6	
7	0.0	23.8	53.9	24.5	87.3	106.2	135.7	40.9	24.5	8.3	
8	0.0	12.7	33.3	13.7	65.9	72.2	122.1	35.2	20.9	8.8	
9	0.0	·6.3	20.9	7.6	50.1	49.0	108.1	29.9	18.0	9.0	
10 11	0.0 0.0	1.3	13.5 9.0	4.4 2.6	38.6 29.8	23.5 23.0	94,1 80,9	25.3 21.8	15.7 13.8	9.0 8.7	
12	0.0	0.5	6.1	1.6	22.9	15.9	68.7	19.1	12.1	8.3	
13	0.0	0.2	4.2	1.0	17.5	11.1	57.8	17.1	10.6	7.8	
14	0.0	0.1	2.9	0.6	13.1	7.8	48.4	15.6	9.1		
15 16	0.0 0.0	0.0	2.1	0.3	9.7 7.0	5.4 9.8	40.3 33.5	14.4 13.4	7.7 6.4	6.4 5.6	
17	0.0	0.0	1.4	0.1	4.9	2.7	27.8	12.4	5.3	4.9	
18	0.0	0.0	0.6	0.1	3.4	1.9	23.1	11.4	4.4	4.2	
* 19	0.0	0.0	0.4	0.0	2.3	1.3	19.1	10.5	3.6	3.5	
20	0.0	0.0	0.3	0.0	1.5	0.9	15.8	9.6	2.9	2.9	
21	0.0	0.0	0.1	0.0	1.0	0.6	13.1	8.7	2.3	2.4	
22 23	0.0 0.0	0.0 0.0	0.1	0.0 0.0	0.6 0.4	0.4	10.8 9.0	7.8 7.0	1.9 1.5	1.9 1.5	
24	0.0	0.0	0.0	0.0	0.2	0.2	7.4	6.2	1.3	1.2	
25	0.0	0.0	0.0	0.0	0.1	0.1	6.1	5.5	1.0	0.9	
26	0.0	0.0	0.0	0.0	0.1	0.1	5.1	4.8	0.8	0.7	
27	0.0	0.0	0.0	0.0	0.0	0.0	4.2	4.2	0.7	0.5	
28 29	0.0	0.0	0.0 0.0	0.0	0.0 Qu0	0.0 0.0	3.5 2.9	3.7 3.2	0.6 0.5	0.4 0.3	
30	0.0	0.0	0.0	0.0	0.0	0.0	2.4	2.8	0.4	0.2	
31	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.4	0.3	0.1	
32	0.0	0.0	0.0	0.0	0.0	0.0	1.7	2.1	0.3	0.1	
33 34	0.0	0.0	0.0	0.0	0.0	0.0	1.4	1.8	0.2 0.2	0.1	
35	0.0	0.0	0.0 0.0	0.D 0.0	0.0	0.0	0.9	1.3	0.1	0.0	
36	0.0	0.0	0.0	0.0	0.0	0.0	0.8	1.1	0.1	0.0	
37	0.0	0.0	0.0	Q.Q	0.0	0.0	0.6	0.9	0.1	0.0	
38	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.8	0.1	0.0	
39 40 ·	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.4	0.7 0.6	0.1 0.0	0.0 0.0	
41 •	0.0	0.0	0.0	0.0	ŏ.ŏ	0.0	0.3	0.5	0.0	0.0	
42	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.4	0.0	0.0	
43	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.0	0.0	
44	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.0	0.0	
45 46	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.1	0.2 0.2	0.0 0.0	0.0	
47	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0 .1	0.0	0.0	
48	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	
49	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	
50 51	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.1	0.0	- 0.0 0.0	
52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	ŏ.ŏ	0.0	
53	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
54	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
55	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
56 57	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	• •.• • •.•	
58	0.0	0.0	ŏ.ŏ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
59	0.0	0.0	0.0	0.0	ō.ō	0.0	ŏ.ŏ	0.0	0.0	0.0	
60	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	
61	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	
62 63	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	
64	0.0	0.0	0.0	0.0	0.0	ŏ.ŏ	ŏ.ŏ	0.0	0.C	0.0	
65	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
66	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
67	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
68 69	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	
70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOTAL INT.			_ 16	12	26	24	31	12	4	2	
			•								
STRS. AMPL. (KSI)	\$.5 . 1	5.S. 2	5.5. 3	\$.5. 4	5.5. 5	5.S. 6	\$.\$. 7	5.5. 8	5.ş. 9	5.S. 10	
----------------------	--------------------	---------------	--------------	---------------	----------------	----------------	----------------	--------------	--------------	------------	--
. 1	´ 0.0	561.4	192.4	350.2	621.1	177.1	54.5	17.4	8.9	0.9	
2	0.0	342.7	268.4	172.1	285.1	392.4	141.2	45.0	24.2	2.8	
3	0.0	172.0 98.1	240.4	138.0 96.4	233.4 192.6	390.4 299.5	183.4 191.2	57.9 59.8	33.5 36.0	4.5 6.0	
5	ő.ő	59.8	116.7	62.1	147.9	209.3	182.4	56.0	33.6	7.2	
6	0.0	35.6	68.0	37.8	107.3	139.8	166.5	49.5	28.9	8.2	
7	0.0	19.4	38.5	21.7	76.2	90.4	147.3	42.0 34,9	24.2	8.9	
` 8 9	0.0	9.6 4.2	22.2 13.1	11.9 6.3	54.6 39.6	57.2 35.8	126.9 106.6	29.0	20.4 17.5	9.2 9.3	
10	0.0	1.7	8.0	3.2	28.9	22.3	87.7	24.5	15.2	9.1	
11	0.0	0.6	5.0	1.6-	20.7	13.9	71.0	21.3	13.1	8.8	
12 13	0.0	0.2 0.1	3.1 2.0	0.8 0.4	14.6	8.8 5.6	56.9 45.2	18.9 17.0	11.2	8.2 7.6	
14	0.0	0.0	1.2		6.5	3.5	35.8	15.4	7.8	6.8	
15	0.0	0.0	0.7	0.1	4.1	2.2	28.4	13.9	6.4	6.1	
16	0.0	0.0	0.4	0.0	2.5	1.4	22.4	12.4	5.2	5.3	
17 18	0.0	0.0 0.0	0.2 0.1	0.0 0.0	1.5 0.9	0.9	17_8 14_1	11.1 9.8	4.2 3.4	4.6 3.9	
19	0.0	0.0	0.1	0.0	0.5	0.3	11.1	8.6	2.8	3.3	
20	0.0	0.0	0.0	0.0	0.3	0.2	8.8	7.4	2.3	2.7	
21	0.0	0.0	0.0	0.0	0.1	0.1	7.0	6.4	1.9	2.2	
22 23	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.1	0.1 0.0	5.5 4,4	5.4 4.6	1.6 1.4	1.8 1.5	
24	0.0	0.0	0.0	0.0	0.0	0.0	3.5	3.9	1.1	1.2	
25	0.0	0.0	0.0	0.0	0.0	0.0	2.8	3.2	1.0	0.9	
26 27	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	2.2 1.8	2.7 2.2	0.8	0.7 0.6	
28	0.0	0.0	0.0	0.0	0.0	0.0	1.4	1.8	0.6	0.4	
29	0.0	0.0	0.0	0.0	0.0	0.0	1.1	1.5	0.5	0.3	
30	0.0	0.0	0.0	0.0	0.0	0.0	0.9	1.2	0.4	0.3	
31 32	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.7 0.5	1.0	0.4	0.2	
33	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.4	0.6	0.2	0.1	
34	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.5	0.2	0.1	
35	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.4	0.1	0.1	
36 37	0.0	0.0	0.0	0.0	0.0	0.0	0.2 0.1	0.3	0.1 0.1	0.0	
38	0.0	0.0	0.0	0.0	0.0	0.0	Ö. 1	0.2	0.1	0.0	
39	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	
40 -	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	
41 42	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.1 0.0	0.1	0.0	0.0 0.0	
43	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
44	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
45 46	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	
48	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
50 51	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	
52	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	
53	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0	0.0	
54	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
55 56	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	
57	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ŏ.ŏ	0.0	· 0.0	
58	Q.Q	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
59 60	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	
61	0.0	. 0.0	0.0	0.0	0.0	0.0 • 0.0	0.0	0.0	0.0	0.0	
62	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
63	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
64 65	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	
66	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
67	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
68	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
69 70	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	
	0.0		0.0	0.0	0.0	0.0		9.9	0.0		
TOTAL INT.	0	17	16	12	26	24	31	12	- 4	2	

÷

ł

ŧ

ł

	Data Set			Generalized	1				Beaufo	ort Sea	State 1	No.		
