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ABSTRACT

This report presents findings of an Army Research Office sup-

ported study concerned with the response of high-strength steels to fast
running cracks, and a separate Ship Structure Committee program dealing with
unstable fractures in ship plates. Together, the results provide a new

basis for measuring and characterizing the properties of structural alloys
that control fast fracture and crack arrest.

Measurements and calculations of unstable fracture and fracture
arrest in 12.7 mm- and 25.4 mm-thick, high-strength SAE4340 steel and Ab51/F
steel p!ates are described The unstab]e fractures which propagated at
steady-state velocities in the range 185 ms™* to 1180 ms™', were produced 1in
wedge-loaded DCB- (double-cantilever-beam) test specimens., The study demon-
strates a new concept: the "duplex" DCB-specimen. This consists of a high-
strength/lTow~toughness 4340 steel "starter section" which is electron beam
welded to the AB17F test section. The fractures are initiated in the
starter section, and this makes it possible to confront test materials with a
fast moving crack under controlled conditions close to the transition  temp-
ature.

A Ffally Aynamie ana Aaluecic nf mhetahla ~raclk nynananatinn and
A TULY aynamc ailigatysis  GOi MNsSLaii € Lrals pripdgation and
arrest in the DCB- test piece 1s derived. The technique 1is based on the

beam-cn-elastic-foundation model of the DCB specimen used previously but
with the simple beam and foundation representations replaced by a Timoshenko
beam and a generalized elastic foundation. Crack speeds, energy levels,
and the crack length at arrest are calculated with this model using a
finite-difference method and are compared with the measurements.

The calculations and the measurements reveal that unstable
propagation in the DCB-test piece proceed from the start with essentially

il sl L2 (UL U2 U hagl Vi vl 29 LI VY = | R LI €1 1 vy | fonps s ey

constant steady-state crack speeds that depend on specimen geometry and the
starting conditions. The calculations also predict instances of discontin-
uous propagation at high speeds. The kinetic energy imparted to the test
piece is recovered and contributes to the crack driving force. It follows
from this that fracture arrest is controlled by the history of energy dissi-
pation throughout the entire propagation event, rather than on K;, a single
static toughness value calculated at the arrest point.  For the 4340 steel,
increases in crack velocity up to 860 ms-! at room temperature are accompa-
nied by a 4-fold increase in the dynamic fracture energy (a 2-fold increase
in the dynamic fracture toughness), and by increases in the size cf the
shear lip. Dynamic toughness Ka]ues for the A517F grade at -7897  “or crack
speeds from 475 ms~1 to 780 ms~! were also about 2 "times tne ~zi:i-zed Kic-
value.
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NOMENCLATURE
area of surface depression associated with shear lip or cross-
sectional area of beam (=bh}
pin diameter
Young's modulus
total energy of specimen

compressive force parallel to crack plane introduced by action of
wedge on pins

strain energy release rate or shear modulus
ceritical strain energy release rate

strain energy release rate at onset of crack extension on blunt-
notch DCB specimen

instantaneous value of specimen kinetic energy
modified Heaviside step function
. X 3
moment of inertia (= bh™/12)
stress intensity

stress intensity at crack arrest

dynamic fracture toughness
average value of Kd in duplex test specimen
static plane strain fracture toughness
stress intensity required to reinitiate arrested crack
stress intensity at crack initiation in blunt-notch DCB specimen
Specimen length
length of 'starter section® in duplex test piece
length of '"test section" in duplex test piece
total length of duplex test piece
couple initially applied to beam in analytical model
load
pinching force initially applied to beam in analytical model

dynamic fracture energy
-fx--



flat fracture component of R
shear lip component of R

kinetic energy

strain energy content of specimen
shear lip energy per unit volume
crack velocity

= work dissipated in the formation of one shear lip or work
done on specimen during crack propagation (= 0 for these experiments)
or w/w, = dimensionless displacement

crack length

crack length at arrest
crack length at arrest
initial crack length

crack length at point where crack enters test section in duplex
specimen

specimen thickness

L-a-e = uncracked length of specimen
\/Eﬁo = bar wave speed (5120 m/s)

distance by which flat portion of crack in interior of specimen
leads crack on surface during propagation

distance from center of pinhole to end of specimen

distance from the center of a leoading pin to the crack plane or
r2idirh of flar froaetrure surface
WoLAd L1 L ol o LDt G L S AFRLL A SR

height of arm of DCB specimen

extensicnal stiffness of the foundation in the beam model
rotational stiffness of the foundation in the beam model

width of surface depression associated with shear lip or pin length
wideh of shear lip

time

local %alue of beam displacement

average deflection of the cross section in the beam model

—X,_
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critical spring deflection in beam=-on-elastic foundation model

length coordinate on crack propagation direction

length coordinate parallel to thickness direction

length coordinate parallel to displacement direction

shear deflection coefficient of the beam, ¥ = E/3G

mean angle of rotation of the cross section about the neutral

avie 1in tha hoaam madzal

QSA LD ALl (593 — Vol uivuc L

displacement of cne arm of DCB specimen

crack-tip opening displacement

strain rate

) 2 2

crack-extension parameter, § = kew + kg@

critical value of the crack-extension parameter, Gc = bR

B/BC = dimensionless crack-extension parameter

Poisson's Ratio

x/h = dimensionless length

specific gravity

flow stress

local value of tensile stress

nominal yield stress

7 N1/2

E L = dimensionless time

120 h

local value of shear stress

ONVERSTON OF SI UNITS TO ENGLISH UNITS
Quantity 51 Unit English Unit

Velocity m/s X 3,281 = ft/sec
Velocity m/s X 2.237 = mph
Stress MN /m? X 0.145 = Ksi
Fracture energy KJ/m2 X 5.71 = Ib/in
Fracture toughness MY /m3/ 2 X 0.91 = KsiVin
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INTRODUCTION

The goal of the research described in this report is to characterize the
fast fracture resistance and the fracture arrest capabilites of steels. The report
contains the results of two separate studies., One is supported by ARO and is con=
cerned with the response of high-strength steels to fast ruaning cracks. The second
study, sponsored by the Ship Structure Committee, seceks to establish material pro-
perties and criteria for stopping unstable fractures in ship hulls. The results are
presented under one cover because the same concepts and material properties apply to
fast fracture and to fracture arrest. For this reason, too, the findings of these
two studies are closely related. The ARO funded measurements of fast fracture in
SAE-4340 steel, presented in Section I, support the theoretical analysis conducted
for SSC and described in Section III. This analysis, together with measurements per-
formed on AS517F steel (Section II), establish the valid criterion for fracture arrest.
It should be noted that the approach described herein is sufficiently general that
it can be used to characterize both ferrous and nonferrous alloys. It has already
been applied successfully to a glassy polymer(ls

The studies deseribed in this report make use of a new testing procedure
for producing unstable fracture and fracture arrest in the laboratory under con-
trolled conditions. This procedure was described in an earlier repert, SSC—219(3),
and is illustrated in Figure 1. The test piece is in the form of a double-
cantilever-beam (DCB) specimen, with a blunt starting slot. The specimen is slowly
loaded in an ordinary testing machine (operating in the compression mode) by forcing
dual wedges between the pins. This arrangement offers several unique features:

® The blunt notch permits the specimen to sustain stress intensity values
that are greater than Ky.. Consequently, as soon as a sharp crack emerges
from the blunt notch, the crack immediately becomes unstable and propagates
rapidly.

¢ Since wedge loading is inherently '"stiff'", crack propagation proceeds
with essentially constant displacement at the load point. Under these con-
ditions the strain energy release rate diwminishes as the crack grows and
this ultimately causes the crack to arrest within the confines of the test
piece, provided it is long enough.

® Little energy is exchanged between the wedge-loaded DCB-specimen and

the testing machine during the propagation event. For this reason, the

results can be expected to be relatively insensitive to the character of
the testing machine.

¢ The wedge introduces a modest compressive stress parallel to the crack
plane, typically 2 to 15% of the yield strength, which tends to stabilize
the crack path. Hence, the side grooves ordinarily required to keep the
crack from turning can be eliminated. This makes it possible to reproduce
the shear lips obtained in practice, and simplifies the task of measuring
the fracture velocity.

& The medasurements and analysis described in this report also show that
the unstable fractures generated in this way propagate at an essentially
constant velocity, which can be controlled by altering the bluntness of
the starting slot. 1In this way fractures traveling at constant speeds
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of from 200 ms=1 to 1100 ms~l have been produced in 4340 steel test pieces with
modest dimensions, e.g., 120 mm wide by 300 mm long.

NEW CONCEPTS

This report presents, in detail, experimental and analytical studies
carried out during the past 15 months. The following new concepts are discussed.

(1) The Duplex DCB Test Piece. The "duplex' DCB-test specimen was
developed to facilitate the production of fast propagating cracks close to the
transition temperature. The specimen is illustrated in Figure 2, and discussed more
fully in Section II. Tt consists of a high~strength/low~toughness 4340 steel
"starter section' electron beam welded to the "test section'". Unstable fractures
have been initiated in a 4340 steel starter section at ambient as well as at low
temperatures, and directed at high speed into an A517F steel test section. The high-
strength starter section also reduces the specimen size required for measuring a
given toughness level,

(2) A Fully Dynamic Analysis of Crack Propagation in the DCB Specimen.
A fully dynamic analysis of unstable crack propagation in the beam-on-elastic
foundation model of a DCB specimen (shown in Figure 3) has been carried out. The
model treats the arms of the DCB-specimen as Timoshenke beams with lateral and rota-
tional inertia. To simulate a moving crack each spring in the elastic foundation is
systematically removed when a critical deflection corresponding to the dynamic tough-
ness is exceeded (for duplex specimens, 2 spring deflections are employed). The
treatment given in Section III supersedes a primitive version reported earlier(#),
The analysis makes it possible to extract dynamic fracture energy or toughness values
independently from two measurements: The fracture velocity and the crack length at
arrest.

{3) Fracture Velocity Measurements. An experimental procedure for
measuring the fracture velocity was devised. The method, which employs a grid of
conducting strips, insulated from the specimen by a thin epoxy layer, is described
in Section I, Appendix A. Actual velocity measurements described in Sections I and
IT reveal that unstable fractures in the DCB-specimen propagate at essentially
constant velocity, in agreement with the theoretical analysis in Section III.

(4) Energy Conservation and the Criterion for Fracture Arrest. The
theoretical calculations in Section III show that as much as 85% of the kinetic
energy imparted to the DCB-specimen by the growing crack is recovered to drive the
crack in the latter stages of the propagation event. At the same time, values of
the dynamic fracture energy (or toughness) deduced from velocity measurements and,
independently, from the length of the erack at arrest are in close agreement
(Sections I and II). These agreements represent a critical test of the theory that
the kinetic energy is substantially conserved. It follows that arrest is controlled
by the history of energy dissipation throughout the entire propagation event rather
than by K;, the arrest toughness value.

(5) Origins of Dynamic Toughnegs. The dynamic toughness values associ-
ated with 900 ms™l fractures in SAE-4340 steel at room temperature, and with 500 to
800 ms~! fractures in AS17F steel at -78°C are roughly twice as large as the static
Kic.-values reported at these temperatures. The higher dynamic toughness for the
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4340 steel, which displayed ductile (dimpled) fractures, could be correlated with
an increase in the size of the shear lips; the specific shear lip and flat fracture
energies are relatively constant. The higher dynamiec toughness of the A517F grade,
which involves cleavage, cannot be attributed to shear ligs, but may be connected

to the ductile ligaments left behind by the crack front(3),

The material property that emerges from these studies as the most signifi-
cant measure of both the fast fracture resistance and the fracture arrest capability
is R, the dynamic fracture energy (or K4, the corresponding dynamic toughness.f)
This quantity and its variation with velocity, together with G, the strain energy
release rate (which depends on the inertia of the structure), determines the arrest
condition. This is shown schematically in Figure 4 for a plate (low energy, R')
fitted with arrestor (high energy, R"). The problem of calculating the minimum
width of the arrestor might be simplified: (1} by relying on the static strain
energy release curve and (2) by assuming all of the kinetic energy is conserved--
approximations that are likely to be conservative. However, more work is needed to

test this concept, and to provide a sound basis for selecting R-values appropriate
for base materials and arrestors.

t Kd = jEBFE , where E is the elastic modulus and p is Poisson's ratio.
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SECTION 1

RAPID CRACK PROPAGATION IN A HIGH STRENGTH STEEL

by

G. T. Hahn, R. G. Hoagland, A. R. Rosenfield, and R. Sejnoha

ABSTRACT

The relation between fracture velocity and the energy dissipated
by unstable fractures in high strength 12.7 mm-thick plates of SAFR4340 steel
has been measured using the wedge-loaded double-cantilever-beam (DCB) speci-
men. The experiments are analyzed using the dynamic beam-on-elastic- foun-
dation model, In agreement with the model, steady~state crack velocities
are attained. In addition, the theoretical velocity-arrest length relation
is closely obeyed. Increases in crack velocity up to 860 ms™! are accom-
panied by a 2-fold increase in the dynamic toughness (a 4-fold increase in
the dynamic fracture energy) and by corresponding increases in the size  of
the shear lips. Measurements of the plastic work associated with the shear
ligs show that the per-unit-volume shear lip fracture energy, Ugp = 0.21 J/
mm-, is essentially constant over this range of velocity, The fracture
energies derived from the model are in good agreement with those derived by
assuming that all of the strain energy released during crack propagation isg
converted into fracture energy.



RAPID CRACK PROPAGATION IN A HIGH-STRENGTH STEEL

I. INTRODUCTION

The behavior of unstable cracks in engineering structures is not well
understood. Such features as the crack velocity, the tendency for crack branching
and fragmentation, and the process of crack arrest have been measured in isolated
cases, but few generalizationsg are established. The main difficulties are the need
for simple laboratory tests and for sultable dynamic analyses that can distinguish
the congfiggtions of inertia, kinetic energy, and velocity dependent toughness .
values.\1,4) 1In addition, there have been only a few attempts to relate R or Ky,
the dynamic fracture energy or fracture toughness of a fast running crack to the
underlying fracture processes. The sitwation is clearest for the glassy polymer,
PMMA, In this case the dynamic fracture energy and the nature of the dissipative
process have been related to the density of small (~ 0.1 mm) parabolas on the
fracture surface(3,4)

Cleavage fractures in steels have received attention, but here it 1is not
vet clear how the dynamic toughness varies with crack veloeity(2,5‘ll). For example
Eftis and Krafft{3) and others(2,7,10,11) f£ind as much as a 5-fold increase in the
dynamic toughness with increasing crack velocity im the range 100 to 1400 ms~t. At
the same time, Bilek and Burns{(9) and Fitzpatrick, et al(8) present evidence favor-
ing a decrease in toughness with crack speeds in the range 50 to 700 ms~1. Several
authors(10,12,13) report evidence that the major contribution to the toughness
arises from the ductile rupture of unbroken ligaments left behind by the cleavage
crack front. These ligaments could account for either an increase or a decrease in
toughness depending on whether the number of ligaments generated and the work of
rupturing them increases or decreases with crack velocity.

Unstable ductile fractures have. been studied in thinm metal foils. 1In
these cases the fracture surface is composed entirely of shear lip and it appears
that the toughness increases with the crack speed consistent with the increased
resistance to plastic flow with strain rate within the crack tip plastic zone (14515)
However, there have been no systematic studies of unstable propagation in thicker
sections of high-strength structural alleys with the characteristic flat, dimpled
fracture surfaces.” A single determination_reported by the authors(l) for a 500 ms~1
fracture in SAE4340 steel at the 1380 MNm™2 (200 ksi) vield strength, K level gave a
dynamic toughness about twice the static Kj.-value.

The present paper extends the measurements of unstable propagation and
arrest in 4340 steel DCB-test pieces to a range of fracture velocities from 180 ms~L
to 860 ms~l. A systematic increase in the dynamic toughness is observed and this
is correlated with increases in the width of the shear lip. The measured values of
crack velocity and the length of the crack at arrest are found to be in excellent
accord with an improved dynamic analysis of crack propagation in the DCB-test piece.
The agreement implies that kinetic emergy imparted to the DCB~test piece by the
propagating crack is substantially recovered and used to drive the crack in the
latter stages of the propagation event,

+ Kd = [ER , where E is Young's modulus, and y is Poisson's ratio.
1=p2



I1. FEXPERIMENTAL PROCEDURES

Measurements of fast fracture and arrest were performed on 12.7 mm-thick,
quenched and tempered (1 hr. at 205°C) SAE4340 steel plates at room temperaturef.
The procedures used have been reported earlier(13) and are described here briefly.

The Wedge-Loaded DCB-Test. Unstable fractures were produced by wedge
loading double-cantilever-beam (DCB) specimens as shown in Figure 1 of the General
Introduction. Dimensions of the test pieces are given in Figure 1. The sample
contains a blunted starting slot which allows it to sustain a stress intensity, K
which can be as much as 3 to 4 times Ky.. Consequently, as soon as a sharp crack
emerges from the blunt notch, the crack immediately becomes unstable and propagates
rapidly. The loading arrangement is stiff allowing the crack to propagate under
esgentially fixed-grip conditions. Under these conditions the strain energy release
rate decreases as the crack grows, and this ultimately causes the crack to arrest
within the confines of the test piece provided it is long enough. The wedge also
induces a compressive load parallel to the direction of crack propagation, elimi-
nating the need for side grooves to promote a straight-line crack path and
facilitating the measurement of velocity.

2

The value of K  was derived from the opening displacement measured with
a clip gage mounted to the end of the specimenff. Crack velocities were measured
using an electric-resistance grid technique described in Appendix A. Earlier
results on PMMA(3) and the previously reported test in this series 1) show that
unstable cracks in the wedge-loaded DCB test piece propagate from the start with a
steady-state speed which is maintained until shortly before arrest. This speed
depends on Ky and can therefore be varied by changing the root radius of the start~
ing slot. The root radius was formed by spark machining a hele in the specimen ahead
of a saw-cut and then extending the saw-cut. There was some scatter in the value of
stress intensity required to ipitiate a fast moving fracture (Kq) as shown in
Figure 2. Late in this series of experiments the notch roots were smoothed by
electropolishing. This tended to eliminate very low K, values in subsequent tests.
Figure 2 shows that Kq varies as (root radius) /2, as has been observed for cleavage
crack extension{17); while this simplifies the problem of cgelecting the root radius
needed to produce a given crack velocity, it is immaterial for the subsequent
analysis whether a particular Kq versus root radius relation is obeyed.
hear Lip Measurements. Profiles of specimen surfaces in the
the crack line--the '"necking-in" associated with the shear lips--were measured
using a Talysurf machine to determine the depression width § and area A which are

illustrated in Figure 3. These quantities, can be related to Rgp = dW_ and
sda

t+ The composition of the 4340 steel is given in Reference 1. Tensile properties
are as follows: yleld strength = 1380 MNm~2 (200 ksi), ultimate strength
= 1940 MNm~2 (282 ksi), reduction in area = 50%.

