
Abstract

The marine industry has come under increased pressure
in recent years to reduce the risks of accidents in both U.S.
national and international waters as a results of disasters
such as the HERALD OF FREE ENTERPRISE. This
heightened emphasis has led to the identification of a
common cause for the majority of accidents; human and
organizational error. In this paper, the authors outline a
decision making process for marine managers and engi-
neers to assess the risks of human and organizational
error in their operations, and to develop and prioritize
appropriate countermeasures. The process is identified as
HERROS: Human Error Risk Reduction Operating Sys-
tem.

1. Introduction

As a result of such disasters as the VALDEZ, the Ro-Ro
ferries HERALD OF FREE ENTERPRISE and ESTO-
NIA and other mishaps, the marine industry today is
subject to tight internal and external scrutiny. At the core
of these accidents and indeed, for approximately 85% of
all major transportation mishaps is the human element.
The import of human involvement in complex technologi-
cal systems has been well established. However, until
recently, few practical measures to address and attempt to
control the risks associated with human and organizational
error have been available. Research recently concluded by
the authors has sought to provide the industry with tools
to assess the risks of and countermeasures for human and
organizational error [1, 2]. This project is one part of a
long-term research program to learn how to improve the
management of human and organizational factors in the
marine industries. This program is conducted under the
auspices of the Marine Technology and Management
Group (College of Engineering and Haas School of Busi-
ness) at the University of California at Berkeley.

In this paper, we describe the decision making process that
could be used by marine managers (mates, masters, fleet
and port managers, regulators) and engineers to assess the
risks associated with the operations under their purview
and to develop and prioritize potential countermeasures.
We begin by outlining a generic risk based decision mak-
ing system.

2. Generic Decision Support Process
Risk based decision making processes have been the sub-
ject of a great deal of interest in industry. Such processes
provide an ability to encode and incorporate uncertainties
inherent in today’s highly complex and changing marine
systems. Statistical decision making provides a process to
help ensure that optimal decisions are reached, consistent
with the goals and perceptions of those involved as well
as all available information. Here, it is important to note
that “optimal” decisions are not necessarily those that
achieve the best outcome (which is a result of chance as
much as decision making skill), but rather one that is most
appropriate for the information, values, and goals for a
particular situation. On average and over time, these deci-
sions should provide the best outcomes more often than
not. Furthermore, as stated previously, use of a risk based
system allows for decisions to be made time and again, by
different decision makers, which are consistent with the
stated values of the particular organization.

For our research, we developed a generic decision support
system, which was then adapted and applied to human and
organizational error in the marine industry. To do so, we
relied heavily on the procedures established by Howard
and Matheson [3] (Fig. 1), and as modified and expanded
by Ashley [4]. We will briefly describe these generic
procedures before outlining their use in our framework.

2.1 The Decision Analysis Cycle
As shown in Fig. 1, the decision analysis cycle is broken
down into seven major stages: 1) collection of prior infor-
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mation, 2) the deterministic phase, 3) the probabilistic
phase, 4) the informational phase, 5) the decision phase,
6) information gathering, and 7) action. With this frame-
work, the analyst has a powerful tool to frame the problem
and ensure that all pertinent steps are taken.

2.2 Initial Information Collection
The first step in any decision analysis is the collection and
analysis of all pertinent background information. One of
the keys to proper decision analysis is to identify and
incorporate any and all pertinent information, no matter
how uncertain. To do so, review of the background litera-
ture (journals, newspapers, etc.) as well as unstructured
and semi-structured interviews are used to develop the
background in the subject matter and requisite details of
the problem. As accurate a picture of the problem as
possible should be developed at this earliest stage in order
to ensure focus and direction for all future work. Time
invested in this stage typically has great payoffs later in
the analysis, as the resultant familiarity with the problem
allows for better targeting of the analysis process.

2.3 Deterministic Phase
The next step in the analysis, the deterministic phase, is
one whereby the decision problem is framed and the
structural model developed for the analysis. Table 1 [4]
identifies the steps involved with the deterministic phase
of the analysis.

Table 1  Deterministic phase steps

Define and bound the decision problem

Identify alternatives

Establish the outcomes

Select decision variables and state variables

Build a structural model of the system

Specify time preferences

Eliminate dominated alternatives

Measure sensitivity to identify crucial state variables

In bounding the decision, the analyst specifies the focus
of the problem (what decision must be made). With this,
identification of the perceived and new alternatives can be
made, and potential outcomes determined for sets of alter-
natives. Here, outcomes are defined as “whatever the
decision-maker would like to know in retrospect to deter-
mine how the problem came out” [3].

The selection of system variables is an iterative process,
whereby factors affecting and describing the outcome are
defined, screened for importance, and redefined. System
variables are sub-divided into state and decision variables,
in order to differentiate between their control. While state

variables, being determined by the environment of the
problem, are not controllable, decision variables are the
set of factors under the decision-maker’s command. The
focus of any decision analysis, therefore, is on the decision
variables, as those are the only ones which can be affected
by the decision maker. 

Once the decision variables have been identified, con-
struction of the model may begin. The system structural
modeling approach that we utilized was the influence
diagram. This approach facilitated interpretation by our
subject matter experts (who did not know decision analy-
sis techniques). The key feature of the influence diagram
is its graphical illustration of the interrelationship between
variables which, when constructed properly, can greatly
aid in the understanding of the problem at hand. Fig. 2 [5]
shows the six basic elements used in an influence diagram.
Rules for creating and working with influence diagrams
are included in McNamee & Celona [5], Bodily [6],
Schachter [7] and elsewhere, and will not be repeated here.