Ship	Sea Trail Period		Total Interval	Gamma Parameters	1	2	3	4	5	6	7	8	9	T
				ß	4.82	6.60	8.20	9.25	5.40	3.21	2.23	2.10	1.46	' -
	Jan-Mar 1975	FyB	214	rg v	.403	.363	.332	.347	.363	.596	.750	.942	1.39	T
				r	9.01	27.5	55.6	56.6	11.0	.509	.182	.140	.067	1-
				P	13.3	11.1	8.77	9.50	8.43	8.08	5.58	1.77	.994	<u> </u> _
Sealand	May-Jul 1977	2	265	q	.361	.323	.368	.376	.365	.362	.531	1.22	1.97	1
McLean	Sep-Jan 1978	3		r	501.	501.	101.	100.	75.9	51.5	2.25	.177	.074	1
				Р	12.7	10.0	9.01	8.52	8.46	8.08	5.58	2.16	258.	
	May-Jul 1977	8	560	q	.340	.347	.375	.370	.360	.361	.511	.946	.870	
	Sep-Jan 1978	8		r	955.	240,	120.	83.2	74.6	48.2	2.25	.133	.109	 -
				Р	4.85	8.82	3.79	8.44	8.81	3.46	2.39	4.01	2.68	
		2	144	g	.685	.376	.653	.374	.349	.737	.887	.599	.841	2
Scaland	Oct-Dec 1976		ļĪ	r	4.46	105.	1.18	79.4	97.7	.701	.165	.555	.206	
Market				Р	8.00	10.1	4.67	8.76	8.46	3.34	2.26	3.67	3.42	
		8	144	q	.530	.375	.593	.370	.370	.767	.932	.632	.771	1
				r	31.6	161.	2.45	100.	79.4	.710	.175	.505	.400	

Table 6.7 Generalized Gamma Parameters for Partial Stress Histograms

- ----

Note: The figures underlined are extrapolated values.

:

c

-

•

~~~,

Table 6.8 Cyclic Stress Occurrences per interval, Gage F_yB on McLean, 1975

ł

÷.

ŝ.

Ī

Į

Í

STRS. AMPL. (KSI)	5.5. 1	5.5. 2	\$.\$. 3	5.5. 4	\$.S. 5	5.S. 6	, S.S. 7	\$.5. #	5.5. 9	5.5. 10	5.5. 11	5.5. 12
1 2	22.2 15.3	13.4 13.0	5.9 7.8	3.7 7.9	13.8 11.4	5.3 8.5	6.4 E.4	2.8 7.2	1.4 4.0	0.6 2.3	0.3 1.5	0.1 0.6
3	10.3 6.3	11.1	7.6 6.4	7.6 5.9	9.5 6.5	7.2 6.8	8.0 8.6	9.3 9.4	6.3 8.1	4.3 6.2	3.1 4.9	1.5 2.7
56	3.6	4.5	4.7	4.B	4.6	6.3	8.1	8.7	9.2	7.8	6.7	4.2
6 7	1.B 1.0	2.7	3.4 2.6	4.0 3.5	3.5 2.9	5.5	7.1 6.1	7.9 7.2	9.8 9.8	9.0 9.7	8.2 9.5	5.8 7,4
7 8 9	0.7	1.3	2.1	3.0	2.5	4.8 4.2 3.7	5.2	6.5	9.4 8.6	10.0	10.4 10.9	8.8 10.1
10	0.6	0.8	1.8	2.5 2.1	2.2 1.9	3.3	4.0	5.9 5.2	7.8	8.5	10.9	11.0
11 12	0.6 0.7	0.7	1.2 1.2	1.7 1.4	1.7 1.6	2.9 2.6	3.5 3.2	4.6	6.8 5.9	8.8 8.0	10.6 9.9	11.5 11.6
13	0.7	0.6	٩.٥	1.2	1.4	2.2	2.8	3.4	5.1	7.1	9.0	11.3
14 15	0.6	0.5 0.5	0.9 0.8	1.0 0.8	1.2	2.0 1.7	2.5 2.2	2.9 2.5	4.3 3.7	6.1 5.2	8.0 6.8	10.€ 9.7
16 17	0.5 0.6	0.5	0.7 0.6	0.7	1.0	1.5 1.3	2.0 1.7	2.1 1.7	3.1 2.6	4.3	5.7	8.5 7.3
18	0.6	0.4	0.6	0.6 0,5	0.9 0.8	1.1	1.5	1.4	2.2	2.8	3.7	6.0
19 20	0.5 0.5	0.4 0.3	0.5 0.5	0.4	0.7	0.9 5.0	1.5 1.1	1.2	1.8	2.2 1.7	2.9 2.2	4.8 3.7
21	0.4	0.3	0.4	0.3	0.6	0.7	1.0	0.8	1.2	1.3	1.6	2.8
22 23	0.4	0.3 0.3	0.4 0.3	0.3 0.2	0.5 0.5	0.6 0.5	0.8 0.7	0.6 0.5	1.0	1.0 0.7	1.1 0.8	2.0
24 25	0.3 0.3	0.2 0.2	0.3 0.3	0.2	Q.5	0.4	0.6 0.3	0.4 0.3	0.6 0.5	0.5 0.4	0.6 0.4	1.0 0.6
26	0.3	0.2	0.2	0.2 0.2	0.4 0.4	0.4 0.3	0.5	0.2	0.4	0.3	0.2	0.4
27 28	0.2 0.2	0.2 0.2	0.2 0.2	0.2 0.1	0.3 0.3	0.3 0.2	0.4 0.3	0.2 0.1	0.3 0.2	0.2	0.2	0.2 0.1
29	0.2	0.1	0.2	0.1	0.3	0.2	0.3	0.1	0.1	0.1	0.1	0.1
30 - 31	0.1 0.1	0.1	0.1 0.1	0.1 0.1	0.3 0.2	0.2 0.2	0.2 0.2	0.1	0.1	0.1	0.0 0.0	0.0 0.0
. 32 33	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.0	0.1	0.0 0.0	0.0	0.0
34	0.1 0.1	0.1 0.1	0.1	0.1 0.1	0.2 0.2	0.1 ′0.1	0.2 0.1	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
35 36	0.1	0.1	0.1	0.1	0.2 0.1	0.1	0.1 0.1	0.0 0.0	.0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
37	0.0	0.1	0.1	Q.1	O .1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
38 39	0.0	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.1	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0
40 41	0.0	0.0 0.0	0.1 0.0	0.0 0.0	0.1 0.1	0.0 0.0	0.1.	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0
42	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
43 44	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.1	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0
45	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
46 47	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.1	0.0 0.0	D.O 0.0	0.0	0.0	0.0	0.0 0.0	0.0
48 49	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
51 52	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
53 54	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0
55	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5 6 57	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0
58	0.0	0.0	0.0	Q.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