¥t The corresponding displacement of the lead points was calculated using the
expression derived by Kanninen



a, - 2,670 in. (67.8 mm} £ = 0.80 in. (20.3 mm)

b = 0.500 in. (12.7 mm)  h = 2.500 in. ($3.5 om)
c = 0.63 in. (16.0 mm) L = 11.36 in. (305.0 mm)

Pin Diameter 1.00 in. {25.4 mm)

FIGURE 1. SCHEMATIC DRAWING OF DOUBLE -CANTILEVER -BEAM
SPECIMEN .
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to specimens where velocity was measured. Half closed
points refer to reinitiation of an arrested crack.
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area A (shaded)

FIGURE 3. SCHEMATIC OF PLATE CROSS SECTION FOR A TUNNELING FLAT FRACTURE AND A
SHEAR FRACTURE THAT LAGS BEHIND: (a) flat fracture in region 2-3
arrives at cross section, (b) flat fracture opens by plastic
deformation in regions 1-2, and 3-6 (dashed lines), between the ends
of the flat fracture and the surface preducing depressions on the
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by rupture in regions of intense shear 1-2 and 3-4, producing the
characteristic shear lips.

2dW

Ust - stda ] . ) . ]
energies of the shear lip, respectively, 2W is the plastic work dissipated in the

shear lips, a is the crack length, and s is the shear lip widthf:

» where Rgp and Ugy are the per-unit-area and per-unit-volume fracture

. QA

Rs1 © s (L
- A

USL sk 2)

These quantities, together with R, the per-unit-area fracture energy of the flat
portion of the fracture, make up Ehe total or averaged fracture energy R:

R = (2s) R, + [é-\R or {3a}
\b /st T\b /fE
_ /ﬁs f
R = b—) USL+(E)RF (3b)

where b is the plate thickness and f is the width of the flat portion. Equations
(3a) and (3b) are analogous to the expression derived by Bluhm(18) .

The differential plastic work, dW can be expressed in terms of dP, the differ-
ential force, and §;, a displacement: dW = 8 + dP, where dP = G s - da, T is
the average flow stress, and a is the crack length. The quantity §. = A - st
by virtue of volume conservation provided deformation of the shear lip in the

iir&c;ioq of crack propagation is negligible. The shear lip volume-per-unit
n2wn oI crack extension (for the 2 shear lips on either side) is arbitrarily
piiimzi o Zivolume)/da = s - 4.
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Analvsis of Unstable Propagation. The analysis of crack propagation in
-me DCB test piece is derived from the beam-on-elastic foundation model illustrated
iz Figure 3 of the General Introduction to this report. A simplified treatment of
-nis model which employs Euler-Bernoulli-beam theory and accounts for the lateral
inertia of the beam has already been described(1). The present study employes a
->re complete analysis which accounts for both translational and rotational inertia
:Z the test piece. The analysis, based on Timoshenko beam theory, is described in
‘etail in Section IIT.

The elastic foundation, representing the material in the path of the
:ivancing crack, consists of a line of springs. TIn the dynamic calculation the
sreaking of successive springs simulates crack advance and it is specified that a
spring will break when it reaches a critical displacement. Because the springs are
iinear elastic this corresponds to either a critical crack-tip-opening displacement
{COD), a critical strain energy release rate (G.), or a critical dynamic toughness
(Kg). At the same time, it should be noted that the breaking of springs, i.e., the
iigsipation of fracture energy at the crack tip, is the only energy dissipation
=ochanism provided for.

The analysis describes the crack length, crack velocity, time-variation of
-he displacements of the arms of the DCB specimen and the length of the crack at
arrest as a function: (a) R or K4, (b) the specimen dimensions, (c} density,
(d) elastic moduli, and (e) Kq {(the bluntness of the starting notch). Examples of
such calculations are given in Figure 4 for the specimen configuration employed in
this study. Figure 4a illustrates that the analysis reproduces the constant velocity
osropagation that is observed experimentally*. Figure 4b shows that kinetic energy T
is first imparted to the beams; of the maximum amount imparted, 3% is recovered
during the latter 2/3 of the growth increment, with less than 10% of the total
strain energy released remaining as unrecovered kinetic energy in this case.

Figure 4c illustrates that both the steady-state velocity V and the arrest
length a; are single valued functions of Eg for a given material and specimen con-
K
figuration. This means that Ky can be obtgined independently from measurements of
either: (i) ¥, and a,, or (ii) Kq and V, and the appropriate functional relations
derived from the theoretical model. Alternatively, the arrest lepgth can be inter-
preted without resorting to the detailed analysis by way of the relation(13):

1/2

Ka = [Kq ' Ka(static)] ()

Equation (4) is a close approximation when all of the kinetic energy is recovered
at arrest, and is approximate when the unrecovered kinetic energy is a small
fraction of the total strain energy released. Figure 4c shows that Equation (4)
represents a close approximation of the detailed analysis consistent with the
calculated result that the kinetic energy in the beam-on-elastic-foundation model
is substantially recovered.

+ 1t should be noted that the crack length versus time curves in Figure 4a contain
small sinusoidal fluctuations which are accompanied by 180° out-of-phase fluctu-
ations in the strain energy and kinetic energy (see Figure 4b). These fluctu-
ations, which appear to be connected with stress waves traveling in the arms of
the beam, became more intensie as the ration Kq/Kd is increased, ultimately pro-=
ducing a discontinuous propagation when Kq/Kd.Z 2.5. Additiocnal information is
reported in Section IIT.
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ITI. RESULTS.

All specimens exhibited an extended region of constant velocity propa=
gation followed by rapid deceleration and arrest, as typified by Figure 5. At
the same time, the cross sectional area of the surface depression associated with
the shear lips attains a plateau value within a distance from the starting notch
about equal to the specimen thickness. The larger contractions closer to the
starting notch are probably associated with the plastic zone generated in the
vicinity of the blunted notch during static loading. As the crack decelerates and
arrests, the depression decreases accordingly. In addition, the plateau value of
the shear lip width increased systematically with increasing crack speed, the
extremes being shown in Figure 6. The flat fracture surfaces also become notice-
ably rougher (see Figure 6). As reported carlier(1) at higher magnifications,
both the flat and shear portions of the fracture display the dimples characteristic
of ductile, fibrous mode of extension.
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FIGURE 5. VELOCITY AND SURFACE PROFILE MEASUREMENT ON SAE4340 STEEL
(SAMPLE No. 33).
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FIGURE 6. FRACTURE SURFACES OF TEST SPECIMENS: (a) crack velocity = 185 m/s
per second and (b) crack velocity = 869 m/s per second.

Two separate evaluations were made of the dynamic fracture energy:
(a) from the measured velocity (see top of Figure 4c) and (b) from the crack length
measured at arrest (Equation (4)). As shown in Figure 7, these two essentially
independent determinations of R or Kgq are in close agreement. The one point that
departs from this pattern was determined from velocity data and appears to be ~ 30%
too high. Overall, the data show that the toughness almost doubles between the
static value and the highest velocity attained (~ 17% of the bar wave speed) .

In contrast to the dynamic toughness, X,, the stress intensity at crack
arrest (derived from the static analysis)}, increased slightly with Kq (and, in tura,
with crack velocity in the range 0 tc 200 me~1) then remained about at the level
required to reinitiate an arrested crack, Ky, as shown in Figure 8.

Note that the

The measurements of surface profile are given in Table 1.
Two examples

various measures of distortion are closely related to one another.
are given in Figure 9 where it is shown that the width of the depression is propor-
tional to the shear lip width and that the area of the depression is proportional

to the area of the shear lip. The shear lip fracture energies, Rgy, and Ugp, were
calcutated with Equations (1) and (2) from the measurements of the surface
depression using the flow stress valuef:_ g = 1700 MNm"z, and are listed in Table 2.

+ The plastic strain rate in the shear lips: € ~ s, % , where V is the fracture

velocity and d ~ 5 mm is the distance by which flgﬁ fracture in the interior leads
the shear fracture on the surface. For the values in Table 1, € ~ 10% sec™".
While the dynamic flow stress of 1400 M¥m~2 yield strength steels at this rate is
not established, the dynamic flow stress values are expected to be close to the
static values at 10% gsec~! on the basis of measurements on lower strength
materials by Harding(zﬂ) and other considerations. For strain rates > 10
rate sensitivity could be expected, and this is important since strain rates
asgociated with the flat fracture are probably 2 to 4 orders of magnitude larger.

sec“l,
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Values of the flat fracture energy, Ry were then obtained from Equation (3a).

Table 2 shows that Rgy,, the per-unit-area fracture energy, increases with shear lip
width, while Ugy, the energy per unit volume is essentially constant. The average
value, Ugy, ~ 0.21 J/mn3, corresponds to a local temperature rise of ~ 30°c. Tt A
measure of the temperature rise on the surface of Specimen 33 was obtained by using
a series of Tempilsticks which responded to temperatures of 45°C to 73°C. A surface
temperature rise in excess of 22°C and 50°C were detected out to ~ (.8 mm and

-~ 0.25 mm on either side of the crack line, respectively. The 22°C rise corresponds
closely to the shear lip height, £, and while this suggests that the calculated
value of Ugy, is reasonable, it does not provide an exact check.

IV, DISCUSSION

The measurements described here show that the dynamic fracture energy for
crack propagation in 4340 steel experiences a 4-fold increase with crack speed in
the velecity range 0 to 860 ms~L. The increase in energy, equivalent to a ~ 2-fold
increase in Ky, arises mainly from a systematic increase in the proportion of shear
to flat fracture. However, there is room for a modest contribution arising from
an increase in the specific flat fracture energy with speed (see Table 2) consistent
with the observed roughening of the surface. While the change in the fracture
surface occupied by shear lip is relatively modest, increasiag from ~ 0% to 15% at

the highest velocity, the effect on R is dramatic, because Rgp, the shear fracture
energy is 5 times to 10 times the Ry, the flat fracture energy.
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FIGURE 7. RELATION BETWEEN DYNAMIC FRACTURE TOUGHNESS AND CRACK
VELOCITY FOR SAE4340 STEEL (Q & T 1 HR. AT 205°C,

b = 12,7 mm). Tested at room temperature.

++ The temperature rise is calculated assuming the heat generated by the plas?ic
work accompanying the intense shearing of regions 2-3 and 2-4 in Figure 3 1is
confined to the area § + s outlined by the dashed lines.
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TABLE 1, MEASUREMENTS OF FRACTURE FEATURES IN SAE4340 STEEL QUENCHED AND
TEMPERED AT 205°C
Steady-~state Depression Depression Shear lip Flat
Sample crack spead area, A, height, £. width, s, fracture
No v, m/s 1073 2 mm wm widthk, £, mn
308 0 ~ 0 ~ 0 - 0 12.7
32 0 ~ 0 ~ 0 ~ 0 12.7
30D 185 50 2.0 0.47 11,06
33 381 63 1.75 0.51 10.98
34 472 - - - -
31 513 100 2.6 0.63 16.74
35 772 - - - -
37 869 200 3.5 0.91 16.18
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FIGURE 9. RELATIONS AMONG VARIQUS SHEAR LIP DIMENSIONS.



TABLE IT. DYNAMIC FRACTURE ENERGY AND TOUGHNESS VALUES FOR UNSTABLE CRAC T 340 BTEEL
INCLUDING VALUES FOR THE SHEAR LIP AND FLAT PORTIONS OF THE FRACTURE

SAMPLE N, ws ~1 Ko (e h] Xy m ) R ) 2 gy D
303 ~ 0 73 - 27 - - - ~ %7 73
32 ~ 0 70 - 29 - - - 5 76
30D 185 155 108 s54 18Q (.18 190 42 92
33 3sl 115 121 64 210 0,24 205 47 97
34 472 121 124 71 - - - = -
31 513 130 164 82 270 2,21 232 55 145
23 172 144 141 161 - - - - -
57 869 142 138 98 370 0.21 272 40 89

(a} From Equation {4).

{b) From Figure 4c.

Efep F
() Kd(SL) and Kd(F} are toughnesses derived from the corresponding fracture energies: Kd(SL) = 7 -

-['[_
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The measurements of the surface depression show that Rgp increases with
the size of the shear lip, while the per-unit-volume shear fracture energy,
Ugr, = 0.21 J/mm3 remains essentially constant. These results are very similar to
those which can be derived from the data of Steigerwald(21 who examined the vari-
ation of Ky. with specimen thickness, also for a 4340 steel in a quenched and
205°C-tempered condition. The shear lip width did not vary systematically with
thickness in these experiments, s ~ 0.5 mm, while the proportion of shear to flat
fracture increased as the specimen thickness was reduced. Figure 10 shows that
Steigerwald's resultsf can be represented by Equation (3b). The quantity
Ugp, =~ 0.20 J/mm3 is derived from the slope of the straight line, assuming that the
relation between { and s of Figure %a holds in this case. Another estimate
Ugy, =~ 0.19 J/mm3 can be obtained from Equation (2) by assuming that Afds = 1/16 as
before, and by using the measured yield strength 21 of 1500 MN/m?, again in good
agreement with the value obtained here. The relative constancy of Ugy-values
derived from these 2 investigations suggests that R-values can be predicted once
the relative amounts of flat and shear fracture are known. The factors governing

the size of the shear lip are not clearly resolved but this may be connected with Rg.

since Ry and the dimensions £ and s tended to increase with crack speed.

Perhaps the most important findings of this study are the agreements
between theory and experiment. The Timoshenko beam theory/beam-on-elastic foun-
dation analysis makes the following predictions about crack propagation in the DCB=~
test piece:

{1} The crack propagates at an essentially constant, s eady sta
P L O Y . M n S0 pemEdwmad ke +hha 1 o e
VCLUL-.LL_)’ Lol Ll.lti bl.d.].Lo 1lll 5 Lo CULLL LLLeEU Uy LiLS VUJ.ULJ.L)‘

measurements (compare Figures 4a and 5).

(2) The steady-state velocity is not an invariant, but depends on the
initial conditions, i.e., the bluntness of the starting slot. This
is confirmed by the measurements (see Figure 7).

(3) For a given DCB-configuration, material density and modulus, the crack
velocity and arrest length are separate, single-valued functions of
R or Ky (see Figure 4c). This means that R- or Ky-value can be in=
ferred independently from the velocity and from the arrest length. The
fact that values obtained in these two ways agree closely (see Figure 7)
can be regarded as a critical test of the theory.

{4#) Alternatively, the theory predicts a unique relation betwsen crack
velocity and the length of the crack at arrest, that is independent
of the dynamic toughness of the material. This relation is compared

in Figure 11 with the predictions of quasi-static analyses and with
the measurements. Since the quasi-static analyses(l 2) do not all
D'l"Pd'.LCt a constant veloci !‘V neak velocities are ‘n'{rﬂ—i-aﬁ Frrrharmm

ro
....... peal vEe LI L1Ee RO EN I~ 4 0N LUl nLe L &y

the curves will shift with changes in the test piece geometry. The
data points also do not all represent the identical geometry since
different initial crack lengths were used in some cases. Despite this,
it is clear from the figure that the present fully dynamic analysis
provides, by far, the best descriptiocn of the reldtion between the
velocity and crack length at arrest, two quantities that can be
measured directly.

+ Steigerwald's K.-values have been converted to G, which approximates the value
of R at zero velocity.
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These agreements are important for two reasons. By validating the analysis,
they confirm that a large part of the kinetic energy imparted to the DCB-test piece
by the unstable crack is recovered and used to drive the crack. This conclusion has
implications for fracture arrest which are discussed in Section II. One of these
is that K,, the stress intensity at arrest calculated from static considerations, is
not a materials property. The relative constancy of the K, ~values reported in
Figure 8 is fortuitous--a consequence of the increase of Kd with velocity (Kq = JK
see Figure 7) together with Equation (4)--and not a sign that K, is an invariaant.
Additional evidence that K, depends on specimen goemetry has been reported by
Kanazawa (23

The agreements cited are also important because they provide the basis
for a convenient laboratory test procedure for measuring crack propagation. The
wedge~loaded DCB test makes it possible to control the velocity and energy dissi-
pation rate of unstable cracks and to extract dynamic fracture energy and toughness
values from the measurements. The method has already been extended to tougher
steels by facilitating fracture initiation. This is accomplished with a "duplex"/DCB
specimen consisting of high-strength/low-~toughness SAE4340 "starter" welded to the
test section.(2) The fracture is initiated from a slot in the starter section in
the manner described here and enters the test section at high velocity. In this way
R and Kg values can be measured close to the transition temperature. The technique
is also being used to study crack arrestors.

V. CONCLUSIONS

1. TUnstable fractures in high-strength 4340 steel, wedge-loaded DCB-test pieces
propagate at essentially constant velocities., The existence of steady-state
velocities, their variation with the initial conditions, and the relation between
steady-state velocity and arrest length are all in close agreement with the
dynamic beam-on-elastic-foundation analysis. The measurements represent a

critical test of this theory. These results confirm that the kinetic energy im-
parted to the wedge-loaded DCB test piece is substantially converted into fracture
energy during the latter stages of a propagation event.

2. The dynamic toughness of the 4340 steel increages systematically with crack
speed in the range 0 to 860 ms “1 from 75 MNm~3/2 to 140 MNm'3/2, reflecting a
~ &-fold increase in the dynamic fracture energy R.

3. The per-unit-volume shear lip fracture energy, Ugp = 0.21 J/mm3 appears to be
egsentially independent of shear lip size and crack speed over the ranges ob-
served. The temperature rise detected on the surface in the vicinity of the
crack is consistent with the Ugp-value derived from measurements of shear lip
geometry

4. Both the size of the shear lips and Rgy, the per-unit-area fracture energy
dissipated within the shear lips, increase with crack speed. The increase in
toughness with speed is observed mainly because the quantity Rgy is 5 to 10 times
Ry, the flat fracture energy.

r
5. The flat fracture energy also appears to increase with crack speed consistent
with noticeable increases in the roughness of the fracture surface.
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APPENDIX 1-A

VELOCLITY MEASURING PROCEDURE

The velocity of crack preopagation was measured from the change in the
resistance of grids as the advancing crack severed successive strips of the grid.
his grid was deposited on top of an epoxyt film coated on the steel specimen to
sa2rve as an insulator.

The epoxy was mixed 1 part activator to 1 part resin. Then a bead of
zpoxy about 1/4" in diameter was placed across the width of the specimen. Following
chis, the specimen and the epoxy bead were covered with a 5 mil sheet of mylar.
Using a straight edge, the epoxy was 'squeegeed" to an almost (3 to 4 mils) uniform
thickness covering the specimen. After an overnight "set"

frim Fha annrimer loasgyinae hohind a o1
IYom (e Speliiitnh igaving oenlindg a gi

specimen surface.

ag=aommnnt
55 TSNUGL

As additional preparation, the conducting grid was deposited through a
mylar mask prepared for the specimen. This mask had an array of four grids, each
censisting of 5 parallel strips 1-1/4 mm wide and spaced 5 mm apart, 15 to 40 mm
long, in the form of a trapezoid, cut out with a razor blade (see Figure 1 of the
introductieon).

After the mask was taped to the specimen surface, the specimen was placed
in a vacuum evaporation unit and the system was evacuated to < 2 x 1072 torr.
Using a platinum carbon composite as a source, ~ 1,000 A of material was deposited
perpendicular to the specimen surface, through the mask.