59 60	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
61 62	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0
63	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
64 65	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	.0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0
66	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Q.O
67 68	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
69 70	0.0	0.0	0.0	0.0	0.0	0.0	.0.0	0.0	0.0	0.0	0.0	0.0 0.0
TOTAL	71.8	0.0 64.8	0.0 55.3	0.0 56.0	0.0 75.9	0.0 77.1	0.0 92.9	97.8	0.0 116.7	0.0 124.0	0.0 135.0	146.0

Table 6.9 Cyclic Stress occurrences per interval combined data of Gage 2 during May-July 1977 & Gage 3 during Sep-Jan 1978 on McLean

-**-**--

5

ł

ł

1 -

i

ł

Į

STRS. AMPL. (KSI)	5.5 . 1	5.S. 2	5.5. 3	5.5. 4	5.5. 5	5.5. 6	\$.\$. 7	\$.S. 8	5.5. 9	5.5. 10	5.5. 11	S.S. 12
1 2	33.3 23.9	19.1 17.1	22.6 22.0	20.0 23.9	16.4 20.4	11.0 15.9	2.6 7.1	4.6 12.1	1.9 5.3	0.2 0.9	0.1 0.4	0.1 0.3
3 '	10.5	10.8	11.9	15.8	14.3	12.2	9.7	15.7	8.1	1.9	0.8	0.6
5	4.7 2.2	6.9 4.2	6.8 4.1	9.1 4.9	9.2 6.0	9.1 6.7	10.3 9.3	15.3 12.5	9.9 10.5	3.1 4.3	1.4	0.9
6 7	-1.0 0.4	2.5 <u>1</u> .4	2.5 1.5	2.7 1.5	3.9 2.5	4.8 3.4	7.4 5.4	9.3 6.5	1C.3 9.3	5.5 6.6	2.5 2.4	1.8 2.3
8	0.1	0.8	-1.0	Ç. 5	1.7	2.4	3.8	4.5	7.8	7.4	4.1	2.8
9 10	0.0	0.5 0.3	0.6 0.4	0.6 0.4	1.1	1.7 1.2	2.6 2.0	3.0 2.0	6.1 4.5	7.9	4.E 5.4	3.3 3.E
11	0.0	0.2	0.2	0.2	0.6	0.9	1.5	1.3	3.2	7.6	5.9	4.3
12 13	0.0 0.0	0.1 0.1	0.1 0.1	0.1	0.4 0.3	0.7 0.5	1.3 1.2	0.8 0.4	2.1	7.0 6.1	6.3 6.5	4.7 5.2
14	0.0 0.0	0.0 0.0	0.1 0.0	0.1 0.0	0.2 0.2	0.4 0.4	1.1	0.2 0.1	C.8 0.4	5.0 3.9	6.5 6.3	5.5 5.7
16	0.0	0.0	0.0	0.0	0.1	0.3	0.9	0.1	0.2	2.9	5.9	5.8
17 18	0.0	0.0 0.0	0.0 0.0	0.0	0.1 0.1	0.3 0.2	0.8 0.7	0.0 0.0	0.1	2.1	5.3 4.6	5.8 5.6
19	0.0	0.0	0.0	0.0	0.0	0.2	0.6	0.0	. 0.0	0.2	3.8	5.3
20 21	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	C.2 0.1	0.6 0.5	0.0 0.0	0.0 0.0	0.5 0.3	3.0 2.2	4.8 4.2
22 23	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.1	0.4 0.4	00	0.0 0.0	0.1 0.1	1.6 1.1	4.2 3.5 2.8
24	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.0	0.0	0.0	0.7	2.2
25 26	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.1 0.1	0.3 0.2	0.0 0.0	0.0 0.0	0.0 0.0	0.4	1.5 1.1
- 27	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.1	9.7
28 29	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.1 0.1	0.0 0.0	0.0	0.0 0.0	0.1 0.0	0.4 0.2
30 .	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.1
31 32	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.1 0.1	0.0	0.0 0.0	0.0	0.0	0.0 0.0
33 34	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
35	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36 37	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0
38	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39 40	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	. 0.0	0.0
41 42	0.0	0.0	0.0	0.0	0.0	0.Ö	0.0	0.0	0.0	0.0	0.0	0.0 0.0
43.	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
44 45	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
46	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
47 48	0.0 0.0	0.0	0.0` 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0
49 50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
51	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0
52 53	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
54	0 .0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
55 56	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0
57 58	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
59	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
60 61	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
62	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
63 64	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0
65	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Q.O	0.0	0.0
66 67	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
68 69	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
. 70	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
TOTAL	76.0	64.0	73.8	80.4	78.2	72.8	72.5	88.5	81.9	83.7	85.2	\$6.6

Table 6.10 Cyclic Stress Occurrences per interval combined Gage & Data measured on McLean during May-July 1977 and Sep-Jan 1978

ť.

î

-

:

;

ş

7

STRS. AMPL. (KSI)	5.5 . 1	5.5. 2	\$.5. 3	S.S. 4	5.S. 5	5.S. 6	5.5. 7	\$.5. B	\$.5. 9	. S.S. 10	\$.S. 11	5.5. 12
•	43.6	22.4	29.1	21.8	17.1	9.7	2.2	1.4	0.4	0.2	Q .1	0.0
2	17.7	19.7	21.9	19.4	18.5	12.6	5.4	3.9	1.2	0.6	0.2	0.1
3	6.9	9.4	9.8	12.2	13.6	10.8	6.2	5.4	1.9	1.0	0.4	0.1
4 5	3.0 1.1	4.8	4.8 2.7	7.4 4.5	9.2 6.1	8.8 6.9	7.1 6.6	5.9	2.5 2.9	1.4	0.6 0.8	0.2 0.3
6	C.3	1.7	1.6	2.7	4.1	5.2	5.7	5.3	3.2	2.0	1.0	0.4
7	0.1	1.1	1.0	1.7	2.8	3.9	4.6	4,9	3.3	2.2	1.2	0.6
8	0.0	0.7	C.7	1.2	1.9	2.8	3.6	4.4	3.3	2.4	1.4	0.7
9	0.0	0.4	0.4	0.8	1.3	2.1	2.8	4.0	3.2	2.5	1.5	0.8
10	0.0	0.3	0.3	0.6	0.9	1.6	2.2	3.6	3.0	2.6	1.7	0.9
11	0.0	0.2	0.2	0.5	0.7	1.2	1.8	2.1	2.8	2.6	1.8	1.0
12	0.0	-0.1	0.1	0.3	0.5	0.9	1.5	2.7	2.6	2.6	1.9	1.2
13 14	0.0 0.0	0.1	0.1	0.3 0.2	0.4	C.7 Q.6	1.3	2.4	2.4	2.5 2.4	2.0	1.3
15	0.0	0 .0	0.0	0.1	0.3	0.4	1.0	1.8	2.0	2.3	2.1 2.1	1.4
16	0.0	0.0	0.0	0.1	0.2	0.4	Ç.8	1.5	1.8	2.2	2.1	1.5
17	0.0	0.0	C.O	0.1	0.2	0.3	0.7	1.3	1.6	2.1	2.1	1.6
18	0.0	0.0	0.0	0.1	0.1	0.3	0.7	1.1	1.5	1.9	2.1	1.7
19	0.0	0.0	0.0	. 0.0	0.1	0.2	0.6	0.9	1.4	1.8	2.1	1.7
20	0.0	0.0	0.0	0.0	0.1	0.2	0.5	0.7	1.2	1.6	2.1	1.8
21 22	0.0 0.0	0.0	0.0	0.0	0.1	0.2	0.4	0.6	1.1	1.5	2.0	1.8
23	0.0	0.0	0.0	0.0	0.1	D.1 0.1	0.4	0.5	1.0	1.4	1.9 1.9	1.8 1.6
24	0 .0	0.0	0.0	0.0	0.0	0.1	Q.3	0.3	0.9	1.2	1.8	1.8
25	0.0	ō.ō	0.0	0.0	0.0	0.1	0.2	0.3	0.2	1.1	1.7	1.8
26	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.2	0.7	1.0	1.6	1.8
27	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.2	0.5	0.9	1.5	1.7
28	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.6	0.8	1.5	1.7
29	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.5	0.7	1.4	1.6
30 31	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.5	0.7	1.3	1.6
32	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.1	0.1	0.4 0.4	0.6 0.5	1.2	1.5
33	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.3	0.5	1.0	1.4
34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.5	0.9	1.3
35	Ó.Ó	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.4	0.9	1.3
36	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.4	0.8	1.2
37	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.7	1,1
38	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.7	1.1
39 40	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.2	0.3	0.6	1.0
41	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.5	0.9
42	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ŏ. 1	0.2	0.4	0.8
43	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ŏ. 1	0.2	0.4	0.7
44	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.4	0.7
45	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	Q.3	0.6
46	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.3	0.6
47 48	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.3	0.5
49	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.1 0.1	0.1	0.2	0.5 0.4
50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.4
51	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.3
52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	Q.3
53	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.3
54	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2
55 56	0.0 0.0	0.0	-0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.1	0.2 0.2
57	0.0	ŏ.ŏ	0.0	ŏ.ŏ	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2
58	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
59	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
61	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
62 63	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
64	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.1 0.1
65	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.1
66	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.Ŭ	0.0	0.0
67	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
68	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
69	0.0	0.0	0.0	0.0	'0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
. 70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 .0
TOTAL	72.7	63.8	72.7	74.1	78.7	70.6	59.6	65.0	55.5	55.0	58.6	57.1

Table 6.11 Cyclic Stress Occurrences per interval, Gage 2 on MARKET, 1976

STRS. AMPL. (KSI)	5.5. 1	5.S. 2	5.5. 3	5,5. 4	\$.5. 5	\$.5. 6	5.5. 7	5.S. 8	s.s. 9	\$.5. 10	5.5. ' 11	\$.5. 12
1 2 .	39.6 27.9	20.7	- 9.5 14.1	27.7 14.9	23.1 10.2	5.9 13.6	1.3 3.5	1.0 2.7	1.8 4.9	0.4 1.2	0.1 0.3	0.0 0.1
3	B.O 2.C	10.5 6.4	13.1 11.1	11.1	8.4 7.0	14.5 11.9	4.2 5.2	3.E 412	7.0 7.9	2.0 2.7	0.5	0.3 0.5
56	0.5	3.9	8.2	5.6	5.7	9.0	5.1	4.1	7.E	3.3	1.4	0.7
6 7	0.1 0.0	2.4 1.4	5.4 3.4	3.5 2.0	4.4 3.4	6.4 4.4	4.B 4.4	3.5 3.4	7.1 6.5	3.8 4.2	1.8	1.0 1.2
5 9	0.0 0.0	0.7 0.4	2.1 1.3	1.1 0.6	2.5 1.9	3.0 2.0	3.9 3.5	2.9 2.5	5.2	4.5	2.5 2.8	1.5
10	0.0	Q.2	C.8	0.4	1.5	1.4	3.0	2.1	3.9	4.5	2.1 3.2	2.0
11	0.0 0.0	C.1 0.0	0.5	C.2 0.1	1.1	1.0 0.7	2.6 2.2	1.8	3.5 3.0	4.4	3.4	2.2 2.5
13 14	0.0 0.0	0.0	C.3 D.5	0.1	0.7	0.5 0.3	1.9 1.6	1.4 1.3	2.6 2.3	3.9 3.5	2.5 3.5	2.7 2.e
15	0.0	0.0	0.1	0.0	0.4	0.2	1.3	1.2	1.9	3.2	3.5	3.0
-16 17	0.0	0.0	0.1	0.0	0.3 0.2	0.2 0.1	1.1 0.9	1.1	1.6 1.3	2.8 2.4	5.4 3.2	3.1 3.1
18	0.0	0.0	0.0	0.0	0.1	0.1 0.1	0.7 0.6	1.0 0.9	1.1 0.9	2.1	3.C 2.8	3.1 3.1
19 20	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.1	0.0	0.5	0.8	0.7	1.4	2.5	3.0
21 22	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.4	0.7 0.6	0.6 0.5	1.2 0.9	2.3 2.0	2.8 2.7
23	0.0	0.0	0.0	0.0	0.0	Ċ.0	0.3	0.6	0.4	O.E	1.7	2.5
24 25	0.0	0.0	0.C 0.D	0.0 0.0	0.0	0.0 0.0	0.2 0.2	0.5 0.5	0.3	0.6 0.4	1.5 1.3	2.3
26	0.0	0.0	0.0	0.0	0.0	0.0	0.2 0.1	0.4	0.2 0.2	0.3 0.3	1.C 0.9	1.8 1.6
27 28	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.1	0.2	D.1	Q.2	0.7	1.3
29 30	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.1 0.1	0.3 0.2	0.1 0.1	0.1	0.6 0.4	1.1 0.9
31 1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.1	0.1	0.3	0.8
32 33	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.1	0.2 0.1	0.1 0:0	0.0 0.0	0.3 0.2	0.6 0.5
34	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.1	0.0	0.0 0.0	0.1	D.4 0.3
35 36	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.2
37 38	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 . 0.0	0.0 0.0	0.0 0.0	0.1	0.0	0.0	0.1	0.1
39	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1
40 41	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.C 0.D	0.1 C.O
42	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 C.0
43 44	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0	0.0	0.0	0.0
45 46	0.0 0.0	·0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0
47	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ó.O	0.0	C.O
48 49	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
50 51	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.0	0.0	0.0
53 54	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0
55 56	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0
57	0.0 0.0	0.0 0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Q.O	0.0	0.0
58 59	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0
59 60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0
61 62	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0
63 64	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
65	Q.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Q.O	0.0
66 67	0.0 0.0	0.0 0.0	0.0	0.0	0.ŭ 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
68	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
69 70	0.0 0.0	0.0 0.0	0.0 · 0.0	0.0 0.0	0.0 0.0	0.0	• 0.0 • 0.0	0.0	0.0 0.0	0.0	0.0	0.0
TOTAL	76.2	76.1	70.5	75.5	72.5	75.3	55.1	48.3	78.1	65.7	61.2	59.7

ł

ŧ

1

ł

٠

.