Upon removal from the
with a volt ohm-meter. Typical
The ends of the lines were then
separate parallel circuits with

evaporator, each line was checked for continuity
values for the lines ranged from 30 to 50 K ohms.
joined with conductive paint resulting in four
resistance values ranging from 7,500 to 12,500 ohms,

The four individual trapezoidal arrays were connected in parallel circuit.
Each leg of the circuit contained not only a trapezoid but also a single channel of

a high-speed tape recorder and a variable resistor.

posed on the total circuit. An

channels of the tape recorder is shown in Figure A-1.

A voltage (12 V d.c.) is im-
oscilloscope trace of the output of two individual
The velocity measurements

were made from such traces displayed two at a time so that the time interval between

grids could be measured.

Since the tape recorder speed was 3 m/sec and the reel contained about

2-1/2 tm of tape, it had a recording time of almost 15 minutes.

Thus, the tape

recorder could be started well before the crack began to propagate with assurance

that the resistance changes would be captured.
At the speeds employed, signal changes 5 u sec apart could be

eliminated.
distinguished and velocities as

conducting strip spacing of 5 mm.

the strip spacing.

Triggering problems were accordingly

high as 1000 m/sec could thus be measured for a
Larger velocities could be detected by imncreasing

t Duro E-Pox-E, Wo. EPX1l, Woodhill Chemical Sales, Cleveland, Ohio.
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FIGURE A-1l.

RESTISTANCE-TIME RECORDING OF THE RUPTURE
OF CONDUCTING STRIPS IN 2 ADJACENT GRIDS
(ABSCISSA 16 g sec/cm, ORDINATE 0.5
volts/cm) DURING A CRACK PROPAGATION
EVENT.
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SECTION 2
THE CHARACTERIZATION OF FRACTURE ARREST IN A STRUCTURAL STEEL
by

G. T. Hahn, R. G. Hoagland, M. F. Kanninen, and A. R. Rosenfield

ABSTRACT

A new method of characterizing the fracture arrest capabilities

of structural steels is described. The method employs wedge-loaded
"duplex" double-cantilever-beam (DCB) specimens and a fully dynamic anal-
vsis of crack propagation in the test piece. In this way (1) unstable

fractures can be initiated and arrested over a wide range of temperature
encompassing the transition temperature, (2) the speed of unstable frac-
ture in the test plece can be controlled, and (3) R or Ky, the dynamic
fracture energy or dynamic toughness of the material, can be evaluated.
Results for fractures propagating at 600 ms_l to 1100 ms™Ll in. 12.7 mm™~
and 25.4 mm~thick plates of A517F steel and SAE 4340 steel at 0°C and -78°
C, are described. The analysis of the test data lends support to the
view that kinetic energy contributes to the crack driving force, and that
K,, the static stress intensity at arrest is noiL a material property.
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THE CHARACTERIZATION OF FRACTURE ARREST IN A STRUCTURAL STEEL

I. INTRODUCTION

The risk of catastrophic fracture can be reduced by endowing pressure
vessels and other monelithic structures with a predetermined fracture arrest
capability. This can be done by selecting base materials with specified tough-
ness levels or by imstalling tough crack arrestors in strategic locations. A
number of methods of characterizing the arrest capabilities of steels have been
devised including R P P renl(l) Pa11ini's wAD(Z2)  and the

€vVigseld 1nNCludling nUpercsun 5 arrest cempeldiiies=s, Leillill o oy s il LhC
arrest toughness, Ka(3”6).

P S N aral

The arrest toughness concept has features of a quantitative methodology
comparable to crack extension fracture mechanics, but it involves several arbi-
trary and questicnable assumptions about the energetics of fracture arrest. A
tacit assumption is that the kinetic energy imparted to a structure by an un-
stable crack is not converted into fracture energy and is not_a source of crack
driving force. In contrast, Berry(7), Romualdi and Sanders(s), and the present
authors(gxlo) adopt the position that the kinetic energy is substantially con-
served and that it contributes to the crack driving forc?. Another assumption
implicii in the analyses of Irwin and Wells 3), Kanazawa and Crosley and
Ripling‘~> is that the strain energy release rate of the propagating crack can
be approxi?ated by values ?Tr}ved from static considerations. However, analyses
by Broberg 11) §nd Eshelby Z as well as the interpretation of fracture velocity
measurements(lo suggest that the inertia of structural members influences the
strain distributior and G~values in a significant way. These assumptions are
important because they affect the interpretation of test data, and this is illus-
trated in Figure 1 for the DCB (double-cantilever-beam) test piece which is used
to measure K :

® The arrest toughness concept presupposes that G, the strain energy
release rate, is the only contribution to the crack driving force', and
that the crack arrests when G < R, where R is the energy that must be
supplied to the crack~tip region to produce crack extension (the dynamic

fracture energy cof the material). Imn contrast, kinetic energy utiliza-
; . . _ bUu _ &7 . . .
tion implies arrest when (G + HY<R (G =- 3a H=- E% is the kinetic

energyv release rate, and U and T are the strain energy and kinetic energy
of the system) .

® When G is the scole driving force, Ga’ the value of G at arrest, must
always lie on the R curve, and can therefore be regarded as the con-

trolling material property (see Figure la). The corresponding stress
EG

intensity value, Ka = 32 is the arrest toughness, where E ic Young's
1-v

T The statements in this and the following paragraph presuppose fixed grip
conditions; otherwise the rate cf external work input, - &W, is an addi-
tional driving force. ba

e
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FIGURE 1.

SCHEMATIC REPRESENTATION OF THE ENERGETICS OF FRACTURE ARREST IN THE DCB-
TEST PIECE, ILLUSTRATING (a) THE ARREST TOUGHNESS CONCEPT, (b) THE R-CURVE
CONCEPT, AND (c) THE CONCEPT OF A DYNAMIC STRAIN ENERGY RELEASE RATE. The
quantities G., a”, G5, and a, are the critical strain energy release rates
and crack lengths corresponding to the omset of unstable fracture and to
fracture arrest, respectively, The shaded areas I and II represent the
amount of kinetic energy imparted to the structure, and the amount
recovered in the form of fracture energy prior to arrest,
reflect the simplifying assumption that there is no external
between the test piece and the loading system during unstable

The drawings
work exchanged
fracture.

modulus and v is Poissons ratio. When kinetic energy is conserved, G
does pot lie on the R curve, and neither G nor K, can be interpreted
as material properties (see Figure lb)., 1In this case, the quantity R,

or an equivalent (apparent) dynamic stress intensity K, = !

d ;
¥ 1=y
appropriate material parameters for defining the arrest capability of a
structural material.

> are the

® Figure le illustrates the concept of a dynamic G-curve that departs
from static values. The departures influence the kinetic energy in the
system and the crack speed. This is important in situations where R
(and K;) vary with V, the fracture velocity(13'15 In this case R(V)
and Kd?v) must be introduced to predict the instantaneous velocity and
the point of arrest.

These assumptions also have a bearing on the design of arrestors.
For example, the K, -approach implies that arrest is instantaneous when G < R,
Accordingly, a strip of tough material (R > G) just wide enough to contain the
heavily strained region adjacent to the crack tip is adequate to stop a propa-
gating crack if the K,-approach is valid. The R=-curve concept implies that
the arrestor must be wide enough to absorb the kinetic energy stored in the
structure.

r

This paper describes a new testing procedure and an appropriate
dynamic analysis which help to distinguish between the Ky~ and R-curve approach
to fracture arrest. The procedure provides a wide range of constant fracture
velocities and thereby affords opportunities for measuring the variation of R
with crack speed. A preliminary description of the method, which utilizes
wedge-loaded DCB-test pieces with blunt. starting slots, is contained in an
earlier report. The present paper describes the use of "duplex" DBC-test
pieces which make it possible to initiate fractures at temperatures close to
{or even above) the transition temperature and to direct unstable, high speed
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cracks into the test material under controlled conditions. Results for 4340
and A517F steel at 0 °C and~78 C are presented. A more comprehensive study of
the 4340 steel appears in Secticn I and a more complete description of the
analysis ig given in Section III., The results obtained favor the idea that
kinetic energy can contribute to the crack driving force, necessitating an R-
curve- rather than a Ka-approach to fracture arrest.

II. EXPERIMENTAL PROCEDURES.

Measurements of fast fracture and arres st were pegformed on material
P Lot biol wlsta af AETTE arasll  at 0% and -72°0 Plat s anocimane
ELUILl « /__) « A HELT LLILL.E\ PJ.C(L.C UL Al iLU QLCCJ. > L= 3 LT aliil LR B Y Loirdeic SRPLC LIS LT

wachined to a thickness of 12.7 and 24.5 mm, were wedge-loaded as shown in
Figure 1 of the General Introduction. Dimensions of the DCB-test pieces are
given in Figure 2 (The longitudinal axis of the test piece is parallel to the
rolling direction.). The configuration, instrumentation, and analysis differ
in 4 essential respects from those employed by Hoagland(13), Ripling and
coworkers(5’6), Burns and Bilek(1%) and others who have used the DCE-specimen
to study propagation and arrest:

(1) Blunting Starting Slot. The fracture is initiated with the
aid of a blunt slot rather than a sharp crack. The blunted notch permits the
specimen to sustain a stress intensity, Kq, which is typically 3 to 4 times as
large as Ky.. Consequently, as soon as a sharp crack emerges from the blunt
notch, the crack immediately becomes unstable and propagates rapidly. The K -
value can be systematically altered by varying the slet root radius (See
Section I, Figure 2). Results reported here were obtained with a root radius
of about 0.7 mm, prepared by spark machining followed by electropolishing to
make the crack initiation conditions more reproducible.

£ T T d s e T opmem o1 3 o Mlvh cmmmdras Ao o locrle: Tandad 2o ;e wwnT S maaes
AL} Weuy o LU 1LY « L .‘JIJEL.JLHICU 1> bLUWL)" Luaueud ]_ll < ll Ul.U-.i.llClL}'
testing machine (operating in the compression mode) by forcing a split wedge

1-.

The composition of the A517F steel is: (-0.18, Mn-0.93, Ni-0.85, MO-0.42,
Cr-0.54, V-0.038, Cu-0.3. Tensile properties are as follows:

Yield Strength Ultimate Strength RAZ

-2
RTO 763 MNm " {111 Ksi) 823 MNm (119 K31) 70
-78% 810 MNm=2(118 Ksi) 886 MNm™2(129 Ksi) 69
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FIGURE 2. DIMENSIONS OF DUPLEX TEST PIECES

between Lhe pins. Since the wedge loading is inherently "stiff", crack propa-
gation proceeds with essentially constant digplacement at the load pointT.
Under these conditions G decreases as the crack grows, and this ultimately
causes the crack to arrest within the confines of the specimen provided the
test piece is long enough(lﬁ). Wedge loading has two other virtues. Since
little energy is exchanged between the DCB-specimen and the testing machine
during the propagation event, the results are expected to be relatively insen-
sitive to the character of the testing machine. The friction between the wedge
and the pins introduces a modest compressive stress parallel to the crack plane,
typically 2 to 15% of the yield strength, which tends to stabilize the crack
path(17). Hence, the side grooves ordinarily required to keep the crack from
turning are not needed. This simplifies the measurement of velocity and makes
the test a cleoser replica of service conditions.

{3) The Duplex Specimen. To facilitate the production of fast pro-
pagating cracks at temperatures close to the transition temperature, "duplex-
DCB test specimens' were employed. These consisted of a high-?¥rength/10w—
toughness 4340 steel’? "starter section" electron beam welded!1' to the ASL7F

t The dynamic analysis given in the next section indicates that the dis=-
placement of the load points remains fixed during the first part of the
propagation event and then experiences a series of oscillations.

tT The composition of the 4340 steel is given in Reference 9. Tensile pro-
perties are as follows:

Yield Strength Ultimate Strength  RAZ

Quenchgd and Tempered 1 hr. -2 -2
at 200 °C, Tested at RT _ 1380 MNm_, (200 Ksi) 1940 MNm_, (282 Ksi) 50
Tested at =78 C 1600 MNm_, (232 Ksi) 2010 MNm ., (292 Ksi) 50

As-Quenched, Tested at -78°C 1670 MMm ° (242 Ksi) 2260 MMm - (328 Ksi) 29

T+ Electron beam welding produced a sound and relatively narrow fusion and
heat =affected zone about 3 mm wide.
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steel "test section", as shown in Figure 2 and in the Appendix to this section,
Figures A-1 - A-3. The fracture is initiated from the slot in the starter
section, and directed at high speed into the test section. The high-strength
starter section also makes it possible to attain higher K -values without
exceeding the limitation on yielding imposed by linear elastic fracture mechan-
ics theory'. This is important because the maximum fracture velocities that
can be produced im the test piece, and the maximum values of R and K3 that can
be measured in a particular specimen vary directly with K;. The requirements
are less stringent once the crack is propagating since the higher dynamic yield
strength corresponding to crack tip strain rates ~ 104 to 107 sec™! is then
appropriate(

{4) Avnalysis of Measurements. The analysis described in the next
section makes it possible to extract R- {(or Kd‘) values from Kq and Ka(static)s
the stress intensity at initiation and arrest which are measured with a stan-
dard displacement gage mounted to the end of the DCB specimen. Alternatively
R or K3 can be evaluated independently from Kq and V, the fracture velocity in
the test section. The velocity measuring system consisted principally of a
grid of conducting strips whose resistance is monitored during the propagation
event. A description of the grid, the method of preparation, and the recording
technique are given in the Appendix to Section 1.

III, ANALYSIS

The analysis of crack propagation in ordinary and duplex DCB-test
pieces, is derived from the beam-on-elastic-foundation model. Kanninen(20) nas
shown that a static analysis of the model employing & Fuler-Bernoulli beam and
a Winkler layer provides a description of the stress intensity factor for the
DCB-specimen which is in excellent agreement with two-dimensicnal analyses and

*  The maximum value of K 5 0.9 Oy /T, where h is the beam height and Uy
is the yield stress(lgﬁ. Thus the maximum value of Kq that can be gener-
ated at room temperature in the present duplex sample
(h = 63.5 mm, Oy (4340) = 1380 M¥m2) is ~ 310 MN/m™ /2. However compar-
igon of the results in Specimens 3V&44 and 3VY10 (see Tabler )}, p. 37)
suggests that this might be sufficiently conservative.

++  The quantity K_ is calculated for the wedge opening and a crack length ag
equal to the initial slot length. The quantity Ky(static) is calculated
for the wedge opening and crack length a, measured after arrest from
purely static considerations. It does not account for the kinetic energy
distribution in the arms of the DCB-specimen at the instant of arrest.
For this reason, K is not necessarily a precise measure of the stress
intensity at instant of crack arrest. Both of these calculations are
based on displacement measurements made with a gage attached at a distance
e = 1.65 mm from the center of the pins (see Figure 2), and corrected by
using an expression derived by Kanninen
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with experimental results.T This model was initially adapted to unstable crack-
ing by(10): (1) introducing a force Q to allow for the larger deflection of the
specimen at the load point which is permitted by the blunt starting slot (see

Section 3), (2) incorporating lateral inertia forces into the equations govern-
ing the beam deflection, and (3) systematically removing the springs comprising

2E
corresponding to the dynamic fracture energy R, is exceeded. This model
gives a good representation of the constant speed propagation cobserved in the
DCB-test piece, and much better estimates of the crack speed than quasistatic
treatments that ignore inertia.{lY) However, the calculated speeds still exceed
the experimental values by about a factor of two.

: 1/2
the foundation when the critical spring deflection W, = (h&) ,

This analysis has now been substantially refined. Timoshenko's beam
equations(21:2 and a model having a generalized elastic foundation with exten-
sional and rotational stiffness(23) have been introduced. This makes it possible
to account for lateral and rotational inertia. The governing equations for this
model, derived in Section 3, starting from the equations of three-dimensional elas-
ticity, and adapting the method given by Cowper, 24) thus gives the relations

2., 52
B 0¥y jea {22 ).k mx(e -6)T = pT ¥ (2a)
2 ax r c 2
IX ot
2 . 2
koa |22 - ZF) _ome(e -8) w-pa TY (2b)
2 AR e c 2
K 3t
where
w = average deflection of the cross A = cross sectional area of beam (=bh)
section ke = extensional stiffness of the
¥ = mean angle of rotation of the foundation
cross section about the k. = rotational stiffness of the
neutral axis foundation
E = elastic modulus 3 K = shear deflection coefficient of
1 = moment of inertia (= bh™/12) the beam, K = E/3C
G = shear modulus 8 = crack extension parameter,
p = density e = kew2 + kf¥2
& = critical value of the crack

c .
extension parameter, SC = bR

E’S 1, the expression

t When the "uncracked length" of the beam is > 2h and
derived for K reduces to:

- P h
K=2/3 §/2 (1+e ] (L
bh
where K is the stress intensity factor, P is the load applied at the end
of the specimen, a is the crack length, 2h is the height of the specimen,
b is the thickness of the specimen, and o = (6)'“4 = 0.64.
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and H*(x) is the ordinary Heaviside step function modified such that a spring
once broken always remains broken. ThHe crack extension parameter can be evalu-
ated by comsidering the energy components of the system, as described below.

The boundary conditions to be imposed are those which correspond to a
minimum displacement 8 of the load pins with ro applied torque at the cracked
end of the specimen (x = 0) and stress-free conditions on the uncracked end
(x = L). Using the equations derived in Section 3, Lhese are

w(0,t) > &, ¥ (0,t) =0
w' (L,t) - ¥ (L,t) =0 (3)
¥' (L,t) =0
where the prime notation indicates differentiationm with respect to x. The
initial conditions are obtained by f[inding the static solution that satisfies
the above boundary conditions and has, in additicn, a force Q acting at x = oy

such that €{o,,0) = 8. (for duplex specimens, 2 8,-values are introduced: one
for the starvter section and ome for the test secticn). This static solution
has been obtained in closed form, while the dynamic equations {(Za and Zb) are
evaluated by finite difference techniques.

IV. RESULTS

AND DISCUSSION

Theoretical Analysis

Calculations of the speed, extent and energetics of unstable fracture,
employing the Timoshenko-beam-on-elastic-foundation model, were carried out for
the DCB configuration employed in this study., The main features of the results
are contained in Figure 3 and may be summarized as follows:

(1) Crack Velocity Characteristics. Crack propagation under wedge
loading tends to proceed at constant velocity. Figure 3a illustrates that the
crack assumes the steady-state velocity immediately, and maintains this velocity
until shortly before arrest. The magnitude of this speed depends on several
factors: (i) the specimen configuration, (ii) the elastic modulus and density
(or equivalently, on Cgy, the bar wave speed), (iii) Kq, and, consequently, the
bluntness of the starting notch, and (iv) the dynamic toughness R (or Ky),
with (iii) and (iv) entering as the dimensionless ratio K /Kq (see Figure 3d).
Figure 3a shows that a crack propagating in a duplex specimen begins by propa-
gation at the speed consistent with the ratio K, /K, (starter section) 8nd then
assumes a second velocity characteristic of Kn/ﬁd (rest Sectiong. Since the
velocity in both the starter and the test section Sbey essentially the same
Kq/Kd-dependence (see Figure 3d), it appears that the velocity in the test

section is independent of the speed in the starter section. Finally, it should
be noted that the crack length versus time curves in Figure 3a contain small
sinusoidal fluctuations which are accompanied by 180 out-of-phase fluctuations
in the strain energy and kinetic energy (see Figure 3b). These fluctuations,
which appear to be ceonnected with stress waves traveling in the arms of the
beam, became more intense as the ratio Kq/Kd is increased, ultimately producing

-~

. . . g . . . .
a discontinuous propagation when E“jz 2.5. Additional information is reported

in Section 3. d
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FIGURE 3. THEORETICAL CALCULATIONS OF CRACK PROPAGATION AND ARREST IN TIMOSHENKO

BEAM-ON-ELASTIC-FOUNDATTON MODELS OF AN ORDINARY AND A DUPLEX DCB-SPEC-
IMEN (K /K . =2 K = :
q d{(starter section) ~’ d(test section)/Kd(starter section) 1.4):

(a) velocity profiles, (b) energy changes, (¢) G, H, and R, and (d)} the
influence of Kq/Kd on velocity and arrest length. The quantities G and H

in Figure 3 (c) do not reflect the small fluctuations evident in the
variation of U and T with crack length in Figure 3(b).