Table 6.12 Cyclic Stress Occurences per Interval, Gauge 8 on MARKET, 1976

STRS. AMPL. (KSI)	5.5. 1	5.5. 2	\$.\$. 3	5.5. 4	5.S. 5	\$.\$. \$	\$.\$. 7	5.5. 8	5.S. 9	S.S. 10	5.5. 11	S.S. 12
1 2	55.1 20.6	33.0 20.2	12.0 16.8	29.2 14.3	23.9 11.0	7.4 16.3	1.8 4.6	1.5 3.7	2.2	0.5	0.6 1.3	0.3 0.8
3	3.4	10.1	15.0	11.5	9.0	16.3	5.9	4.8	8.4	2.2	1.8	1.1
4	0.6	5.8 3.5	11.4	8.0 5.2	7.4 5.7	12.5	6.2 5.9	5.0 4.7	9.0 8.4	3.0 3.6	2.3 2.6	1.4
6	0.0	2.1	4.2	3.1	4.1	5.8	5.4	4.1	7.2	4.1	2.9	1.9
7. B	0.0 0.0	1.1	2.4 1.4	1.8	2.9	3.8 2.4	4.8	3.5 2.9	6.1	4.4	3.0	2.1
9	0.0	0.2	0.8	0.5	1.5	1.5	. 4. 1 3.4	2.4	5.1 4.4	4.6 4.7	3.2 3.2	2.2 2.4
10	0.0	0.1	0.5	0.3	1.1	0.9	2.8	2.0	3.8	4.6	3.3	2.5
1 1 12	0.0 0.0	0.0 0.0	0.3 0.2	0.1	D.8 0.6	0.6 0.4	2.3 1.8	1.8	3.3 2.8	4.4	3.2 3.2	2.5 2.6
13	0.0	0.0	0.1	0.0	0.4	0.2	1.5	1.4	2.4	3.8	3.0	2.6
14 15	0.0 0.0	0.0	0.1	0.0	0.3 0.2	0.1	1.2 0.9	1.3 1.2	2.0 1.6	3.4 3.0	2.9 2.7	2.6 2.6
16	0.0	0.0	. 0.0	0.0	0.1	0.1	0.7	1.0	1.3	2.6	2.6	2.5
17 18	0.0 0.0	0.0	0.0	0.0	0.1	0.0	0.6	0.9	1.1	2.3	2.4	2.5
19	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.8 0.7	0.9 0.7	1.9	2.2 2.0	2.4 2.3
20	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.6	0.6	1.3	1.8	2.2
21 22	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5 0.5	0.5	1.1	1.6 1.4	2.1 1.9
23	0.0	0.0	0.0	ō.ō	0.0	0.0	0.1	0.4	0.3	0.7	1.3	1.8
24 25	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.1	0.3	0.3	0.6	1.1	1.7
26	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3 0.2	0.2	0.5	0.9 0.8	1.5
27	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.2	0.3	0.7	1.2
28 29	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.2 0.1	0.1 0.1	0.2 0.2	0.6 0.5	1.1
30	0.0	0.0	0.0	0.0	0.0	ŏ.ŏ	0.0	0.1	0.1	0.1	0.4	0.9
31 32	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.3	0.B
33	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.1	0.1	0.1	0.3	0.7 0.6
34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5
35 36	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2 0.1	0.4 0.4
37	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3
38 39	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3
40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.1	0.2 0.2
41 42	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
43	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.1
44	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
45 46	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.1
47	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
48 49	0.0 0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0
50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0
51 52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
53	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	· 0.0 0.0	0.0 0.0
54	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
55 56	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0
57	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
58 59	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
61 62	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
63	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0
\$ 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
65 66	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
67	0.0	0.0	0.0	0.0	0.0	0.0	·0.0	0.0	0.0	0.0	0.0	0.0
68 69	0.0	0.0	0.0 0.0	. 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0
70	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	76.5	76.7	72.6	75.2	71.0	77.1	55.7	48.9	79.8	66.8	61.2	60.7

ł

ŧ

1

Beaufort No.	Significant Wave height (ft)	Probability of Occurrence (Pj)		
1	0.01 7			
2	0.5			
3	1.3-1.8	0.31836		
4	2.6-4.7			
5	5.9-7.3	0.18585		
6	9 -12	0.37176		
7	14-19	0.09858		
8	21-29	0.92221		
9	32-39	0.0031403		
10	42-53	0.0000747		
11 ·	57-64	0.0000261;		
12	75	0.000018		

Note: Significant wave heights, generally for fully developed seas, are shown for visualization purposes only.

ĩ

ł

ą

	No. of	Occurrences in 20 Year	rs
Strs. Ampl. (ksi)	Gage FyB 1975	Gage 2 1977 Gage 3 1978	Gage 8 1977 Gage 8 1978
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 55 \\ 57 \\ 58 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ $	5183369. 5624119. 4908472. 4047811. 3287474. 2685228. 2246169. 1926758. 1681983. 1481836. 1309542. 1157091. 1020770. 898568. 789343. 692137. 606008. 529870. 462764. 403908. 352328. 307413. 268280. 234284. 204807. 179174. 157000. 137741. 121028. 106466. 93318. 82400. 72833. 64452. 57173. 48432. 43245. 38580. 34520. 15945. 12195. 8226. 7461. 6770. 6151. 5569.	\$846192. 10338407. 7299186. 5098375. 3561304. 2438684. 1652590. 1121016. 768727. 542710. 396926. 302019. 238428. 191777. 156144. 132264. 112280. 95969. 76660. 65932. 56299. 47878. 40588. 34195. 28622. 23944. 10254. 8399. 6777. 5502. 4344. 3417.	9612198. 8823468. 6108445. 4367842. 3166540. 2296599. 1665941. 1218520. 903223. 680285. 322036. 408674. 326202. 265057. 214972. 179781. 151578. 128476. 107662. 92028. 78726. 67383. 57573. 44591. 38240. 32802. 28105. 24048. 20537. 8045. 6740. 4991. 4203. 614. 551. 494. 442. 395. 353. 316. 282. 291. 4223. 198. 177. 157. 198. 177. 198. 177.
1 1	43609009.	43705808.	1

•

•

÷

4

ļ

ş

Table 6.14Long-term Composite Stress Histograms for Sealand McLean,
Based on Linear Stress-Strain Relationship

,	No. of Occurrence	s in 20 Years
Strs. Ampl. (ksi)	Gage 2 1976	Gage 8 1976
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 33 34 35 36 37 38 39	8852227. 7976351. 6438592. 5040528. 3789665. 2755503. 1960722. 1395757. 1007788. 742082. 55950. 420353. 322265. 246068. 190760. 148333. 115615. 88672. 70053. 47663. 35056. 29681. 25121. 21232. 17953. 15182. 12810. 10816. 9136. 77713. 6498. 5461. 1928. 1645. 1405. 1187. 1012. 848. 718.	10394047. 8452890. 6628799. 5177707. 3695569. 2544937. 1725809. 1171621. 805197. 562209. 396807. 285208. 205347. 150530. 108979. 81547. 53695. 38641. 31540. 25720. 20958. 17083. 13895. 11314. 9187. 7448. 6036. 2276. 1867. 1512. 1227. 986. 787. 3. 3. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
TOTAL	42370950.	42831388.