(2) Energetics. The energetics of crack propagation in the theo-
retical model are described in Figures 3b and 3c. Figure 3b illustrates that
kinetic energy is first imparted to the beam and then recovered during the
latter 2/3 of the growth increment; with about 85% of the kinetic energy
recovered prior to arrest, and less than 10% of the total strain energy released
remaining as unrecovered kinetic energy ir these two cases. Figure 3c shows
that H, the kinetic energy release rate, is comparable to and in some places an
even larger part of the crack driving force than G, the strain energy release
rate. The true, dynamic values of G depart substantially from the G(gtatic)s
the values derived from static consideration, except at the point of arrest.
The relatively small discrepancy between the real G, and Ga(static) arises
because there is relatively little kinetic energy trapped in the specimen at
arrest. However, this should not be interpreted as evidence that Ga§static) or
Ka(static) are closely related to the fracture energy or toughness o the
material at arrest. This is clearly revealed in Tigure 3¢ which shows that
neither G, nor G ) correspond with R,

a(static

{(3) Ewvaluation of R (or Kd)' Figure 3d illustrates that both the

eady state velocity V and the arrest length ay are single-valued functions of

]
NalN e

for a2 given material and specimen configuration. This means that Kd can be
d

o
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FIGURE 3 (CONTINUED)
obtained independently from measurements of either: (i) K, and a_, or (ii)
Kg and V, and the appropriate functional relations derived from t%e theoretical
mod

el. Alternatively, the arrest length can be ipterpreted without resorting
to the detailed analysis by way of the relation :

172

Ky = Kq ’ Ka(static); S
Equation (4) 1is a close approximation when all of the kinetic energy is re-
covered at arrest, and is approximate when the unrecovered kinetic energy is a
small fraction of the total strain energy released. For example, for the ordi-
nary DCB-specimen and test conditions described in Figures 3a-3c, Equation (&)
yields a value of Ky that is only 6% smaller than given by the detailed analysis
(see Figure 3d). The Ky-value for the test section of a duplex specimen can be
inferred from measurements of K., V (the crack velocity in the test section),
and the functional relation in gigure 3d, independent of the value of Kg for the
starter section. The analysis can also be used to derive the Kq-value for the
test section from the arrest lemgth, K, and Kd( tarter section) by calculating
a curve analogous to the one in Figure 3d. Similarly, Equation” (4) can be
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incorporated into an energy balance for duplex specimens after Kj for the

—aterial on the starter section has heen derived from the test of an ordinary DCB- .
specimen. Since the energy consumed in the starter section is Rbha = Kg BalE:

) 5 ﬁ1/2

KK , ., (a_-a) - K . (a.-a )
K - -9 a{static) a._ o d(starter section) L 0
d(test section) N (aa-al)

(4a)

where ag, as and aj are the arrest lemgth, initial length, and the length of the
crack when it first enters the test section, all for the duplex test piece.

Experimental Results

Examples of the extent of propagation in duplex specimens and typical
racture velocity measurements are shown in Figures 4 and 5 a?d the test results
re presented in Table 1. Additional illustrations and veloc%ty records are
iven in the Appendix to this section, Figures A-4 - A-18. Figures A-14 and A-15
chow that the behavior of the DCB-test pieces is quite reproducible, The frac-
tures propagate at 800 to 1100 ms-! in the 4340 starter section and penetréte the
rest section at this speed. At -78°C the fractures continue to propagate in the
A517F for some distance (Figures 4b and %4c), while at 0°C, the fractures were

stopped by the A517F steel close to the weld line {(Figure 4a).

r
=
9

The fractures propagated further in the center of the plate than on the
surface, and this is illustrated in the Appendix to this section by Figures A-18

and A-19., Thesge figures show the morphology of the fracture after arrest and it
is not clear to what extent the crack was tunneling during rapid propagation. The
crack length at arrest was identified with the distance propagated in the center
of the plate, i.e., the point of furthest propagation. At 0 C where the extent

of the unbroken shear lips represent a large fraction of the arrest length, the

tod ¥.=-valnea mder

. ]
ated Kj-values underestimate the real values and are re

the values and are regarded ag lower lim
Figure 6 compares the Kj-values for the A517F steel with existing mea-
surem?nt§ for other steels. With two exceptions, the results of Fitzpatrick,
et al'?27) and Bilek and Burns (15 , a trend toward higher Kgq-values with increas-
ing fracture velocity is apparent. However, the exact form of the dependence is
not well defined for any of the steels that have been studied. The Kj-values
for the_ A517F do not display a clear-cut velocity dependence in the 475 ms™1 to
780 ms ~ range examined here, but the existence of one should not be ruled out.

RS RSP I <1

Perhaps the most striking feature of the results is the large diff
ence at - 78 C between the Ky-values measured for a propagating crack, and t
dynamic initiation Kyg-values reported by Barsom and Ro1£e(30) for o rapidly
loaded, but statiomary crack. It has generally been thought that Kyg-values
approximate the toughngss of propagating cracks. Figure 7 shows that this
could be true at - 196 C. However at - 78 C the Kygq-values fall below the
Ki.-curve, while the Ky-values obtained here are 4 Cimes larger than Ky4q and
fall well above the Ky.-curve. These differences cannot be attributed to
differences in chemistry or to a heat-to-heat variation in the transition
temperature. The present material has virtually the saggnQOmposition and ten-
sile properties as the heat studied by Barsom and %olfe\JU’. Furthermore, the
Charpy transition of the present heat was about 25°C higher than the one tested




(a) 12.7 mm, 0°C (b) 12.7 mm, ~78°C (c) 25.4 wm, -78°C

FIGURE 4. DUPLEX DCB SPECIMENS TESTED AT DIFFERENT TEMPERATURES: (a) 3VYI1l, (b) 3VY13,
and (c) 3vY23. The letters a and b identify the points of initiation and
arrest; the horizontal line marks the weld line.

100 - - -
Specimen 3V-Y10" Anordinary ‘
sol— DCB test piece, 4340 steel . |
E Tested at -78°C,V=840msy A-517 test section
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FIGURE 5. EXAMPLES OF VELOCITY (CRACK
LENGTH VS. TIME) MEASUREMENTS DE-
RIVED FROM TIHE CONDUCTING STRIPS.



TABLE T — HIPLEX

SPEGCITMEN

TEST

4340 STEEL STARTER SECTION

AT

ASI7 STEEL TEST SEZCTION

Cricical =
- h
Specimen Displace= X R K (e X £ K (s} X (n)
q a(Static) d v -2y d v (a,-ay) 4 d
(a) ment . ~3/2 . ~3/2 -3/2 “{ ° . =372 a”31 =372 L -3/2
No. . {mom) ONNm ) (M¥m b) {MNm Y - {=/®) men } {Mim ) (m/8) () (Na ) (Mm )
Plate Thickness = 12,7 mm, T = 0°C
wao™® 2.02 178 - 113 - 8t.1 113¢? - - - o -
vyl b) 2,495 229 119 165 - 40 - - ~ 7.6 > 360 -
3VY11( 3.25 210 114 166 645 40 123 - 6 > 305 -
Plate Thickness = 12,7 mm, T = -78°C
avag (®) 7,20 34 (1) - 840 (1) 167 - - - ) -
wy b 2.64 229 60,5 118 - 49 - - 86.4 109 -
310t 3.87 250 114 169 825 18.8 135 475 32.9 202 180
JVY12< 3 3.66 234 102 .155 940 39.8 111 §60 42.9 184 159
Y13t 4,16 266 68 134 1080 39.9 106 625 106.0 143 170
Plate Thickness = 25,4 mm, T = 0°C
a2 () 4.80 308 198 247 910 38.7- 154 ~ 260 23.6 > 380 Lz
Plate Thickneas = 25.% mm, T = =-78°C
Y3 1.6 154 7”7 109 - 40 - - 20.3 > 115t -
3vYs (5) 2.20 198 {3) - - (L} ~. - - - -
wya2 4,01 243 (j)(l) 860 (1) 127 - El). - -
3VY23< 3 4.19 2712 n-TJ(I) ~ 141 1125 (34 101 740 > 112 () - 152 159
vys'e? 4.60 291 ~ 78 ~ 151 1180 38.6 - 106 780 > 101.4 ~ 165 164
{a) Seriles W=-specimens are ordinary 4340 stecl DCB-test pleces; (g} Ty 18 the average value of Ky for the A517 steel calculated from
seri:a wy ZSEOQS&OIASIT duplex DCB specimens, Except where the arrest length by way of Equaction {(&4a).
ot th 1 i h hed .
:: ;06-C e.nd th:t::dgza:ng?c:v:aqgigf ed and cempered 1 hr {(h) This fs the Ky-value for the AS517 tcst section obtained from !(,E
o ' ' and the fracture velocity in the test section as described in £,
(b} 4340 ateel tested in the as~quenched condition.
{1) Fracture did not arvest.
{¢} 30° wedge angle employed.
{3) Fracture did not penetrate weld but propagated along weld line.
(d) Displacement meagurement at the onset of fast fracture by . =3/2
the displaccment gage mounted 1.65 zm from the end of the (k) Caleulated assuming Kg(s340) = 106 MNm .
specimen, {.e., 21.97 om from the point of load application, (1) In these cases, where the crack path veered frem the spacimen
(e) Ed ts the average value of Ky for the crack path (starter= center line during the latter stages of propagation, the arrest
and test-scction) calculated from the erit{cal displacement length 1s defined as the lengrh corresponding to the point where
and the arrcst length by way of Equation (3). the path deviates 20% from the placte center line.
(£) This is the K, =value for the 4340 steel that is obtained from a, Initial slot length.
¥ and the fracture velocity in the atarter section using the
rdlation between these quantities derived from the Timoshenko 4; - The length of the crack when it enters the A517 steel test sectiom.
analysls ss ghewn in Figure 8a unless otherwise noted. 8, - Crack length at arrest.
v Measured fracture velecity.
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by Barsom and Rolfe (see Figure 7), and in the wrong direction to explain the
higher Kgy-values at - 78°C. The discrepancy hetween Kg and Kj. and Kig could
be connected with the relaxation of constraint (the ASTM E 399-72 thickness
requirement for plane sgrain is not satisfied for the static yield and Kg-
values measured at - 78 C), but this is unlikely for several reasons. For one
thing, the dynamic yield strength appropriate to the extremely high-strain
rates produced in the c¢rack tip plastic zone, could be large enough to provide
for plane strain in a 25.4 mm-thick section. In line with this, the 25.4 mm
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A517F test pieces displayed flat fractures with virtually no shear lip and no
measurable reduction in thickness. In addition, the Kj-values for the 25.4 mm
4340 steel starter sections which do satisfy glane strain requirements also
appear to be much greater than Kj. at -789¢ .€

Perhaps the main findings of this study relate to the agreements be-
tween theory and experiment. The theoretical velocity profiles are surprisingly
clese representations of the measurements {(compare Figures 3a and 5). Values of
K, deduced from the fracture velocity measurements (Figure 3a) and those derived
independently from the measured arrest lengths (Figure 3b), are in close agree-
ment (see last two columns of Table 1). This type of agreement is also demon-
strated in Section I for fracture arrest in 4340 steel at room temperature where
the theoretical crack velocity-arrest length relation is closely obeyed.

These agreements represent a crirical test of the theory that the
kinetic energy imparted to the wedge-~loaded DCB test piece is substantially
conserved and converted into fracture energy during the latter stages of the
propagation event. It fecllows that arrest is controlled by the history of energy
dissipation throughout the entire propagation event (the R-curve) rather than by
K;. The results also demonstrate the power of the beam-on-elastic-foundation
model to provide a realistic description of crack propagation and arrest. In
view of the agreements between theory and experiment, and the evidence that plane
strain conditions were maintained ahead of the propagating cracks, it seems
likely that Ky (or R) is a unique property which cannot always be inferred from
measurement on stationary cracks. The difference between K; and the dynamic
initiation Kyg-results may be connected with the contribution of ductile liga-
ments which has been discussed in Reference 9. Examples of the ligaments ob-
served in the A517F sheet at - 78 C are shown in the Appendix to this section,
Figure A-20., It was shown that the deformation and rupture of these ligaments
during rapid propagation can account for a large fraction of the energy dissi-
pated by a cleavage fracture. The flat fracture energy of 4340 steel, which
consists of nothing but ligaments, doubles in the range 0 - 860 ms'l, showing
that ligament formaticn can be sensitive te the crack veloc1ty Finally, such

ligaments would be expected to be less prevalent at - 196 °c, and initially absent

2
at the onset of fracture in specimens containing a starter crack prepared by
fatiguing.

Finally, some comments about the significance of the wedge-loaded
duplex DCB-test are in order. The test is comparable to a fracture-toughness
evaluation, in that it provides an absclute value of the dynamic fracture
energy or toughness for full-thickness plates, which can be used to predict
the likelihood of crack arrest and to design crack arrestors. Unlike the Charpy,
the drop weight or explosive-bulge tests, the R or Kj-values derived from the
duplex test do not regquire full-scale service experience to make them useful.

As with other fracture-mechanics tests, the magnitude of the toughness that

can be measured is limited by the test-piece dimensions, but not as severely,

T It should be noted that the existence or nonexistence of plane-strain con-
ditions is not a main issue here since the objective of the present study
is to characterize the fracture of 12.7 mm- and 25.4 mm-thick plates,

rather than the bshavior of cracks under n'lnnn"'ef-rn'ln conditions. However,

CLaCAS MiIUger LAl sLiarir RIS . cvel

it does have a bearing on the appllcablllty of the results to even heavier
sections.
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because extremely high-strain rates and high dynamic yield stress values are
involved. The present configuration, with overall dimensions of 127 mm by

381 mm is capable of measuring dynamic-toughness values up to ~ 200 MNm =372,
More energy can be stored in the test piece relative to the fracture enersy by
doubling the height dimension, increasing the strength of the starter section
or undercutting along the crack line. Such changes might make it possible to
measure toughness values in the range 300 to 400 MNm~ 3/2 or even higher.

The requirements for an electron-beam weld and spark machining and grinding to
size the hardened 4340 starter section add to the cost and detract from the
convenience of the test., These are partly compensated by the fact that fatigue
precracking is not required, and that the test can be performed on an ordinary
tensile testing machine. Crack-velocity measurements are also not reguired.
The test results quoted here and in Section I show that Ky (or R) and the velo-
city can be inferred simply from the displacement~gage readings at the onsetr of
fast fracture and a measurement of the length of the crack at arrest.

V., CONCLUSIONS

1. The concept of a "duplex" DCE-test piece in which an unstable crack is
initiated in a high=-strength/low-toughness "starter section" which is
electron-beam welded to the "test section'" has been successfully demon-
strated. In this way, the response of AS17F steel test sections to
1000 ms~! fractures has been studied at ~- 7800, and also at 0°c which
is close to the full-shear end of the ductile~to-brittle transition.

2. The Timoshenko beam theory/beam-on-elastic-foundation analysis has been
extended to duplex test pieces. The theoretically derived velocity pro-
files are in excellent agreement with the actual velocity measurements.
The analysis makes it possible to derive dynamic fracture energy or
fracture-toughness values either from the velocity of the erack in the
test section or the length of the crack at arrest. Values obtained
independently £from these two measurements are in close agreement, and
this represents a critical test of the theory.

3. The analysis and the agreements with experiment show that the kinetic
energy imparted to the wedge-loaded DCB-test piece Is substantially con-
verted into fracture energy during the latter stages of a propagation
event. It follows that fracture arrest is controlled by the history of
energy dissipation throughout the entire propagation event {the R-curve)

rather than by K;, a critical toughness at the point of arrest.

4, The dynamic fracture toughness values measured at - 78°C for 12.7 mm- and
25.4 mm-thick plates of ASI7F steel, Kg = 143 MNm™>/2 - 202 M¥n™>/? are
2-times and 3-times K., and Ky4, the values for static and dynamic
initiation from stationary cracks. It appears that Ky  does not always
reflect the behavior of fast propagating cracks. At (°C,

Kq = 300 MNm~3/2 for this steel.



VII

“A1-

REFERENCES

14,

15.

16.

T. S. Robertson, "Propagation of Brittle Fracture in Steel’, J. Iron and Steel
Inst., Voel. 175, p. 361, 1953.

W. S. Pellini and P. P. Puzak, "Fracture Analysis Diagram Procedures for the
Fracture-Safe Engineering Design of Steel Structures", NRL Report 5920, U. 8.
Naval Research Laboratory, March 15, 1963.

G. R. Irwin and A. A. Wells, "A Continuum Mechanics View of Crack Propagation'”,
Met. Reviews, Vol. 10, p. 223, 1965,

T. Kanazawa, '"Recent Studies of Brittle Crack Propagation in Japan', Inter-
national Conference on Dynamic Crack Propagation, Lehigh University, 1972,

B. C

v
ama
Lalld e

rosley and E. J. Ripling, "Dynamic Fracture Toughness of AS33 Steel”,
ASME, V i 525, 1969,

Fal
UL g VRS

3 d

P. B. Crosley and E. J. Ripling, "Crack Arrest Fracture Toughness of A533
Crade B Class 1 Pressure Vessel Steel", Materials Research Laboratory Report,
Glenwood, Illinois, 1970.

J. P. Berry, "Some Kinetic Considerations of the Griffith Criterion for
Fracture'": Part I - Equations of Motion at Constant Force, Vol. 8, p. 194,
1960; Part II ~ Equations of Motion at Constant Displacement”, Vol. 8, p. 207,
1960, J. Mech, Phys., Solids.

J. P. Romualdi and P. H. Sanders, "Fracture Arrest by Riveted Stiffeners",
Carnegie Institute.of Technology Report, Pittsburgh, Pennsylvania, 1960.

R. G. Hoagland, A. R. Rosenfield, and G. T. Hahn, '"Mechanisms of Fast Fracture
and Arrest in Steels", Vol. 3, p. 123, 1972.

G. T. Hahn, R. G. Hoagland, M. F. Kanninen, and A. R. Rosenfield, "A Preliminary
Study of Fast Fracture and Arrest in the DCB-Test Specimen", Dynamic Crack
Propagation Conference, Lehigh University, 1972.

K. B. Broberg, "The Propagation of a Brittle Crack", Arkiv Fys., Vol. 18, p. 159,
1960.

J. D. Eshelby, "Energy Relations and The Energy-Momentum Tensor in Continuum
Mechanics™, Inelastie Behavior of Sclids, Kanninen, et al., eds., McGraw-Hill,
New York, p. 77, 1970.

R. G. Hoagland, "0On the Use of the Double-Cantilever Beam Specimen for
Determining the Plane Strain Fracture Toughness of Metals', Trans ASME, Vol. 39,
Series D, p. 525, 1967.

J. Eftis and J. M. Krafft, "A Comparison of the Initiation with the Rapid

Propagation of a Crack in a Mild Steel Plate", Trans ASME, Vol. 87, Series D,
p. 257, 1965.

8. J. Burns and Z. J. Bilek, "The Dependence of the Fracture Toughness of Mild
Steel on Temperature and Crack Velocity", Report NY0=-2394-42, Div. of Engg.,
Brown U., 1971.

M. F. Kaaninen, A, R. Rosenfield, and R. G. Hoagland, "Fast Fracture in PMMA",
Deformatiop and Fracture of High Polymers, H. Kausch, et al., eds. (in press).




]
[#4]

(%)
e

T ——
~47-

J. J. Benbow and F. C. Roesler, "Experiments on Controlled Fractures", Proc.
Phvs. Scc. (Londen), Vol. B70, p. 201, 1957.

J. Harding, "Effect of High Strain Rate on the Room-Temperature Strength and
Ductility of Fine Alloy Sheets", J. Iron and Steel Inst., Vol. 210, p. 425,
1972,

6. T. Hahn, M, Sarrate, and A. R. Rosenfield, '"Plastic Zones in Fe-351 Steel
Double=Cantilever-Beam Specimens®, Vol., 7, p. 4353, 1971,

M, F. Kanninen, "An Augmented Double Cantilever Beam Model for Studying Crack
Propagation and Arrest', Int. J. Fract. Mech., Vol. 9, p. 83, 1973,

S. P. Timoshenko, "On the Correction for Shear of the Differential Eguation
for Transverse Vibrations of Prismatic Bars'", Phil. Mag., Vol, 41, p. 744, 1921,

S, P. Timoshernko, 'On the Transverse Vibrations of Bars of Uniferm Cross-Section”,
Phil. Mag., Vol. 43, p. 125, 1922.

A, D. XKerr, "Elastic and Viscoelastic Foundation Models', J. Appl. Mech., Vol.
31, p. 491, 1964.

G. R. Cowper, "The Shear Coefficient in Timoshenko's Beam Theory', J. Appl.
Mech., Vol. 33, p. 335, 1966,

sttt o it —— -

F. W. Barton and W. J. Hall, "Brittle-Fracture Tests of Six-Foect Wide Pre-
stressed Steel Plates", Weld. J. Res. Supp., Vol. 39, p. 379s, 1960,

T.A.C. Stock, "Stress Field Intensity Factors for Propagating Brittle Cracks",
Int. J. Fract. Mech., Vol. 3, p. 121, 1967,

N, P. Fitzpatrick, P. L. Pratt, and T.A.C. Stock, "Fracture in Structural Alloys",
J. Austyr. Inst. Met., Vol. 13, p. 243, 1968,

e e ] LY P | P
VULAK A lPludo L Uf

T el
LiLcoet

G. J. D Br e
g", Engg. Fract. Mech., Vel.

Aspect

H. Kihara and K. Ikeda, "A Proposal on Evaluation of Brittle (Crack Initiation
and Arresting Temperatures and Their Application te Design of Welded Structures",

Papers of the Ship Ship Research Institute, Ne. 14, Tokyo, April, 1966.

J. M. Barsom and S. T. Rolfe, "Kj. Transition-Temperature Behavior of A517-F
Steel, Engeg. Fract, Mech., Vol. 2, p. 341, 1971.

in A Q 4 + 11
L. A. oal& d Cr

teigerwald, ac
ASTM STP 4%3, p. 102, 19



_43-

APPENDIX 2-A

SUPPLEMENTARY ILLUSTRATIONS

TIGURE A-1, DUPLEX DCB SPECIMEN BLANKS. The photograph shows the single pass
electron beam weld which joins the 25.4 mm-thick 4340 steel starter and

A517F test section; top: near side relative to beam; bottom: far
side



FIGURE A-2Z. MICROGRAPH OF ELECTRON BEAM WELD AND HEAT AFFECTED ZONE OF SPECIMEN 3VY-
10 TAKEN ON PLATE MIDPLANE. The fracture propagated from left to right

FIGURE A-3. MICROGRAPH OF ELECTRON BEAM WELD AND HEAT AFFECTED ZONE OF SPECIMEN 3VY-
11 TAKEN ON PLATE MIDPLANE. The fracture propagated from left to right.
A small transverse crack was observed close to the fusion zone at (a)
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FIG. A-13, DUPLEX 4340/ A517F DCB TEST PIECE 3v¥22 (25.4 mm-
THICK, TESTED AT —780C). Fracture initiated at a and
propagated close to the weld line. At this point, a
second fracture, normal to the first was initiated from
a long shallow surface crack in the weld near the center
of the test piece and propagated through the weld before
the main fracture could penetrate the test section. DNote
that the second fracturc departed from the weld line at
b, evidence that the weld was reasonably tough.

FIG.

A-14. DUPLEX 4340/A517F DCB TEST P%ECE

VY23 (25.4 mm-THICK, TESTED AT -78 C).

The fracture initiated at a and arrested
at b.

_8«[;,_




FIG. A-15. DUPLEX-4340/A517F DCB FIG.
TEST PIECE 3VY24 (25 4 mm-—
THICK, TESTED AT O C) Frac-
ture 1n1t1ated at a and
arrested on the A517F steel

test section at b, shortly
after penetrating the weld
line.

A-16. DUPLEX 4340/A517F DCB TEST PIECE
VY28 (25.4 mm-THICK, TESTED AT -78 C)
Fracture initiated at E_and arrested

at b,

_6-b_
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FIGURE A-19,

(a) Specimen Surface

_89_

Line

Weld

(k)  Specimen Midsection

EXTENT OF FRACTURE PROPACATION IN THE DUPLEX 4340/A517F DCB TEST PIECE 3vYll: (a) at the
specimen surface and (b) on the specimen midsection. The arrow in (a) shows the extent of
the crack on the surface; (b) illustrates that the crack extended farther on the plate and
midsection



Lo2mm .

(b)

(c)
FIGURE A-20. PROFILE OF THE ARRESTED CRACK IN THE A517F STEEL TEST SECTION OF SPECI-

MEN 3VY-10 (12.7 mm-THICK, TESTED AT _78°c). The profiles shown are on the
plate midplane: (a) the arrested crack tip, (p) 0.3 to 0.6 mm behind the crack
tip, and (¢) 0.8 to 1.2 mm from the crack tip. An unbroken ligament a is
visible in Figure A-20(c); ruptured ligaments, identified by b, are evident

in all 3 photographs.
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SECTION 3
DYNAMIC ANALYSTS OF CRACK PROPAGATION IN THE DCB TEST SPECIMEN
by

M. F. Kanninen

ABSTRACT
In this report an analysis of dynamic uns:able crack propagation
in the double-cantilever (DCB) test specimen is presented. The technique
ta heoaood ~m o Fhia Laam s sl do Fo-doer o 1.1 nf tha NeR gnecimen used
1o wvadoskld Ul LIHE vEall—ullTcldsille LOodllddLlLluwil nmodel Y-+ b haliuding et it et

previously but with the simple beam and foundation representations replaced

by a Timoshenko beam and a generalized elasiic foundation. Crack speeds
and energy levels calculated with this model using a finite-difference meth-
od are presented and discussed, A complete derivation of the governing

equations of the model and of the computational procedure is also given.
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DYNAMIC ANALYSIS OF CRACK PROPAGATTON IN THE BDCR SPECIMEN

1. _INTRODUCTION

The criteria which govern unstable crack propagation and crack arrestc have
not vet been definitely established. 1In fact, this problem presently constitutes
a controversial topic in fracture mechanics. Two points of view are current: one

based upon an “arrest-toughness'' criterion, the other upon an "energy-halance"
criterion.

Many investigators subscribe to the idea that crack arrest can be treated
as simply the reverse (in time) of crack initiation. TIn other words, that each
material hag an intrinsic crack-arrest toughness which is a property of the marerial
L= the same extent that Kj. is a property of that material. It follows that the
unstavils propagation of the crack which precedes its arrest is of no concern in an
englneering design aimed at preventing catastrophic failure by insuring crack arrest.
An alternative pnjnt of view is that a crack will continue to propagate until the
system can no longé: provide sufficient energy to support further crack growth,

This means that crack avrest depends on the nature of the crack-extension process
prior to arrest, not mereiy gn the end point itself.

Experimental results end analyses which would decisively reveal the
correct criterion for crack arresc gre presently lacking. However, the energy-
balance approach appears to be more wjagble for the f{ollowing reasons. First, it

permits analytical progress to be made rowards an engineering solution to the prohlem.

Second, because an energy balance must alwayg be satisfied, such an analvsis will
undeniably have a fundamentally correct basis. 7Third, even though the two approaches
are not necessarily incompatible {(they will coincide when the kinetic energy of the
system is negligible), the energy-balance approach always provides the more
conservative prediction of crack arrest., 1In this report, an analysis based on the
energy-balance point of view is developed for the double-cantilever-heam (DCR) test
specimen.

II. SUMMARY OF PREVIOUS WORK

1-43

On the basis of work conducted in this lahoratory( , 1t now seems
certain that the imertia forces must be explicitly taken into account in the analysis
of rapid unstable crack propagation. TFor the DCB specimen this can be readily
accomplished because a one-dimensional spatial degree-of-freedom (i.e.,, beam theory)
representation suffices, Hence, the time variable can be accommodated without an
inordinate increase in the mathematical complexity of the problem. Tt should perhaps
be emphasized that there is no intent Lo use heam theorvy te predict local stresses
or strains in the neighborhood of the '"crack tip" in this work. Rather, the beam
analysis is used only to calculate nonlocal quantities {e.g., strain energy, kinetic
energy) that can be determined much more accurately. This is the basic reason that
the simple theory is successful.
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A beam model has heen used by a large number of different investigators
over the years. TIn most cases, a pair of built-in cantilever heams, having a
length equal to the crack length, were taken to represent the cracked portion
cf the specimen. The deformation of the uncracked porticn was therabv naglected
alrhough emprical corrections have been introduced to compensate for this neglect.
We have develeoped an extended model in which the heams are of the same length as
the specimen but are partly connected by a continuous array of linear springs
which simulate the transverse elasticity of the uncracked region®. In the case
cf symmetrically located crack, of course, this is equivalent to a single beam
partly supported by an elastic foundation and, because this offers a more convenient
way of formulating the problem, it will be used in the following discussion. The

beam-on-elastic foundation model of the DCR specimen is shown in Figure 1.

As a first attempt, the simplest possible representations for the two
components of the beam-on-elastic foundation model were employed: a simple Euler-
Bernoulli beam and a Winkler layer.{l) Omitting the details, a solution for the
beam deflection satisfying appropriate houndarv conditions is then readily obtained
for a constant length crack. Having the beam deflecticn, rhe strain energy can ‘e
computed and an expression for the stress~intensity factor deduced. When the
"uncracked length'" is not too small, the result is

x =237 b
= 3 —F—= ] 4 oy =
bh3/2 L * al (1)

where K = stress-intensity factor

P = load applied at the end of the specimen

& = crack length

?h = height of the specimen

h = thickness of the specimen

and o is the number (6)-L1/4 = 0.64. Because Equation (1) was found to be in excellent
agreement both with two-dimensional analyses and with experimental results, it is
believed that the beam-on-elastic-foundation model can be used in the dynamic
situation where the realistic two-dimensional solutions are virtually unobtainable,

The initial use of rhe beam-on-elastic-foundation model in the analvsis
of unstable crack propagation was in a quasi-static approximation.¥* This work was
reported in Reference 1. The results, when compared later with experiments, revealed
a two-fold inadequacy of this approach. First, the predicted crack speeds were
zreatly in excess of the observed speeds. Second, the calculation did not predict
2ssentially constant-speed propagation as was cbserved in the experiments. To
remedy this, a dynamic version of the model was developed by incorporating the

Prandt1(5) has used a beam-spring fracture model but had in mind an atomic bond
breaking picture like that developed later by Goodier and Kanninen. Hence,
Prandtl's spriangs have a finite spacing associated with thewm {ir contrast to

the continuous foundation envisicned here) so that both the springs and the beam
have a distinctly different physical interpretation from that of the meodel
developed in this paper.

*% Inertia forces were not included in the equation of motion. Strain energy and
kinetic energy were computed from the resulting static configurations and the
crack speed deduced from a postulated energy balance.(
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FIGURE 1. THE DOUBLE CANTILEVER BEAM (DCB) TEST SPECIMEN AND TUE

BEAM-ON-ELASTIC FOUNDATION MODFL.
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to be solved is then given by
4 2
9 W 8w
EI—F +pA~—5 + kH (w -w)w = 0
4 2 ¢
ax ot

where w is the beam deflection, w, is a critical deflection for the rupture

foundation, H denotes the Heaviside step function, and other paramefters are
given below.

The boundary conditions accompanying Equation (2) were those representing

of the
as

a fixed displacement § with no applied'torque at the load pins and zero stress at
the right-hand end of the specimen. Hence, using the notation given in Figure 1,

w(0,t) = §

and

w'(0,t) = w'"(L,t) = w"'"(L,t) =0

(3

‘N‘PF“____—_—“‘*

The initial conditions were obtained by solving the static counterpart of Equation (2),

subject to the above boundary conditions.




v

_59-

Notice that the parameters § and wc appearing in this formulation can be
alternatively expressed in terms of more physically relevant parameters.
Specifically, &6 can be directly related to the applied stress-intensity factor Kq
while w,. can be related to a fracture toughness (i.e., either K. for the statie
problem or Ky for the dynamic problem). Without providing the details, this means

T P e o e

el e o~ X R T bt o T » . L R S DU IR P - T SN T S
LilgaL 4 Jdylgiice=CidekK~propagdd LOII sLLULLOT C4Il De oplLdliled DY Speclliyling Oty LHE
ratio Kq/Kd in addition, of course, to the specimen geometry,

For an initially blunt crack, Kg > K.. Hence, unless some additional
refinement is introduced into the model represented by Equations (2) and (3), a
portion of the beam that is supported by the foundation just beyond the crack tip
will have a deflection exceeding w, in the initial configuration. As described in
Reference 2, crack propagation then commences with a substantial instantaneous
increase in crack length. This awkward feature of the model was subsequently
eliminated by iatroducing a '"pinching force" Q at the crack tip in the initial con-
figuration. (This is the essential difference between the work described in
Raferences 2 and 3.) The pinching force, which was intended to simulate the effect
of the initial bluntness, was incorporated in the form of a jump discontinuity
in w'" at x =qa, equal to Q/EI. The parameter Q was then taken to be such that
w(zg,0) = w.. Then, crack propagation can occur smoothly (once the pinching force
is removed) from the beginning of the computation.

The solution fo the initial-value problem given bg Equations (2) and (3)
was obtained numerically using a finite-difference method.(453) A constant dynamic
fracture toughness was used, just as in the quasi-static calculations of Reference 1.
4 substantial improvement was realized in that the calculations predicted constant-
speed propagation at much reduced speeds., Encouraged by this result, a more refined
version of the beam-on-elastic foundation model was undertaken to eliminate the
remaining discrepancy between the calculated speeds and the experimental values
(roughly, a factor of two). The development of the model and the computational
results obtained from it are the subject of this report.

Before discussing the details of the dynamic-crack-propagation model
contained in this report, it may be useful to briefly mention other analytical
treatments that have been offered. Most of these are quasi-static in nature and
have been described in Reference 1 and elsewhere. The only dynamic treatment
directly applicable to the DCB configuration is that of Bilek and Burns(6). They
have obtained a closed form solution by considering a built-in Euler-Bernoulli
beam under various loading conditions: constant bending moment, constant displacement
rate, or constant shearing force. The equation of motion for these conditions
can thus be transformed into an ordinary differential equation by use of a similarity
transform.* The solution determined in this way predicts that crack propagation
occurs in such a way that the ratio @¢/,/t is either a constant or changes slowly
with the fracture energy's dependence on the crack speed. Here, ¢ denotes the
crack length and € the time. - ]

While the work of Bilek and Burns is certainly useful, their approach
suffers from a number of disadvantages in comparison to the model developed in
this report. First, they are not able to specify initial conditions (the similarity
transform restricts the analysis to the specific condition that g = 0 at t = 0),
Among other drawbacks, the systematic variation of the parameter K, by blunting
the. initial crack cannot therefore be treated, Second, the "built<in beam"

* The equation of motion for the Bilek-Burns model is the same as Equation (2)
of this report when k = 0, The boundary conditions consequently contain the
fracture criterion which is that of a critical bending moment at the crack
tip.
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condition at the crack tip, in addition to producing spurious wave effects, means
that the size of the specimen increases in time. Hence, the energy apportionment
calculated from the solution is somewhat suspect. Third, although a closed-form
solution is obtained, it is sufficiently complicated (i.e., involving Fresnel,

sine and cosine integrals), that the details of the results are not easily accessable
without a computer, In this light the finite-difference procedure empioyed here

is no more inconvenient,

TIIT. A MODEL OF THE DCB SPECIMEN USING A TIMOSHENKO REAM
ON A GENERALIZED ELASTIC FOUNDATION

The very significant improvement in the analysis resulting from the
incorporation of a single inertia term strongly suggests further development of
the medel in this direction. Two areas of improvement are immediately available:
the beam characterization and the foundation characterization. 1In particular, the
applicability of one-dimensional beam theory can be extended by taking account of
transverse-shear deformations and, for moving beams, of rotary inertia. The
formalism which includes these effects is usually referred to as Timoshenko's beam
equations{(7,8), Similarly, the Winkler foundation can be generalized to an elastic
foundation which exhibits rotational stiffness in addition to an extensional

it

stiffness#®% The current model (Figure 1) employs these concepts.

1. The Equations of Motion

The governing equations for a model of the DCB specimen using a Timo-
shenko beam on a generalized elastic foundation are derived in Appendix A, The
derivation starts from the equations of three-dimensional elasticity, adapting
the method given by Cowper(lo). The resulting relations are

2 2

/3 _ QY
Elb—Y+HGAKW-‘¥)-FY-kH""(9-Q)¥=pl 5
BXZ Bx r < at

(%)

2 2
ax ot

afeut.

%% As shown by Kerr(9), the generalized elastic foundation is equivalent to
the Pasternak foundation model.
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where,
.
w = average deflection of the cross section
Y = mean angle of rotation of the cross section about the neutral axis
F = elastic modulus
I = moment of inertia (= b h3/12 for a rectangular cross section)
G = shear modulus
F = axial compressive force applied to the beam
p = density
A = cross-sectional area of beam (= bh for a rectangular cross section)
ke = extensional stiffness of the foundation
k, = rotational stiffness of the foundation
K = shear-deflection coefficient of the beam
6 = crack extension parameter
8. = critical value of the crack-esxtension parameter

and H*(x) is the ordinary Heaviside step function modified such that a spring once
broken always remains broken.