Table 6.15Long-term Composite Stress Histograms for Sealand Market,
Based on Linear Stress-Strain Relationship

_

ì

:

ł

ŧ

1

	No. of	Occurrences in 20 Yea	rs
Strs. Ampl.	Gage FyB 1975	Gage 2 1977	Gage 8 1977
(ksi)		Gage 3 1978	Gage 8 1978
1	5183369.	8846192.	9612198.
2 .	5624119.	10338407.	8823468.
3	4908472.	7299186.	6108445.
4	4047811	5098375.	4367842.
5 6 7	3287474.	3561304.	3166540.
6	2685228.	2438684.	2296699.
7	2246169.	1652590.	1666941.
8	1926758.	1121016.	1218520.
9	1681983.	768727.	903223.
10	1481836.	542710.	680285.
11	1309542.	396926.	522036.
12	1157091.	302019.	408674.
13	1020770.	238428.	326202.
14	898568.	191777.	265057.
15	789343.	156144.	179781.
16	692137.	132264.	151578.
17	606008. 529870.	112280. 95969.	128476.
18 19		76660.	107662
20	462764.	65932.	92028
20	352328.	56299.	78726.
22	307413	47878.	67383.
23	268280.	40588.	57573.
24	234284.	34195.	44591.
25	204807.	28622.	38240.
26	179174.	23944.	32802.
27	157000	10254 .	28105.
28	137741.	8399.	24048.
29	121028.	6777.	20557.
30	199784	9846.	14785.
31	219684.	3417.	9808.
32	148849		1488.
33	89045.		1065.
34	27882.		, 755.
35	18490.		532.
36	1		370.
37			24.
38	1		7.
39	1 1		3.
40	- j		0.
41		·	0.
TOTAL	43609009.	43705808.	41661490.

÷.

 Table 6.16
 Long-term Composite Stress Histograms for Sealand McLean, Based on Nonlinear Stress-Strain Relationship

-

ŧ

ł

ļ

;

.

ł

	No. of Occurrence	s in 20 Years
Strs. Ampl. (ksi)	Gage 2 1976	Gage 8 1976
1	8252827.	10394047.
2	7976351.	8452890.
· 3	6438592.	6828799.
4 5 6 7	5040528.	5177707.
5	3789665.	3695569.
6	2755503.	2544937.
. 8	1960722.	1725809.
· 8	1395757 <u>.</u> 1007788.	1171621.
10	742082.	805197.
11	555950.	562209. 396807.
12	420353.	285208
13	322265	205347
14	246068.	150530.
15	190760.	108979.
16	148333.	81547.
17	115615.	53695.
18	88672.	38641.
19	70053.	31540.
20	47663.	25720.
21	35056.	20958.
22 23	29681. 25121.	17083.
23	21232.	13895.
25	17953.	11314.
26	15182.	9187. 7448.
27	12810.	6036.
28	10816.	2276.
29	9136.	1867.
30	14211.	2738.
31	9034.	1776.
32	3604 .	7.
33	1566.	3.
34		0.
35	<u> </u>	0.
TOTAL	42370950.	42831388.

 Table 6.17
 Long-term Composite Stress Histograms for Sealand Market, Based on Nonlinear Stress-Strain Relationship

ş

ŧ

3

1

- 112 -

-	Number of Occurrences in 20 Years				
-	Gage 2 (Unmodified)	Gage 8 (N	Modified)	
tress Amplitude	, 				
(ksi)	Linear	Nonlinear	Linear	Nonlinear	
1	8852827.	8852827.	10394047.	10394047.	
2 3	7976351.	7976351.	8452890.	8452890.	
	6438592.	6438592.	6828799.	6828799.	
4	5040528.	5040528.	5177707.	5177707.	
5	3789665.	3789665.	3695569.	3695569.	
6 7	2755503.	2755503.	2544937.	2544937.	
	1960722.	1960722.	1725809.	1725809.	
8	1395757.	1395757.	1171621.	1171621.	
9	1007788.	1007788.	805197.	805197.	
10	742082.	742082.	562209.	562209.	
11	555950.	555950.	396807.	396807.	
12	420353.	420353.	285208.	285208.	
13	322265.	322265.	205347.	205347.	
14	246068.	246068.	150530.	150530.	
15	190760.	190760.	108979.	108979.	
16	148333.	148333.	81547.	81547.	
17	115615.	115615.	53695.	53695.	
18	88672.	88672.	38641.	38641.	
19	70053.	70053.	31540.	31540.	
20	47663.	47663.	25720.	25720.	
21	35056.	35056.	20958.	20958.	
22	29681.	29681.	17083.	17083.	
23	25121.	25121.	13895.	13895.	
24	21232.	21232.	11314.	11314.	
25	17953.	17953.	9187.	9187.	
26	15182.	15182.	7448.	7448.	
27	12810.	12810.	6036.	6036.	
28	10816.	10816.	2276.	2276.	
29	9136.	9136.	1867.	1867.	
30	7713.	14211.	1512.	2738.	
31	6498.	9034.	1227.	1776.	
32	5461.	3604.	986.	7.	
33	1928.	1566.	787.	3.	
34 35	1645.		3.	0.	
35	1405.		3.	0.	
36 37	1187.		2.		
38	1012.		2.		
39	848. 718.		1.		
Total	42370950.	42370950.	42831388.	42831388.	

Table 6.18 Comparison of Linear and Nonlinear Long-term Stress Histograms, Sealand Market

ţ

:

ł

ŝ

ł

1

ł

n relationship

Nonlinear values correspond to stresses that account for nonlinear cyclic stress strain behavior. (2)

÷.,

Ship	Measurement	Gauge	Fatigue Life (Gauge <u>S-N Curve</u>		
	<u> </u>		AWS	ASME	
		*			
	Jan-Mar 1975	^F у ^B	.09	.21	
	<u> </u>	**	<u></u>	<u></u>	
SEALAND	May-July 1977		.89	2.43	
McLEAN	Sept-Jan 1978	3			
		**		···· <u>···</u> ·····························	
	May-July 1977	8	.58	1.53	
	Sept-Jan 1978	8			
······		*			_
		2	.86	2.46	
SEALAND	0-4 D 10-4				
MARKET	Oct-Dec 1978	**			
		8	1.7	5.5	
		0	1 • <i>1</i>	9.9	

.

.

Table 7.1 Results for Fatigue Life Using AWS & ASME S-N Curves

* Original Hatch Corner** Modified Hatch Corner

ŝ

ş

÷

. .

,

Table 7.2 - Design factors in Wirsching's Method

¢.

ţ

ł

.

į

1

ţ

	Design Factor	Value	Comments
Munse's	m	4.805	see Ref. 7.5
"Detail lF"	ĸ	1013.78	
S-N Curve	с _к	0.6	equivalent to the quantity denoted as δF in Ref. 7.5
Stress	B	1.0	suggested by Wirsching for deckstructure of TLP in Ref. 7.9
Analysis	с _в	.25	value is reasonable since stress obtained through instrumental measurement
Miner's	Ã	1.0	suggested by Wirsching in Ref. 6.1 .