The boundary conditions to be imposed are those which correspond to stress-
free conditions at the ends of the specimen., Using the egquations derived in
Appendix A, these are

w'(-e,t) - ¥(~e,t) =0

v'(-e,t)
(5)
w'(L,t) - ¥(L,t)

¥'{(L,t) =0

where the prime notation indicates differentiation with respect to x and the
coordinates are as shown in Figure 1. An additional constraint that must be
imposed is that the deflection of the load point cannot be less than the deflection
imposed initially., If & denotes this initial displacement, then

w(o,t) > &

throughout the crack-extension process.

The initial conditicns are obtained by finding the static solution that
satisfies the above boundary conditions and has, in addition, a force Q and a couple
M acting at x = g5. The parameters Q and M, which are intended to simulate the
effect of the initial bluntness, are chosen such that 8(25,0) = g and the strain
energy in the system initially is a minimum. The static solution can be obtained

in ¢losed form hv {1i) geparatine the nrohlom intn the tran interuale uhars Fha
- TN ’ \ - DT e e LR, Ll pruLLcin LilLy Lll‘: WwuyU LLlLCLVdLa wlldl—u L.th‘—

differential equations have constant coefficients (i, e., e £ x £a, and g, £ x £L
where go is the initial crack length), (ii) finding a solution valld for each
interval, (iii) satisfying the boundary conditions of the problem together with the
condition that w = § at x = 0, and (iv) evaluating the remaining arbitrary constants
such that w and Y are continuous at x = gg while w' and ¥' experience jump discon-
tinuities equal to Q/KGA and M/KGA, respectively. The details are given in Appendix C.

In the Timoshenko~beam equations, the effective transverse-shear strain
is taken to be equal to the average shear stress on a cross section divided by the
product of the shear modulus and a dimensioniess "shear coefficient’™ K. This latter
quantity is usually introduced to compensate for the fact that the shear stress
and shear strain are not uniformly distributed over the cross section. A more

fundamental derivation of K has been given by Cowper(l0) by integration of the
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equations of three-dimensional elasticity, His result for a rectangular cross
section is

K = 10(1+v)
12 + 11v

‘where v is Poisson's ratic. In the following it will be convenient to approxXimate

this result by taking

KG
E

(6)

wir

which is exact for v = 3/11.

2. The Energy Components and the Crack-Extension Criterion

The crack-extension parameter g appearing in Equations (4) can be evaluated

by considering the energy of the system, as follows. Expressions for the energy
compenents in a DCB specimen represented by a Timoshenko beam on a generalized
foundation are developed in Appendix B. The results are

T
2 2
= [aYy (3w 5 2 . r, .2 2
H ] {EI ) + HGA\a Y' + Y+ Hn(ec—B)chw + krY ] } dx
(o]
and )
- /BW\ }d
B J ipA\at/ * DIK x
8]

whete U and T are strain energy and the kinetic emergy, respectively., Notice
that the factor 1/2 ordinarily appearing in expressions of this kind is omitted
because U and T each represent a total for the two halves of the specimen.

The total energy £ contained in the specimen at any point in time is
the sum of WWT. Hence, from Equations (7)

L
£ =[1 El(g\y 2} HeA (% Sn? s
o}

+ pA(Q-“E\Z +91(at) r ot (8)

2 2z
+ H(x—a)[kew + krY ] } dx

where ¢ is the crack length. It is assumed for simplieity that there are no
"igslands" of material remaining behind the crack tip whereupon the function H(x-a)
performs exactly the same service as does H*(§-8.) and, therefore, can be used

in its place.

The basic premise of fracture mechanics is that the energy absorbed by
the extending crack must be just equal to that "released” by the body containing
the crack. 1In the present case, where no work is done by external forces while
the crack is propagating, this means that during an amount of crack advance dg
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Rbdz = - dZ

or (9)
P N -
v dt

where f is the dynamic energy absorption per unit area of crack extension, and
V = dg /dt is the crack speed. As shown in Appendix B, upon substituting
Equation (8) into Equation (9), differentiating with respect to t, integrating
by parts, using Equations (4) and (5), it is found that

2 27
bR =[kew + k¥ (10)
Xx=7

This reveals that the crack-extension parameter must be associated with a critical
value of the bracketed quantity., Consequently, by definition

2
6 =k w + k¥’ (11)
and

6. = bRt (12)

are the parameters that must be used in the dynamic solution of Equations (4).
Notice that this result could also have been obtained by simply equating the sum
of the extensicnal and the rotational energy contained in the springs that must

rupture to permit a unit of crack advance (which is therefore '"lost" to the system)
to the fracture toughness per unit of crack advance.

3., The Evaluation of the Foundation Parameters Using the Static Selution

In the development of the beam-on-elastic-foundation model of the DCB
specimen using simple-beam theory, it was possible to intuitively determine the
appropriate value of the foundation modulus. This choice was then verified DY
comparing the stress-intensity factor obtained from the model with established
data for the DCB specimen. The same procedure is followed here, the essential
difference being that there are now two foundation constants, k, add k. Just
as in the previous work, by solving Equations (4) and (5), an expression for the
stress-intensity factor can be determined. By comparing this result to existing
experimental and two-dimensional computational results(11-13)  confidence that
appropriate choices of the system parameters'has been made is gained.

The foundation parameters k, and k, can be evaluated from a simple one~
dimensional "tensile specimen" picture of the foundation elements, In particular,
by equating the extension of the element to the beam deflection, equating the
force ‘acting on the element to kow, and taking the elastic properties of the
element to be the same as those of the beam, it is found that

K = 2ED (13)
e h




g

Similarly, by associating the change in shape of the element when shearing forces
given by k¥ are applied to its sides with the mean rotation of the beam cross
section, the result

=i (14)

is obtained. Using the approximate form of Cowper's shear coefficient given by
Equation (6) and taking A = bh then gives

Ebh

ke =55 (1)

which is appropriate for a rectangular cross section and a material for which
v ~ 0,272, TFor other types of cross section, appropriate expressions for K can
be obtained from Cowper(10),

The derivation of general expressions for the specimen compliance and
the stress-intensity factor appear in Appendix C. Using the results given there
together with Equations (13) and (15), it is found that¥

3 2 3
B30 R )
and
Py 2, 1/2
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when the "uncracked length'", L-g, is large in comparison to h.

To test the validity of these result
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comparison with the stress-
intensit 1 ela tL01ty theory {e.g.,
boundary-point collocation) can be made. Such a comparison is shown in Figure 2
using the data of Gross and Srawley(l2) and of Wiederhorn, Shorb and Moses(13),

To put these results into perspective, the values obtained at various stages of

the development of the beam-on-elastic foundation model are also shown. In
obtaining the curves appearing in the figure, the values of the foundation "oﬁsLauLs
were either those of Equations (13) and (Ll5) or were zero. Notice that the simple
built-in cantilever-beam model is included here as the special case of a beam

supported by an infinitely rigid foundation to which it is mathematically equivalent.

The results given in Figure 2 show that the rigid-foundation models are
clearly inadequate. The two "self-consistent'" beam-on-elastic foundation model
models, on the other hand, provide an excellent representation of the established
data for the DCB specimen. It is worth pointing out that it may be possible to
obtain precise agreement with the established data by introducing further numerical
factors into the relations for the foundatiom parameters. However, the simplicity
afforded by Equations (13) and (14) is felt to be more valuable than the modest
improvement that would accrue by cowmplicating them.

1 =1 -

% Equation (17) represents the stress-intensity exte
constant load. To obtain the stress-intensity factor for crack exten51on under ‘
constant displacement, Equation (16) can be used to eliminate P from Equation (17:
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4. Computational Procedure for Dvnamic Crack Propagation

For computational purposes, it is convenient to introduce a unit of
length of the order of the spring deflections, Let this parameter be denoted
as w, and defined such that

2
kewC = Q. (18)

where A, = bR {s a critical value of the parameter appearing in Equation (11).
Introducing Equation (13), it can be seen that

o= (3Y (19)

Jr, in analogy with the static situation, by defining Ki = LRk

A L/2 K
)



v

where Ky is the dynamic fracture toughness. Notice that when the energy stored

in rotational deformation of the foundation is zero (i.e., in a Winkler foundation), .
the crack-extension parameter is satisfied by having the beam deflection become

just equal to a critical deflection w.. This was the case in the model represented

by Equation (2). However, in the more general case where ki £ 0, the deflection w,
.F

(e IR

4111 L 1 F 1
will have no such specific role,

Dimensionless variables can be introduced as follows., First, let the
new independent variables be

X
and
1/2
— ,/i_"\ L (22)
\12¢/ h vos

Then, let the new dependent variables be

\
W= - (23}
c
and
h
Y = — vy
W (24)

A dimensionless crack-extension parameter can similarly be introduced by defining

P
8 = (25)
4

Equivalently, using Equations (11) and (18)

Or, with Equations (13), (13), (23), and (24)

A 2 1 .2 .
9 =W + 7Y (2¢

As can be readily seen from Equation (25), the critical value of the g parameter
is unity.

Substituting Equations {21-25) into Equations (4) then gives, in the
most general case
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Similarly, Equations (5) become
W'(-e/h,t) - ¥Y(-e/h,1) =0
Y'(-e/h,t) =0
(28)

W'(L/h,t) - Y(L/h,v) =0

Y'(L/h,m) =0

The initial conditions are obtained, just as in the above, by solving the time-
independent version of Equatioms (27). Again, the boundary conditions at the
left-hand end are replaced by

W(0,0) = &/w_

and
Y'(0,0) =0

where & is the initial deflection of the load pins. The ratio 6/w can be related
to the ratio K;/Kgq which is more convenient for comparison with experlment This
is aCCOmpllSheg through Equations (16), (17} and (20) to obtain

1/2 o 2

&)

/ ‘ 3
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Also, if the wedge is considered to be stationary, the condition

ﬁL = \3)

W(0,t) > 6/wC
must be imposed during the crack-propagation process.

Because Equations (27) represent a hyperbolic system, the characteristics
should be obtained in order to set the integration step properly. 1In the present

circumstance, the characteristics correspond to the roots of the equation
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This can be solved by inspection and the result used in connection with standard
procedures in the solution of differential equations by finite-difference technique;
see for example Forsythe and Wasow(1%4), 1In particular,

1/2

AT . 1 <l+v) ’
AE < min E:E . 75; }

where AE and AT denote the step sizes of the two independent variables in the finite-
difference computation.

Equations (27) are valid for arbitrary specimen cross-sectional geometries.
For present purposes they can be simplified by specializing to a rectangular cross
section, The result is

2 2
&y %‘-”— - 4y - (1 B)Y = o 2
of § aT
and (30)
2% _BY g Ay - L2
——— - == _ BH*{(1-OW = — /=
3¢’ °% b 3r?

where it has been assumed that the axial force F can be neglected., The boundary
conditions remain unchanged. The integration step sizes in the finite-difference
computation are now subject to the requirement that

AE > /12 AT (31)

which could also have been obtained directly from Equatioms (30).

An important part of the computation 1s the evaluation of the energy
components during unstable crack propagation. By substituting the various parameters
introduced above into Equations (7), suitable expressions for a rectangular cross
section are found to be

L/h

MU N A e IR R R
aa =4 26 \se/ T l\ge T Y T EEULR 12 J} 5
o .
and (32)
L/h
l = J- _]_;QH)Z + _...-1 (.a_Y_)z' dg
RA 24\6'1' 288 \ot/ J
)
ffices to calculate

To compute the rates of change of the energy components, it su
the "kinetic energy release rate" %%. Hence
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with the "strain energy release rate" - %5 being determined by appealing to an

energy balance,

Details of the finite-difference formulation of Equations (30) and
(32) used in the computing program are given in Appendix D. Also given there
are the results of computations in which the step sizes AL and AT are
systematically varied. As can be seen from these results, the computation is

remarkably insensitive to the particular choices {provided, of course, inequality

{31) is satisfied)which affords a very economical computation. On the average,
each computation reported here was cbtained in about two minutes of CDC 6600
central processor time.

IV. RESULTS AND CONCLUSIONS ON DYNAMIC CRACK PROPAGATION

To perform a computation of unstable crack growth and arrest in a single-
section DCB specimen using the analytical model described in the above, it is only
necessary to specify the geometric dimensicns of the specimen together with the
ratio K4/Kg. For a duplex specimen the ratio Rp/Rg~-the ratio of the energy
absorption ratio in the test section and the starter section, respectively--must
also be given. 1In order to identify the results of particular computations in a
concise manner, these numbers will be given together with a "specimen designation
letter" representing the geometry. The specimen designations together with the
actual dimensions corresponding to that designation are given in Table 1. Two
material comstants, C, = 5190 M/s and v = 0,272, are also used in this work. These
values are appropriate for steel.

The most important feature to be expected from the computational results
is that they exhibit constant speed propagation over a sizable portion of the
event, This is found to be the case provided K, /Kq is not too large. For the
X /Kd values corresponding to the experimental data obtained so far, essentially
constant speed propagation is obtained.

A typical result is shown in Figure 3 where the crack lengths computed as
a function of time are shown as open circles for the standard cases: specimen
type A with K /Kd = 2. The best least-squares linear representation of the
computational ‘results is shown by the solid line in Figure 3. The slope of this
line then provides a measure of the "steady state'" speed V. The least-squares
calculation has been performed routinely to determine V using the computed data
over the first 80% of crack growth. Hence, for each computation the key results

to be reported are the steady state speed V and the crack length at arrest, a,.

Accompanying the crack length-time computational results are the values
of the strain energy, kinetic energy and the absorbed energy. These are routinely
computed at the time that the critical condition for crack extension is met at
one of the finite-difference mesh points. A plot of the three energy components
48 a I:unctlon OI crack j.engr.n IOI.' Eﬂe stanuara case (WI‘.IOSE crac& Leﬁg‘i[l'LimB TECO.‘L"U
is shown in Figure 3) 1is shown in Figure 4. 1In the figure the strain energy is
designated by U, the kinetic energy by T, and the absorbed energy by R. Noticé
that, in accord with Equations (32), the actual values of these quantities are
not computed--only the ratios of the energy components te the constant quantity Rbh*,

% In a duplex specimen the value of R is that of the starter section.
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TABLE I —~ DIMENSIONS OF DCB SPECIMENS USED IN THE COMPUTATIONS*

SPECIMEN DESTGRATION i

Parameter®> A B C D E F c H J K L
a, 92,4 92,4 92,4 184,8 184.8 90,0 90.¢ 0.0 180.0 90.0 9G.0
h 63.5 63.5 63,5 127.0 63.5 70,0 70.Cc 70,0 70.0 50.0 90.0
L 360,7 360.7 360.7 721.4 721.4 360.0 360.0 360.0 720.0 360.0 360.0
d -- 132.1 132.1  -- -~ -- 115.0 115.0¢  -- -- 115.0
e 20.3 20,3  20.3 40.6 26.3 25.0 25.0 25.0 25.0 25.0 25.0

f -- -- 25,06 -- -- -- -- 25,0  -- -- --
b 12.7 12,7 12,7 25.4 12,7 12,3 12,5 12,5 12,5 12.5 12.5
o 25.4  25.4  25.4 SD.8  25.4 25,4 25.4 25.4 25.4 25,4  25.4
£ 58.0 83,9 83,0 174.0 83.0 50,0 90.0 90,0 90.0 90.0 <0.0

* A11 dimensions 4are in mm.

*% Parameters are as shown in Figure 1 (page 4).

D = pin diaweter, £ = pia length.

w00, 1788%
1)
al¥
L A1, A
5Q. 100, 150.
TImE (MICRD SFC)
00 1.00 &3.5

92.4 360.7 0 0250 0.0CGED

Additional parameters are

FIGURE 3.

SPECIMEN
=9
Kq/Kd 2

A,
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FIGURE 4.  SPECIMEN A,
K /K, =2
q d
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In Tables 2 and 3 the steady-state c¢rack speeds (defined as above) and
the distance propagated at arrest are shown for single-section and duplex specimens
respectively. Plots of the crack length-time data and the linear least-squares
representation of these data are given in Appendix E. From the plots it can
readily be seen that no steady-state speed exists when K, /Ky exceeds ~ 2.5. Below
this figure, however, the linear representation is apprently quite accurate. At
least for the computations shown in Table 2, it can be stated that the linear
representation is roughly valid for cracks that arrest within the specimen but
not otherwise,

H

Perhaps the most striking result of the computations is the support that
is given to the following idea: that the steady-state speed achieved by the crack
at some peint in time depends only upon the conditions existing at the time, and
not upon the prior history of crack propagation. This is most easily seen by the
results obtained for duplex specimens. In particular, the relation

K\ R_/K,)
(Eﬂ = ( ?{32 33)
1 (Rfg)




TABLE T1I - COMPUTATIONAL RESULTS FOR

SINGLE-SECTION DCE SPECIMENS

2.0
2.5
3.0
3.5
4.0

2.0

1.5
2.0
3.0

1.2
1.5
2.0
2.5
3.0

2.0

aolh

Specimen Configuration

1.45
1.45
1.45
1.45
1.45
L.45
1.45

26
75
176

* % % %

Specimen Configuration

1.45

352

Specimen Configuration

4,250

2,90
2,90
2.90

113
246
*

Specimen Configuration

4.70
6.80

1.30
1.30
1.30
1.30
1.30

26
75

187
*

*

Specimen Configuration

1.70
2.40
4,00

J

2.55

247

6.10

Specimen Configuration K

1.00
1.00

29
83
218

1.35

1.95

3.45
*

*

v/e
o

.18C

.075
.127
173

061
124
.188
L226
.253

.136

* Crack did not arrest within the specimen,

TABLE 11T ~ COMPUTATIONAL RESULTS FOR DUPLEX
DCB SPECIMENS
ﬂr-ao
(K /K)o R./R (Kq/Kd)T fom (V/G ) (v/c
Specimen Configuration B
2,0 1,2 1.83 148 171 W16
2.0 1.5 1.63 122 171 .14
2.0 2,0 1.41 91 171 .10
2.0 4,0 1.00 40 L1711 --
2.5 2,0 1.77 163 .192 .16
3.0 2.0 2,12 252 .533 .20
3,0 2.25 2,00 220 .533 .19
Specimen Configuration
2.0 2.0 1.41 148 .170 .09
Specimen Configuration
2.0 1.2 1.83 152 .25% .17
2,0 1.5 1,63 117 .259 .15
2,0 2.0 1,41 82 .259 .12
Specimen Configuration
2.5 2,0 1.77 268 .398 .22
Specimen Configuration
2, 1.2 1.83 178 . 289 .20
2. 1. 1.63 137 .289 .19
2, .0 1.41 92 .289 .17
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can be used to put the speeds obtained in the two different sections ovn 2 common
basis. Here, the subscript T denotes properties of the test section, 5 the starting
section. The statement made above is then equivalent to stating that by plotting
the speeds obtained in each section as a function of K /Kd for that section the
results will fall on a single curve. MNotice, however, that the distance propagated
at arrest is very definitely dependent on the entire process as evidenced by the
data shown in Table 3.

Figures 5 and 6 show the computational results for a duplex specimen in
which Ko/Kgq = 2 in the test section., The value of Kq/Kd in the starter section
is 3 which allows a very high crack speed to be achieved prior to its entry into
the test section. Despite this, the steady-state speed that is achieved in the
test section is 0.191 Co which compares well with the value 0.180 C4 calculated in
Figure 3, Crack arrest, on the other hand, occurs at g /b = 4,925, This is in
contrast to the value g, /h = 4,250 obtalned for a 81ng1e -section specimen with
Kn/KA = 2 and no arrest “within the specimen when Kq/Kq = 3.