Rule	c∆	0.3	Value of C_{Λ} is reasonable, and has a little influence.
	l	<u> </u>	

Ship	Measurement Period	Gauge	Median Life (yrs)	Notional ^P f	Safety Index
	Jan-Mar 1975	* FyB	2.4	0.94	-1.58
	,, ,,	**			<u></u> ,
SEA-LAND Mclean	May-July 1977 Sept-Jan 1978	2 3	29.6	0.39	0.29
		**			<u> </u>
	May-July 1977 Sept-Jan 1978	8 8	18.5	0.52	-0.06
		*			
SEA-LAND	-	2	29.3	0.39	0.29
MARKET	Oct-Dec 1976				
		**	63.9	0.19	0.87

Table 7.3 Results for Fatigue Life in a Probability Context using Wirshing's method.

.

* Original Hatch Corner ** Modified Hatch Corner

f

ł,

.

Ship	Measurement Period	Gauge	Mean Life (yrs)	Notional P _f	·······
	<u>Jan-Mar 1975</u>	* 	1.6	0.99	
SEA-LAND Mclean	May-July 1977 <u>Sept-Jan 1978</u>	** 2 <u>3</u>	38.3	0.36	
	May-July 1977 	** 8 8	17.5	0.67	
SEA-LAND MARKET	Oct-Dec 1976_	* 2	35.5	0.39	
	_	**	81.9	0.17	

Table 7.4 Results for Fatigue Life in a Probabilistic Context, on the basis of Munse's method.

.

Original Hatch Corner Modified Hatch Corner * **

ž

ļ

ł

÷

	Data Set				Crack Growth Analysis			
Ship	Sea Trail Period	Gage	Total Interval	Initial Crack Size(in)	$\begin{array}{c} \text{Life(yrs)} \\ @ \\ Kth = 2ksi \sqrt{in} \end{array}$	Life(yrs) @ $K_{th} = 5ksi\sqrt{in}$		
	· ·			0.00394	0.22	0.36		
	Jan-Mar 1975	FуB	214	0.01	0.16	0.18		
				0.1	0.07	0.07		
				0.00394	1.9	7.6		
Sealand	May-Jul 1977	2	265	0.01	1.2	2.3		
McLean	Sep-Jan 1978	3		0.1	0.5	0.51		
				0.00394	1.4	4.5		
	May-Jul 1977	8	560	. 0.01	0.9	1.5		
	Sep-Jan 1978	8		0.1	0.38	0.39		
				0.00394	1.3	5.0		
		2	144	0.01	0.83	1.4		
Sealand	Oct-Dec 1976			0.1	0.34	0.35		
Market				0.00394	3	22		
		8	144	0.01	1.7	5.0		
				0.1	0.7	0.7		

Table 7.5 Fatigue Crack Growth Lives Using Fracture Mechanics Model

.

.

.

i

Į

ŧ

-119-

Figure 1.2 Midship Section

ŝ

- 121 -

1

Figure 2.2 Reinforcement, with Face Plates, for No.1 Hatch Forward Corne

- 122 -

÷.

i

ļ

ŧ

Figure 2.2 (Continued)

Į

ţ

3

1

ł

1

-

GAUGES ON PORT SIDE

i

ł

ì

ļ

۱

Ĭ

Figure 3.2 Hatch Corner Strain Gauges, S.S. SEALAND McLEAN

1

ţ

ş

Į

ŧ

ł

Figure 3.3 Strain Gauges, SEA-LAND MARKET, Port Modified/Stbd Unmodified. Oct-Dec 1976

•

;

1

1

Ì

į

Figure 3.4 Strain Gauges, SEA-LAND McLEAN Modified, May-July 77

1

i

Figure 3.5 Strain Gauges, SEA-LAND McLEAN Modified, Sept 77-Jan 78

Figure 4.1 Hatch Corner Stresses at Frame 290

•

Stresses in kg/cm², + Tensile

ĩ

į

Ţ

TORSION

Figure 4.2 Hatch Corner Stresses From Finite Element Analysis

ş

į

i

í.

ł

ł

\$

- 132 -

Т

Fig. 5.2 Simulated Time History - FYB-15, File 9

:

4

ţ

۱

- 134 -

135 -

-

.

1

ł

ſ

ģ

Energy Spectrum Corresponding to the Amplitude Spectrum in Fig.5.1 Fig. 6.1

Fig. 6.2(b) Generalized Gamma Distribution, Curve Fitting Cyclic Stress Histogram - Beaufort No. 4, Gage Fyb

- 140 -

Fig. 6.2(c) Generalized Gamma Distribution, Curve Fitting Cyclic Stress Histogram - Beaufort No. 7, Gage Fyb

141 -

Т

ŧ

ţ

Į

Generalized Gamma Distribution, Curve Fitting Cyclic Stress Histogram - Beaufort No. 9, Gage Fyb

- 143 -

Fig. 6.3(b) Generalized Gamma Parameter q vs. Seastate, Gage F B, 1975 y

. 144 -

- 145 -

ģ

	ŀ.	· ·				· · ·	:	i				-		:							!	.]
								+	†	 	†			•	. 1							
		····		.: .	····					· . ;	·		:				· -	: :::				
i		•			·			<u> </u>	+ 						-+						:	
	0					· :	:	:	Ť					····· ·	.					<u>.</u>		
			:		· · · · · · ·			-			:					:					-	
	!						-									_	!				+	
	;:								•					 .			i	. ;			+	:
·			1		1			·				$\overline{}$:
														:								·
				 i				.					Ì	\							-†	
			: :::					-			:			\mathbf{n}	:						Ť	
	2		1.	-			1.				: :											;
					i			·			;				\backslash							
	1						•				;		İ			\mathbf{N}	:					
			4	Ţ														ļ			T	
	3						:				 1											
			-																. 			•
Log10																	•	\mathbf{N}				•
	1		•						 ! !		:	·	!			T	,	$\left \right\rangle$				
				:: ::·			• : - •					:					:	.	\sum			
				F					 			· . • :					; .		$\left \right $			
					·						1.			:	· ·	·			·			
										ł .				- -					•		·	
			11						ţ				1.11		::			ļ	:		\downarrow	
			-			-				1.	: :.:	ŀ.	ļ			İ	: :		:	{	_/	
	.1		:					::	ļ -::	1	-						÷. •	<u> </u>	<u> </u>	<u> </u>		
	·						•							1			: `	1	•	Ĺ		
	-6			•						<u> </u> .	<u>:</u>	<u> </u>			: : :		•••	<u> </u>	۰.	 1		
						1 1		 		1		• ••••	l.• .		!	_	1				-	
			717 2							-			(BE		· · ·							1]]]
	÷		: <u> ::</u>		F	ia.	6.	4	<u>P;</u> ,	At	lar	ti	<u>c 1</u>	lou	te			: •	:			

ł

į

ì

FIGURE 6.5 Cyclic Stress-Strain Relationship

ì

ţ

ī

Fig. 6.6 Curve Fitting of Long-Term Stress Histogram, Gage ${\tt F}_{\rm yb}$ or

1

Fig. 6.7 Curve Fitting of Long-Term Stress Histogram, Gage 2 in May-July 1977 & Gage 3 in Sep-Jan 1978 on McL

Fig. 6.8 Curve Fitting of Long-Term Stress Histogram, Gage 8 on McLean During Two Seasonal Operations between May 1977 & Jan 1978

Î

Fig. 6.9 Curve Fitting of Long-Term Stress Histogram, Gage 2 on Market, 1976

Fig. 6.10 Curve Fitting of Long-Term Stress Histogram, Gage 8 on Market, 1976

.