One of the attractive features of having an analytical model in conjunction
with an experimental program is that it makes possible a systematic investigation
of some aspect of the problem that would be quite awkward to accomplish experi-
mentally. As an example, the effect of load pin mass can be approximately determined.
Within the confines of beam theory, the contribution of the mass of the load pins
can most conveniently be taken into account by varying the beam density while
leaving its dimensions unchanged. This introduces a correction into the equations

of motion for the load point which is related to the quantity

eter, £ is 1gth and, as above, b and h

re D is the pin diameter, ¢ is the a
cimen thickness and half height, respectively. It has been assumed tha
density of the pin material and the specimen material are the same although

differing densities could be accounted for in an obvious way.

In Table 4 are shown the relative effect of the additional mass contributed
by the load pins on the distance propagated at arrest and on the average crack
speed in a typical case, It can be seen that while these results are not especially
sensitive to the pin mass, there may well be instances where the effect should be
considered. In addition, the movement of the pins while the propagation event is
in progress can be important in interpreting the experimental results. Such
results can be obtained from the analysis and are also shown in Table 4 at two
eifferent stages of the crack propagation event. It should be pointed out that
in the current calculation the wedge is considered to be fixed. In actuality some
movement occurs. Finally, it is interesting to notice that the oscillations of
the computed crack length-time calculation generally diminish as the load.oins
become relatively more massive.

In conclusion, the analytical model for unstable crack propagation
developed in this report has now been demonstrated to predict results that are in

very good accord with the experimental observations. Thls is taken as conclusive
support for the energy-balance approach to crack propagation and arrest. In fact,
the most important result of the work described here is to certify the correctness

of this approach for use in less specialized applications, Possibly the most
direct proof of the validity of the energy balance point of view are plots

L= Aalalive pOLiiiL VAICW QLT pPiloa,

typlfled by Figure 3, which show that the kinetic energy at the time of crack arrest
is practically zero.
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TABLE 1V - COMPUTATIONAL RESULTS SHOWING THE RELATIVE EFFECTS OF
VARYING THE MASS OF THE LOAD. PINS*

Kq/Kd = 2 Specimen A

Ratio of pin displacement
from initial configuration

Comparative increase Comparative Comparative crack

in mass at load point crack growth at point at time of 120 u sec
due to the lpad pins speed of arrest arrest after arrest
0.0 1,105 0.928 1,193 1.325
0.5 1.079 0.928 1.110 1.176
1.0 1.000 1.000 1.072 1.120
1.5 0.887 1.000 1.033 1.046
2.0 0,780 0,982 1.005 1.002

* The entries in this table are the ratios of the given Tesult to the result
determined jin the standard case. In the standard case the lead pins had a
diameter of 25.4 mm., a length of 88.0 om., the specimen thickness was
25,4 mm. with the density of the pin and the specimen being equal. For
the tesults of the standard case, see Table 3.

There are, to be sure, aspects of the analytical model that could still
be improved upon. In particular, the simulation of the crack-blunting effect by
imposing a point force and couple at the crack tip in the initial configuratios
is a gross oversimplification. This was acceptable in the previous models (i.e.,
with a Euler-Bernoulli beam) because it introduced a discontinuity only in the
third derivative of w. In a parabolic system, this effect is inconsequential.

In the present formulatiom, however, discontinuities exist in the first derivatives
of the two dependent variables and, the equation is hyperbolic. Consequently,

the spurious effects introduced by the point force and couple remain highly visible
throughout the computation. This is believed to be the reason for the high amplitude
of the periodic oscillation about the mean as seen, for example, in Figure 2.

In addition to a more precise treatment of the initial bluntness,
consideration might also be given in improving the model to account for the
interaction between the wedge and the load pins. Currently being neglected is
the possibility that a torque is applied to the specimen due to friction at the
contacting surfaces. Movement of the wedge and the related contact forces (acting
on both ends of the specimen) while the craek is propagating are similarly neglected,
0f even more importance is the current restriction to a single value of K4 throughout
the entire crack propagation process. However, these improvements are almost
certainly second-order effects and, while desirable, they are not likely to change
the gross features of the results given in this report.
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APPENDIX 3-A

DERIVATION QF THE GOVERNING EQUATIONS FOR THE
TIMOSHENKO BEAM-GENERALTZED ELASTIC
FOUNDATION MODEL OF THE DCB SPEC IMEN

The incorporation of the Timoshenko beam and generalized elastic
foundation ideas into the model of the DCB specimen can best be accomplished
by using three-dimensional elasticity theory, thereby generalizing the derivation
given by Cowper(l0). Let x be the coordinate along the length of the beam and
consider that beam cross sections lie in the y-z plane with the beam deflection
taking place in the z-direction. Then, following Cowper, the quantities ordimarily
arising in elementary beam theory are given precise definitions in terms of the
variables of three-dimensional theory of elasticity., 1In particular, the beam
deflection w is defined as the net displacement of the cross section via the
relation

1 pp
w =y [l dydz (A-1)

where A is the area of the cross section and u, is the displacement compenent in
the z-direction. Similarly, the transverse-shearing force $§ acting on the cross
section is defined as

np
!
|

szdydz (A-2)
where Tyxz is a component of the shearing stress. 1In both of these equations, of
course, the integration extends over the cross section,

The equation of motion of a beam element with respect to forces in the
z-direction is

2
asz o7 2 agz O u,
—BT + —a—y—y + E + Fz =g atz (A-3)

where F, is the body force, p is the mass density and t denotes time. Integration
of Equation (A-3) over the cross section gives

3 BTyz acz
3% II szdydz + If {—gg— + P +F, } dy dz =
a2
- P —2 Lrbr Uz dy dz (A-l&)

ot
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By application of the divergence theorem, Cowper shows that the second term in
the above is simply p, the total transverse load applied to the beam. 1In the
present situation this is just the force exerted by the springs. Hence, for
linear springs

p = —kew (A-5)

Using this relaticn together with Equations (A-1) and (A-2), Eguation (A-4)
becomes

o8 N (A-6)

which is the first of four basic equations of the model.

Cowper next introduces a parameter ¥ which represents the mean angle
of rotation of a beam cross section about the neutral axis.* Hence

1
v = -7 [[2u_dy dz (A-7)

]
where I (= bh”/12 for a rectangular cross section of height h and width b) is the
moment of inertia of the cross section with respect to the neutral axis. Notice
that if (as in the elementary beam theory) cross sections remain plane, then u
would be proportional to ~z whereupon Y would be exactly equal to the slope of
the beam. 1In general, however, there is warping in addition to rotation and the
equality does not hold.

X

The equation of motion of a beam element with respect to forces in the
x-direction is

ESE . awxy s L. PR 3 u,
ax dy az x ° atZ

(A-8)

ying each term by z and integrating over the cross section gives

3 asz asz B
S ff 7, dy dz + fr z 5y + EYS + FX f dy dz =
2
= p§_2 [fzu dyde (A-9)
Jt

The first integral can be interpreted as the net bending moment acting at any
¢ress section. Hence, let

* Cowper's parameter is just the same as that given by Equation (A-7) but with

the minus sign omitted. The negative is used here to counform with the more
commonly accepted form.

- "
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M= [ 2z dydz (A-10)

The second term can be interpreted by rewriting it in order to apply the
divergence theorem. That is,

AT Ar
Tt e n v
=H{g—y(zrxy)+——a (z 1 )-TXZ+zFx}dydz

lzp - }
+ -"!LZFX T dy dz

L}
=l
™
—
o
~
=
]
~
N
#
N
\ﬂ,f
(a5
w

Here, n, and n, are the compopents of the unit normal to the cross section and

ds 1is ah element of arc of the cross section boundary. The first term represents
q, the moment of the applied forces, while the second term is just § when, as
assumed here, F, is either constant or zero., There are two contributions to the
applied bending moment: that due to the torsional stiffness of the foundation
and that due to the axial force F. Both are proportional to the mean angle of
rotation of the cross section. Specifically,

q = k¥ +FY (A-11)

where k. 1is the foundation modulus for rotational deformation and ¥ is the axial
compressive force. Finally, substituting Equations (A-2), (A-7) and (A-10) into
Equation (A-9) gives
a2
+ (k +FW -8 =-p1 2% (A-12)
r 3t

G/
=

[v75
X
ro

which is the second equation ¢of the model.

A relation between the bending moment and the rotation is obtained next
from the Hooke's law equation for deformation in the x-direction,

_ Suy - - A=
Ee, = E —x T v (d§ +ta3) (A-13)

Following Cowper, the stresses g, and g, are considered to be negligible in
comparison to g, and are dropped. Then, multiplying (A-13) through by z and
integrating over the cross section, it is found that

- FI oY _ M (A-14)
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which is the third equation of the model., Notice that in deriving this relation,
for the first time an assumption other tharn that normally arising in linear

elasticity was used.

The Hooke's law equation for shear deformation in the plane of the cross
section is

Gy faux auz j (A-15)

Xz L
Tntegrating over the cross section gives

u
s 1
fr —gﬁ dy dz + = ﬁr u, dy dz = G ff T dy dz

ax X2
Now, defining a "residual™ displacement ug such that
1 ' -
uX=AIIuXdydz-—z‘{’+LS( (A-16)
Then
du, au’
=
—_ = ¥ +
4 ¥ 3z

Using this result together with Equation (A-1), then, gives
du

1[ . X g { } ‘__'l r
[Ty et pavaza v g o = [T dy
or
Bu'
. )
) R T (A-17)
oX A vw . A2 Qe J

The raison d'etre of Cowper's work is the evaluation of the integral in
Equation (A-17) and its interpretation of the ''shear coefficient" K which, in
effect, is defined such that

( oy S A-18)
J'ri'r -G‘—zfdydz=m {(A-

The evaluation of this integral involves the further assumption that the shearing
stresses do not vary too rapidly along the length of the beam. Given this, ¥ can

be evaluated for a number of cross-section shapes. Of interest here is the result

for a rectangular cross section which is K = 10(1+v)/(12+11lv). Consequently,

the fourth and final basic equation of the model is given by combining Equations (A-17)
and (A-18) to get

—~

Sw _ -
=Y

which relates the shearing force to the deflection and rotation of the beam.

A more convenient form is obtained by eliminating M and S from
Equations (A-6), (A-12), (A-14) and (A-19) in order to have two scuations in
two unknowns. This is accomplished by first substituting (A-19) into (A-6) to get




2
3 { dw _ 0w
HGA 3% Pyl b4 } - kew = pA:;E

Then, substituting (A-14) and (A-19) into (A-12) gives

2 2
3y _ { 2w Lo o_¥
-ET ;;E + (kr + F)Y - KGA 3% ¥ j = - pl FYY

Finally, the two governing equations can be written in terms of a foundation

partially supporting the beam by introducing an arbitrary (at this point at least)
crack extension parameter g, Then

2
EI a_\f + KGA I a_w - Y ! -~ FY - k H* (8 -8)¥ =
2 Lox J T c
ax 2
- a—‘iz’ (A-20)
3t
and
2 2
7w 3y ) - a2 -
KGA {a 5 - aw [ - k¥ (8 -8)w = oATT (A-21)
X at

where g denctes a critical value of the crack extension parameter and
H* is the ordinary Heaviside step function.

L, x>1
1o = { o o a2

3

which is modified to allow a switch f[rom unity to zero but not vice versa,
Equations (A-20) and (A-21) are the governing equations for the Timoshenko
beam-generalized elastic foundation model of the DCB specimens that are used
in this work.
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APPENDIX 3-B

DERIVATION OF THE COMPONENTS OF ENERGY AND
THE CRACK-EXTENSIQON CRITERION FOR THE TIMOSHENKO
BEAM~GENERALIZED ETASTIC FOUNDATION DCB MODEL

A completely general statement of the strain energy per unit volume in
three-dimensional isotropic elasticity theory is

T, I (B-1)

Consistent with the derivation given in Appendix A, all of the stress components
in the Timoshenko beam can be neglected with the exception of gy and Tyy- Hence,
for the beam, exclusive of the foundation

1 |
dUb T2 {Txex + Txz Yxz [
or
du du
1 X au ]
S X X
v, =3 Cx 3x T Txz ﬁ‘E% My ] i (B~2)

In order to use the results of Appendix A it is necessary to integrate over the bean
cross section separately, deferring the integration over the length (i.e., in the
x-direction) until later. Hence, let

- B-3
Ub f Ub,xdx (B-3)

so that
S an

.
1 Oty [ °x ]7
= - — p—— R-4
Uy, x 2 If {jx ox  'xz | ox e )y de (B-4)

3

where the integration is taken over the beam cross section.

To evaluate the integfal in Equation (B-4), it is convenient to introduce
two "residual" displacement components such that

u, =w+ u (B-5)
and
- '
u =u -z¥ 4+ u R~6)
x x ¥ X (

where, by definition

G; = i JI u dy d=
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and other quantities are as in Appendix A. It should be recognized that ué and
u' would be exactly zero if the beam cross sections remain plane in bending and,
therefore, are likely to be small with respect to the total displacements,

Substituting Equations (RB-5) and (B-6) into Equation (B-4), noting that
w, ¥ and Ug are functions of x only, gives & result that can be written

oy o= I J 25 dydz + {%& - w} j J T dvdz +

(B-7)
- au du' rau; dul.

X

. -
+ J J Pxt ax Ry szt?ﬁz * azj j dvdz

Now, on the basis of the statement made above and consistent with the assumptions
introduced by Cowper, the third integral in Equation (B-7) can be assumed to be
negligible. Then, the remaining two integrals can be evaluated using results
derived in Appendix A. In particular, by combining Equation (A-10) with (A-14)
and Equation (A-2) with (A-19), it is found that

LN

Y

sz dydz = - EI == Sx (B-8)
and
jJszdydz = KGA {%ﬁ - Y} (8-9)

Substituting these into Equation (B-7) and the result into Equation (B-3)
then gives

2
1 (oi) W M
u == + row dx B-10
b =21 KA 3% = Y] ) (3-10)
for the strain energy of the beam
The straino energy of the foundation and the kinetic emergy of the beam
can be written down by inspection. These are, respectively,
1, 2 2
U, =7 J v+ kYT dx (B-11)

and

e ) e

To the energies given by Egquations (B-10), (B-11) and (B-12) must be added the
energy F¥Z which then completely accounts for the energy contained imn a Timoshenko
beam on a generalized elastic foundation, For the DCB model, however, the energy
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released by crack extension must be accounted for as well. To evaluate this,
Equations (B-10) and (B-11) are first combined to obtain the strain energy of

a DCB specimen of length L using a beawm partly supported by an elastic foundation.
This 1is

2 , 2
'E a_w) +}{GA'\2—:-‘P/‘ +FEC +

o -
'__,«

(B-13)

-2 27
+ (B 8) |k + k¥ pdx

where H* is the function defined by Equation (A-22). Netice that the factor 7
has been omitted because U now represents the total strain energy of the DCB
specimen which is considered to be composed of two identical beams., Similarly,
the kinetic energy of the DCB specimen is

L 2 2.
w

(-—) rof{d) L ax (B-14)
5 8¢/ J

o L—~;
-

To both verify the correctness of Equations (B-13) and (B-14) and as a preliminary
step in deducing the appropriate fracture criterion, the time derivative of the
total energy of the system will now be calculated,

Beginning with (B-14)}, upon differentiation with respect to t, it can
readily be seen that

ar _, p dw . a5 .
dc "2 ieA s 22 tol 3y at zf dx (B-15)
O

Next, differentiating Equation (B-13) with respect to t and simplifying by
appropriate use of integration by parts gives

2 2
EEPIN R R S I 8
t dx - ox
o
Y | 3w , ow , ¥ Y Ty py 4
" ar  oBx *3t T ax + ¥ t J
" r ow , 8¥ "
+H-~(9c—8)1_kew-at+kr‘i’ sed T
' (B-16)
27 aH"“'(SC-e) N
+"‘[kw +k\*r _-—O_t'-——-, dx +
=L
+ rEI LT axea SUST L
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The final term in the above is the rate at which work is being donme by shearing
forces and moments acting at the ends of the specimen. Under the conditions
being considered hera, these contributions are zero. This term can be dropped,
therefore.

Now, it 1s unlikely that the crack-extension criterion will be siwmulta-
neously met at more than one position, but the possibility can nevertheless be
admitted as follows. &et x = dg, ¥ = @], «+., X =0y be the positions which at

time t, a{x) = g, and €2 Let x =81, X = By, ..., X = BN be similar positions
except that 48 > O Notlce that unless there are "islands" of uncracked material,
N = 0. Hence,
N
H*(G-ec) = H(X—do) +;L {H(x-di) - H(x—Bi)} (B-17)
i=l

Recalling that the step function H* permits a transition from 1 to 0 but not
vice versa,

3 (8 ~8) N s,
e T e sty

i=0

where A denotes the Dirac delta function. Substituting this into Equation (B-16)

then gives . L v 9
av _ , 8t .8 ¥ Fow T s 1
e 2 | S5 qEI 2 +KeA ST - yj - FY -k HAB -8)¥r dx +
o x
L 2
ow o _w _ oY
-2 I = {HGA[BXZ - ax] - K HE(E 5w } dx + (B-18)
N
- O
i 2 2
-/l At chw + kr‘y]
i=0 =y

Adding Equations (B-15) and (B~18) then gives

- Hoa 1% _ w] +

d
s T I {pI *-1 - EI —= 3w

dat =23 2

a Y
at ax 2
0

Y+ k B (3 ~9)‘¥}dx+zj 2 fon a_

2
- wea [ - Lty meco_-a)w }oax+
-3x e <
3 S - o
Z} g;— .k w + k ¥

i=0 bt
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Comparison with Equations (A-20) and (A-21) shows that the two integrals are
identically zero. Thus,

N
LA
dau  4ar _ N/ -ka2+k\y2? (B-19)
dt © dt L\de/s Le r
i=0 i

which proves that energy is conserved for a nonrupturing foundation and, therefore,
shows that the basic formulation of the energy terms is consistent with the

I =
governing equations of motion.

Under the condition that no external work is done on the specimen
during crack extension, the total energy of the system is HT minus the energy
absorbed at the crack tip. Let Ri denote the energy absorbed in the foundation of

new crack surfaces per unit area of crack advance at the point x = @i. Application
of the fundamental energy balance principle of fracture mechanics then requires that:

N

dU + 4T + $1b Q dai 0 (B-20)
ay 4, &1 — = -
dt dt /o711 de

i=0

where bj denotes the thickness of the specimen at x = . Combining Equations (B-19)
and (B-20) then gives

N

= dey .

v : is _ 2 21 - _
ST ety et ] ) =0 -2n)
i=0 x= i

which is for the peneral situation wherein "islands" of uncracked material exist,
each being ruptured at a different rate.