- 152 -

*Transverse stiffener welds on girder webs or flanges

*Transverse stiffener welds on girder webs or flanges

ŧ

Figure 7.1(b) Design Stress Range Curves for Categories A to F - Nonredundant Structures

ş

į

ł

ł

ŧ

Ļ

and e Figure 7.3 The Rainflow Correction Factor as a function of m

۶.

Figure 7.4 S-N Curve for Structural Detail No. 1(F)

2

į

ŝ

ì

Detail No. 1H

Figure 7.5 S-N Curve for Structural Detail No. 1H

Fig. 7.6 A Model of Crack Propagation Rate Versus Stress Intensity Factor Range

1

- 157 -

â

Fig. 7.7 Geometry Factor for Cracked Plates

Î

ą

Btrength, MPa	309	232	337-434	965-668	ł	419	479	618	169-192	477-493	532	618	142	603	445-463	290	327	300	575	575	602	- 199	769	460	Yessel Steel
Bteel	Lor carbon	Lor serbon	Kedim oarbon	Nadim carbon	Low alloy	ASTK A593B	ASTH ASO	2-1/2 NICENNY	Low earbon	High earbox	Bigh earbon	2-1/2 NICENOY	3-1/2 NICENOV	3-1/2 NICENOY	ASTN AS33B	ASTH BAJST.	ASTH BASIC-70	ASTH 8A592-3*	ASTH 8A542-2*	2 NICENOV	3-1/2 NICENOV	Vimov	ASTH 8A542-2	API X65	-2-1/4 Cr ⁻¹ No Presence Yessel Steele
Symbol.	<	-	ų	8		*	9	int	+	-	M	_	-	Z	•	•	σ	*	-	+	₽	>		•	•2-1/4
	•		•		u 		2 4 8 4 9				E A Carwood Formula	6 (Representative		5 (Lower Bound, 51 Steel) 5 Structural Steel)				3 Scatterband or Scatterband or Scatterband or Scatterband or Strength Steels					-		R = K min/K max = Smin/Smax

Tiold

-

ł

ţ

ţ

¥

۰.

- 159 -

Figure 7.9 Crack Size in Perspective, From Wirsching

· · · ·

•••

COMMITTEE ON MARINE STRUCTURES

Commission on Engineering and Technical Systems

National Academy of Sciences - National Research Council

The COMMITTEE ON MARINE STRUCTURES has technical cognizance over the interagency Ship Structure Committee's research program.

Stanley G. Stiansen (Chairman), Riverhead, NY
Mark Y. Berman, Amoco Production Company, Tulsa, OK
Peter A. Gale, Webb Institute of Naval Architecture, Glen Cove, NY
Rolf D. Glasfeld, General Dynamics Corporation, Groton, CT
William H. Hartt, Florida Atlantic University, Boca Raton, FL
Paul H. Wirsching, University of Arizona, Tucson, AZ
Alexander B. Stavovy, National Research Council, Washington, DC
Michael K. Parmelee, Secretary, Ship Structure Committee,
Washington, DC

LOADS WORK GROUP

Paul H. Wirsching (Chairman), University of Arizona, Tucson, AZ Subrata K. Chakrabarti, Chicago Bridge and Iron Company, Plainfield, IL Keith D. Hjelmstad, University of Illinois, Urbana, IL Hsien Yun Jan, Martech Incorporated, Neshanic Station, NJ Jack Y. K. Lou, Texas A & M University, College Station, TX Naresh Maniar, M. Rosenblatt & Son, Incorporated, New York, NY Solomon C. S. Yim, Oregon State University, Corvallis, OR

MATERIALS WORK GROUP

William H. Hartt (Chairman), Florida Atlantic University, Boca Raton, FL Fereshteh Ebrahimi, University of Florida, Gainesville, FL Santiago Ibarra, Jr., Amoco Corporation, Naperville, IL Paul A. Lagace, Massachusetts Institute of Technology, Cambridge, MA John Landes, University of Tennessee, Knoxville, TN Mamdouh M. Salama, Conoco Incorporated, Ponca City, OK James M. Sawhill, Jr., Newport News Shipbuilding, Newport News, VA

SHIP STRUCTURE COMMITTEE PUBLICATIONS

- SSC-327 <u>Investigation of Steels for Improved Weldability in Ship</u> <u>Construction</u> by L. J. Cuddy, J. S. Lally and L. F. Porter 1985
- SSC-328 <u>Fracture Control for Fixed Offshore Structures</u> by P. M. Besuner, K. Ortiz, J. M. Thomas and S. D. Adams 1985
- SSC-329 <u>Ice Loads and Ship Response to Ice</u> by J. W. St. John, C. Daley, and H. Blount 1985
- SSC-330 <u>Practical Guide for Shipboard Vibration Control</u> by E. F. Noonan, G. P. Antonides and W. A. Woods 1985
- SSC-331 <u>Design Guide for Ship Structural Details</u> by C. R. Jordan and R. P. Krumpen, Jr. 1985
- SSC-332 <u>Guide for Ship Structural Inspections</u> by Nedret S. Basar & Victor W. Jovino 1985
- SSC-333 <u>Advance Methods for Ship Motion and Wave Load Prediction</u> by William J. Walsh, Brian N. Leis, and J. Y. Yung 1989
- SSC-334 <u>Influence of Weld Porosity on the Integrity of Marine</u> <u>Structures</u> by William J. Walsh , Brian N. Leis, and J. Y. Yung 1989
- SSC-335 <u>Performance of Underwater Weldments</u> by R. J. Dexter, E. B. Norris, W. R. Schick, and P. D. Watson 1986
- SSC-336 <u>Liquid Slosh Loading in Slack Ship Tanks; Forces on</u> <u>Internal Structures & Pressures</u> by N. A. Hamlin 1986
- SSC-337 Part 1 <u>Ship Fracture Mechanisms Investigation</u> by Karl A. Stambaugh and William A. Wood 1987
- SSC-337 Part 2 <u>Ship Fracture Mechanisms A Non-Expert's Guide</u> for Inspecting and Determining the Causes of Significant <u>Ship Fractures</u> by Karl A. Stambaugh and William A. Wood 1987
- SSC-360 <u>Use of Fiber Reinforced Plastic in Marine Structures</u> by Eric Greene 1990
- SSC-361 <u>Hull Strapping of Ships</u> by Nedret S. Basar and Roderick B. Hulla 1990
- None <u>Ship Structure Committee Publications A Special</u> <u>Bibliography</u> 1983