In the simpler situation of a unigue crack tip at the point X =2 1in a
constant-thickness constant-toughness specimen, Equation (B-21) reduces to

r -
bR = | kew2 + krYz_f
L oy

(B-22}

which reveals that the crack-extension parameter must be associated with a
critical value of the bracketed quantity. WNetice that for a Winkler foundation

(where k, = 2Eb/h and k. = 0), Equation (B-22) defines a critical beam deflection
e Th a

i 4
W iz 4 § i) 1

[

(LR

)2 (B~23)

\
() ]=x
=1 (2

which remains useful as a reference length even in the more general situation
now being considered.
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APPENDIX 3-C

SOLUTION FOR INTTTAL CRACK EXTENSION IN
THE TIMOSHENKO BEAM-GENERALIZED ELASTIC FOUNDATION DCB MODEL

The governing equations for a DCB specimen modeled by a Timoshenko
beam and a generalized elastic foundation for initial crack extension can be
obtained by simply omitting the inertia terms in Equations (A-20) and (A-21).
This gives

2
. } .
BT 9L 4 oxea 14¥ vl L EGOY = 0 (c-1)
2 Ldx J r
dx
and ? ‘
XGA ag—E - gi} -~ k H(x)w = 0 (C-2)
de2 dx e

>
-+
41
=
D

Note thart it is convenient here t

]
2]
+
i)
5]
ad
.

pu

_____ the origir h

Heaviside step function has been adjusted accordingly. The boundary counditions
are those corresponding to an applied shearing force F and zero bending moment at
the cracked end with stress-free conditions at the other, Using Egquations (A-14)
and (A-19), these can be expressed as

KA [w'(-a)y ~ v¥(-g)] =P
and (C"B)

Y'(-a) =¥'(c} =w'(c) ~ ¥(c) =0

where ¢ = L-¢ is the "uncracked" length of the specimen. Notice that in the case
of the semi-infinite beam considered below, the dimension ¢ is considered to
greatly exceed all other beam dimensions.

The procedure to be followed here is, (1) to separate the problem into
the two regions where the differential equations (C-1) - and (C-2) have constant
coefficients, (2) to determine the solutions for the two regions independently,
using the Laplace transform technique for the x > 0 region, (3) satisfv the
boundary conditions on the extremities of the region, and {4) match the solutions
at the interface batween regions. From the result so obtained, expressions can
be deduced for the strain-emergy-rclease rate and, in turn, the stress-intensity
factor. The latter quantity will then be compared with known experimental and
two-dimensional computational results to establish the validity of the model for
the dynamic situatjon. As a second benefit, the solution will provide the initial
conditions for the dynamic solution in closed form. Thirdly, the exact value of
the total energy so obtained can be used to help judge the accuracy of the finite
difference caleculation.
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Preliminary Analysis

In the region x < 0, the beam is free and Equations {C-1) and (C-2)
reduce to

2 .
"y U
EI 3 + HGA Ldx Yj 0
dx
and 9
e 1
HGA {QME - gﬁ; = 0
kd 2 dX
X

These can be integrated easily. To facilitate the matching requirement, the results
are most conveniently written as

P 3 2 6ET - -
w(x) = {x ¥ dax” - P Kp + ¥O)x + w(0)) (C-4)
and
Y‘ ~ P j’ 2 + 2 W.\ 4 wrren T fm BN
(%) =57 1% axr + ¥(0) (C-5)

where w{0”) and ¥{(0~) denote the values at the interface between the regions.,
Notice that Equations (C-4) and (C-5) already satisfy the boundary conditions
at x = -g; i.e., Equations (C-3).

In the region X > 0, the beam is supported by the foundation whereupon
Equations (C-1) and (C-2) become

Z,
EId”"+xGA{@-@-kw=o (C-6)
d 2 dx J r
x
fdzw d¥)
Jam _ == - = -
KGA i kv =0 (C-7)
>4

The integration of these two equations can be accomplished by use of the Laplace

g e oy s o q
Transform. That is, let

3 8

w(s) = e_sxw(x) dx

[} L=

8

e_st(X) dx

[
rd

F(s) =

Q

Applying these to Equations (C-6) and (C-7) then gives
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KCAsw + | ETs - (k_+ HGA)] ¥ er1| vl + s‘i’(0+)j- + KGAw(O)
L [

- - - + +.
 ¥cas” - k| @ - KOASY = KGA Ew'(oJ’) + su(0) - ¥

g = = (C‘s)

and solving the pair of simultaneous algebraic equations, it is found that

w(s) = -‘\w(0+)53 +wohst + Ty oty - Biw(0+)] +

(C-9)
- . . - o=l
Ta2w o2 Moty vty ] b - it L (a2 2 4 a202,.27 )
LT S AR L M Med " PetMrr )
and
- o +.3 4.2 o2+ 2f + +.o0 T
= + t - | 1 -
Y(s) L‘P(O )s v'(0 s !_Be‘f’(o Y + ¢ \W 0 ) ¥{0 )) N s + (C-10)

-1
a2 Tyregt 2 kT 2 2]2 272 27
B L ¥1(O) + &w(0) } O E W W }

The inverse transform can be obtained from Equations {C-9) and (C-10) by standard
techniques. As is often the case, the form of the solution will depend on the
relative sizes of the parameters appearing in the problem, In particular, it is
assumed that

. 2
2,2 2
4o (8, +7e) > (B2 + B

or, using Equation (C-8), that

2
Kk
_e [ e x|
Y21 7 Rea " EU (¢-11)
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Provided Inequality (C-11) is satisfied, the solutions to Equations (C-6) and
(C-7) are

—
i

w(x) = Eéﬁ t [W(0+)(§2 - ﬂz - Bi) + Y'(0+)] sinh £x sin Tx +

0262 $24e?
+ [w'(0+)<1 L v (0" 5 g | cosh £x sin Tx +
£+ £ +N
(c-12)
ai+€2 Bi+€2

P N ‘ + )
+ w' (0 n1l+ T - ¥(0) 5 T sinh €% cos Tx +
- \ §2+ﬂ2) §2+ﬂ ]

+ 2§ﬂw(0+) cosh Ex cos Tx

and
/ 2 2 2 2+ . ,
¥(x) = Eéﬁ [Y(0+)\Ez =M+ e - Be) - e w'(0 )] Sinh Ex sin Tx +
2 2 2
+ (Y'(0+)/l e e - w(0+) e’ g] cosh Ex sin Tx +
L \ i:_)zwz)d 2
2 2 2 (C-13)
P +. ./ Be ) -+ Be€ | i
+ LY'(O Nl o+ 5 2}ﬂ + w(0 ) >3 T | sinh £x cos Tx +
YETH £°41
+ 2§ﬂ¥(0+) cosh £x cos Tix
where

(C-14)

Notice that Equations (C-13) and (C-14) are general solutions and do not satisfy
any particular boundary conditions or continuity conditions.




Determination of the Foundation Constants From the
Stress-Intensity Factor for a Semi-Infinite Specimen

In the special case where the "uncracked" length of the DCBE specimen
greatly exceeds its other dimensions, the appropriate boundary conditions to
be applied to Equations (C-12) and (C-13) are for the vanishing of w(x) and ¥(x)
as x becomes large. It can be shown that this condition is satisfied by taking

T R AN 7 &
5+ TN ) - 288 w(0 )
W'(0+) = \ ) e

X+ 1+ 52
and > 2 (C-15)
: + 2 2 +
Bew(0 )+ 28l + M) ¥ (0 )
\yl(o-}-) = - e ( )

2 + 2 2
+
BT+ + B

From Equations (C-4) and (C-5), the sclutlions for the cracked portion of the
specimen, it is found that

- - p
(0 0 - -
w' (0 ) =¥(0) TN
and (C-16)
- Pa
i &
Y0 ) il
Now, referring to the relations given in Appendix A, continuity of deflection,
slope, shearing force and bending moment require that w, ¥, w' and ¥' all be
continuous. (Note that when @ and M are acting at the interface, this is
not the case.,) Henece, equating the right-hand sides of Equations (C-15) and
(C~16) allows a determination of w(0) and ¥(0) to be made. This is
2,2 .2
§ N8, 2 §2+2, P
RGO S N N L S T 777
47 (E4) B e 2
(C-17)

224+

2 2 P
¥(0) = - {Ze Ea + ¢ —_—
2,22, 22 | ¥oa
457 (57 +17) g e
where . the distinction between 0~ and 07 is now superfluous and has therefore
been dropped.

The compliance of the DCB specimen--the deflection of the free end per
unit of applied force--can be obtained from Equation (C-4) by setting § = w(-Q).
This gives, in general
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> EDY 1
5 =2 {1 (HGA a_Z} - ¥(0)z + w(0) (C-18)

or, substituting Equations (C-17) for the semi-infinite specimen

3 3
el ‘h h -
5 =31 {1 TGt Cz\a) t CB\G) } (C-19)
where
2.2 2
c. =87 2 T e )
1 h o\, .2

4 Py -ple’

2.2 2
3 2/ E 0748, ) (c-20)
C, = = 3 ]l + 2¢ C-
22
2 p%e? ‘452 (gw)e )
2 2
2, 2 F
c =_§(§+ﬂ)< S M B, )
3 322 2 2 2 22
h™e 8, 48 (5 +17)-3_¢
The stress-intensity factor can now be obtained since
K2 E&
Using Equation {(C-~19) to eliminate § in favor of P and using I = bh3/12, then,
for crack extension under constant lead
1 2. 1/2
K=2/3 3/2 tl + = Cl\a) + = 2\a) } (C-22)
. , 2
Notice that if C; = 3C,, Equation (C-22) reduces to
B2 1l h
= — = Cc-23
K=2/3 3/2\+3a) (¢-23)

which is identical te Equation (1) provided C1 = 3.

Values of the beam and foundation constants that will put the model of
the DCB specimen in good accord with experimental and with the more precise two-
dimensional computations, can be obtained by using the expressions for the foundation
parameters given as Equations (13) and (15). It is them found that
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Cy = 3./5/4

c, = 3/2

2

Cy = 3./5/16

Upon substituting these into Equations (C-19) and (C-22), the results given as
Equations (16) and (17) are obtained.

Finally, a comparison between the values of the coefficients obtained
with the various analytical wmodels can be made with the empirical values of
Mostovoy, et al, This is shown in Table C-1, Unfortunately, there is little
basis upon which to choose one set of these over another., However, it is
instructive to notice that if the wvaluwes given by Mostovoy, et al., were

substituted into Equation (C-22), the result

2.1/2
2.3 f h) ‘h
K o372 (Lt 1'2(a) * O'Gg\a) }

would be in relatively poor agreement with the values shown in Figure 2,

TABLE I - COEFFICIENTS IN THE RELATION FOR THE COMPLTANCE OF THE

DCB SPECIMEN AS GIVEN BY VARIOUS DIFFERENT ANALYTICAL
MODELS

3
i e’ h b2 B3 O
P 3T L LY@ e FeE

Analytical Model
y 4 % 4
Euler-Bernoulli beam on a2 rigid 0 0 0
foundation
Timoshenko beam on a rigid foundation 0 0.75% o]
Euler-Bernoulli beam on a Winkler 1.92 1.22 0,39

foundation
Timoshenko beam on a Winkler foundation 2.43 1.98 0.50
Timoshenko beam on a generalized 1.68 1.50 0.42

foundation

Semi-empirical extension of simple 1.80 2.08 0.22
built-in beam model given by
Mostovoy, et al,(12)
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APPENDIX 3-D

FINITE-DIFFERENCE APPROXTMATION TO EQUATIONS FOR
DYNAMIC-CRACK PROPAGATION iN THE TIMOSHENKQ BEAM-GENERALIZED
ELASTIC FOUNDATION DCB MODEL

The governing equations for dynamic-crack propagation in a DCB specimen
modeled by a Timoshenko beam on a generalized elastic foundation in dimensionless
form are given by

¥+ MW - A4V - 2H%(1-B)Y ='f§ ¥ (D-1)
and
W Y - GHE(L-AW = W (D-2)

Here the prime notation indicates differentiation with respect to €, the dot with

respect to T. Hence, replacing the derivatives by finite-difference approximations
gives

1
(A8}

5 {Y(§+Ag,¢) - 2¥Y(E,7T) + Y(E—AE,T)} +
2 T 3 _ }
*ac {W(§+A€,T) - W(E-AE, ) - |4+ Zh*(1-8) | Y(g,7) = (D-3)

= ~——i-3 {Y(§,1+AT) - 2¥(E,T) *+ Y(g,T'AT)}
12(AT)

and

2 {W(§+A§,T) - 2W(E,T) + w(g_Ag,T)} +
A
1 * —
T 24E {Y(§+A§'T) y Y(E‘AgsT)} - 6BF(1-0)W(E,T) = (D-4)

1 A
= AW(E,THAT) - W(E,T) + W(E,7-AT)
el }
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Upen solving these for Y(E,T+AT) and W(E,T+AT), respectively, the following
formulas are obtained,

and

¥(g,mram) = 12 (47) {Y@mz ™)+ T(E-aE,m) ) +

2
Qr) Juce
+ 26 LI {ucziag,m - weg-ag,n] +

(D-5)

-2 fAT) Sz uend2 v wa-e ] bran - veran

AE

rany Ay )
WE,tT) = WRT) {W(EHE,T) +(Eag,m ]+

2 .
(A1) ‘
-2 At {Y(§+A§,T) - Y(%-A@,T)j +

'8 /A_T)z C 2 4 26(a) PHR(1-8)} W(E,T) - W(E,T-AT)
" 1% \ag T Jre, ’

These are the recursion relations used in the computations.

The components of energy can be computed from the finite-difference

approximation as follows. It has been shown that

and

Hence,

L/h
N 2
% = J {2—14 (xH? + (w 0% + Hr(1-9) E_w + = 7}d§

(o4

L/h

2
7 j {""'Z " + 545 (07 e
O

using central differences for the spatial derivatives

- 2
L TY(EHAE,T) - Y(E-AE,T)
el TAE J o+

2
+1 __(_E‘+Ar-; T;Aé W(E-AE 1) _ Y(g,ﬂ] +

+ e Wi, n + 35 v, n | fas

(D-6)

(D-7)

(D-8)

(D-9)
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and, using forward differences for time derivatives

T

= L.
RA 24 L.

2
gﬂ{ CWLETY - WS, T-AT) + W(ELI:EAE)] +
L 27

(D-10)

U

2
1 T3Y(E,T) - 4Y(E T-ATY + Y(E,T-2AT) 1}
1| 25T IR

wherekl implies summation over the beam length. These relations are also used in
the computing program.

The final step preparatory to carrying out a large number of computations
is to decide on suitable step sizes for the finite-difference procedure. Tables D-1
and D-2 show the results of a number of cowputations in which only the step sizes
were varied. It can be seen that the solutions obtained are remarkably insensitive
to these values and that, for the purposes of this report, the values AE = .05 and
AT = .01 are entirely adequate. Most of these computations used these values,

Nevertheless, a number of further check runs were carried out using more precise
values. No substantial changes in the results were ever noted, however.
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TABLE D-I - COMPARISON OF CRACK LENGTH VS TIME RESULTS COMPUTED USING
DIFFERENT FINITE-DIFFERENCE STEP SIZES

Specimen Configuration A, Kq/Kd = 2.0

N
712 h
a-ao AE = 200 AE = 100 AE = 050 AL = 0I5
h AT = .010 At =.005 AT =.001 At =.010 A1 =.,005 AT =.001 AT =.010 AT =.005 AT =,001 AT = .001
.2 [} 0 0 0.110 0.110 0115 0,160 0.165 0.167 0.195
0.4 . L2140 215 216 0.360 0.365 0.367 0.480 0,485 0,489 0.5%63
0.6 640 JOhS 649 0.810 0.810 0.8i4 0,860 0.865 0.869 0.897
0.8 .900 .905 .907 1.040 1.050 1,053 1.100 1,105 1,108 1.135
1.0 1.130 1.130 1.134 1.430 1.440 1.443 1.520 1,520 1.524 1.573
1.2 1.580 1.59C 1.592 1.770 1.770 1.775 1.780 1.785 1.789 1.819
1.4 1.820 1.825 1.827 2,010 2,010 2,014 2.050 2.060 2.065 2,130
1,6 2,040 2,050 2.053 2,410 2,415 2.417 2.460 2.470 2.472 2.512
1.8 2.470Q 2.480 2.481 2,660 2,660 2,664 2.690 2.695 2.698 2,751
2,0 2,710 2,715 2,718 2.990 2.985 2.989 3,060 3,070 3.072 3.137
2,2 3.090 3.105 3.102 3,360 3,365 3.370 3.390 3.390 3.393 J.445
2.4 3.390 3.400 3.3%99 3,600 3.600 3,604 3.620 3.630 3.634 31.668
2.6 3.640 3,655 3.652 3.980 3.980 3.984 4,020 4,020 4,023 4.051
2.8 4.000 4.015 4,014 4,240 4,245 4,249 4,300 4,305 4,312 4.339

TABLE D-1I - COMPARISON OF COMPUTATIONAL
RESULTS USING DIFFERENT
FINITE-DIFFERENCE STEP SIZES

.200
. 100
+050
.025

+200
.100
050
025

fpecimen Configuration 4, Kq/Kd = 2.0
(a) Steady-State Crack Speeds
V/C0
AT = .010 Ar = 005 Ar = 001
.1868 L1862 L1863
.1783 .1784 .1783
1797 .1796 1796
1785
(b) Crack Arrest Point
ar/a.o
At = 010 AT = 005 AT = .001
3.33 3.33 3.33
Z,87 2,87 2.87
2,93 2,93 2.93

2.93
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APPENDIX 3-E

COMPUTER PLOTS OF RESULTS FQR DYNAMIC-CRACK
PROPAGATION IN STEEL DCB TEST SPECIMENS

In this appendix the computetr plots obtained for a large number of
different specimen geometries and loading conditions are presented. Two plots
accompany each run: a crack length-time plot (using material constants appropriate
for steel) and a plot of the energy apportionment as a function of crack length.
Individual runs for single-section specimens are identified by a string of numbers
under the abscissa. In order, these numbers correspond to Kq/Kg, Rr/fg, h(mm),
Qo(mm), L{mm), AE, and Av. These values suffice to identify a particular specimen
so that dimensions not specifically given can be obtained from Table T,
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section. The fractures are initiated in the starter section, and this makes it possible
to confront test materials with a fast moving crack under controlled conditions close to
the transition temperature., A fully dynamic analysis of unstable crack propagation and
arrest in the DCB-test piece is derived. The technique is based on the beam-on-elastic
foundation model of the DCB specimen used previously but with the simple beam and foun-
dation representations replaced by a Timoshenko beam and a generalized elastic foundation
Crack speeds, energy levels, and the crack length at arrest are calculated with this
model using a finite-difference method and are compared with the measurements. The cal-
culations and the measurements reveal that unstable propagation in the DCB-test piece

proceed from the start with essentially constant, steady-state crack speeds that depend
on specimen gecmetry and the starting conditions. The calculations also predict instanc
of discontinuous propagation at high speeds. The kinetic energy imparted to the test
piece is recovered and contributes to the crack driving force. It follows from (Continu
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Abstract (Continued)
this that fracture arrest is controiled by the histofy
of energy dissipation throughout the entire propagatjon
event, rather than on Ka’ a single static toughness
value calculated at the arrest point. For the 4340
steel, increases in crack velocity up to 860 ms~! at
room temperature are accompanied by a 4-fold increasp
in the dynamic fracture energy (a 2-fold increase
in the dynamic fracture toughness), and by increasesg
in the size of the shear lip. Dynamic toughness
values for the A517F grade at -78°C for crack speeds
from 475 ms™! to 780 ms~l were also about 2 times thg
reported Ky.-value.
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