Upon selection of the system variables, and completion of
the framework step, the model is almost complete. All that
remains is the selection of a model for the value measure
and determination of the decision maker’s time prefer-
ence. In the former, one measure (e.g., profit, total cost,
etc.) is selected based upon the variables involved and the
particulars of the situation. This measure should be clear
and readily discernible, in order to allow quantification.
Finally, the time preference is encoded (through inter-
views typically) to depict the decision maker’s willingness
to wait for payoffs, and other similar considerations.

Once the pertinent information has been collected and
classified, an initial sensitivity analysis is conducted to
identify those decision variables which impact the speci-
fied outcome the most. These variables will then be carried
through to the probabilistic phase for further screening and
study. To run the sensitivity analysis, variables are fixed
at their nominal values, then individually ranged from
their high to low extremes, and the impact on the value
measure noted. As mentioned previously, those variables
which have the greatest impact (change the value measure
the most) will be carried forward to future phases. These
variables are known as aleatory variables, while the re-
maining factors are known as fixated (as they are held at
their nominal values in future analyses). As noted by
Howard and Matheson [3], if there is indecision concern-
ing whether a decision variable(s) are worthy of consid-
eration as aleatory variables, it is better to keep it (them)
for future analysis, as they can always be screened out
later. With this prioritized and screened set of aleatory
variables, then, the probabilistic phase is begun.
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2.4 Probabilistic Phase
In the probabilistic phase, the uncertainty in value and
worth due to that of the aleatory variables is determined.
To do so requires the series of steps as shown in Table 2
and described briefly below.

Table 2  Probabilistic Phase

Encode uncertainty on aleatory variables

Encode risk preference

Develop worth lotteries and certainty equivalent

Measure stochastic sensitivity

Measure risk sensitivity

As shown, the first step in the probabilistic phase is to
determine the probability distributions (Probability Den-
sity Functions, PDF) for the aleatory variables. To do so,
the analyst must make use of historical data (when avail-
able) and subjective judgment. While the analysis of his-
torical data is relatively straightforward (especially given
the proliferation of statistical analysis software available),
encoding probability distributions from subjective judg-
ment is more problematic. To do so, the analyst must take
steps to resist any and all biases held by the subject matter
expert (particularly the central bias commonly encoun-
tered) in order to get the most accurate portrayal of the
PDF. Methods such as the probability wheel, interval
technique, direct response mode and others can be used to
facilitate the interview process, which in itself is a highly
structured and detailed procedure. These and other proce-
dures are described in detail in Spetzler and von Holstein
[8] and elsewhere, and will not be duplicated here.

Once the PDFs for the aleatory variables are determined,
the decision maker’s risk preference must be identified
(unless one variable dominates the others). To do so, the
interview process is used to determine the decision
maker’s preference (utility) for any value of worth (value
measure). By comparing the decision maker’s preference
between a lottery and a certain event, their level of risk
acceptance or aversion can be identified, and the utility
curve derived. Procedures for this process can be found in
Howard and Matheson [3].

Analysis within the probabilistic phase is done to further
screen and prioritize amongst the aleatory variables, in
order to further focus the analysis. The stochastic sensitiv-
ity of all aleatory variables is determined in a manner
similar to the sensitivity analysis conducted in the deter-
ministic phase. Here again, one variable is swept along its
potential values (as determined by its probability distribu-
tion), while the others are held at their appropriate condi-
tional probabilities. If the resultant change in the value
measure is large, the variable is kept for further analysis.

Otherwise, the variable can be fixated and removed from
further analysis. By doing so for all variables, the number of
“important” variables can be further prioritized, and the next,
informational phase begun with a reduced set of variables.

2.5 Informational and Decision Phases
The purpose of the informational phase is primarily to
determine if it is worthwhile making further expenditures
in research and information gathering efforts before mak-
ing a decision. Here, the value of information (thus elimi-
nating or at least reducing the inherent uncertainty in each
of the variables) is determined. Decision trees are set up
to define the decision (whether or not to conduct tests/re-
search) and Bayes’ rule (Equation 1) used to incorporate
prior and posterior (after testing) information.

P[B|A] = 
[P[A|B] × P[B]

P[A]
(1)

The interpretation of this rule is as follows: A is the
experimental evidence, B is the cause, P[B] is the prior or
original estimate without evidence, and P[B|A] is the
posterior estimate given the evidence.

Those variables which exhibit a high economic sensitivity
to the information gathering (large return on investment
ratio) can be considered for potential research. The final
decision on whether or not to conduct the additional
information gathering is made based upon these economic
sensitivities and on the feasibility of conducting the re-
search. If the gathering of additional information is de-
sired, the analysis process is re-run, as shown in Fig. 1.
This process may iterate for several (if not many) itera-
tions, until the gaining of additional information is deter-
mined to cost more than it is worth. Once this stage is
reached, the decision is made based upon the available
information, and action taken accordingly.

3. Human Error Risk Reduction Operating
System (HERROS)

Having assembled a generic decision making process, we
modified it to fit the specifics of the marine industry and
adapted it to our taxonomy and conceptual model for
human and organizational error. We have identified this
system as the Human Error risk Reduction Operating
System (HERROS) [1,2]. 

The ultimate goal of any human error risk reduction sys-
tem should not be the determination of a specific prob-
ability of failure (or survival, for that matter). Instead, the
primary purpose of any such effort should be to reduce the
risks associated with all potential error modes (human and
otherwise) without sacrificing “economic” viability or
social imperatives. Kuo [12] illustrated this goal as shown
in Fig. 3.
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Here, the objective is shown as reducing intolerable hazards
(high probability and/or consequence) to a tolerable level.
This acknowledges not only the inevitability of risk in any
endeavor (particularly a technological one such as maritime
commerce), but also the impossibility of ever attaining a
degree of safety that is truly “acceptable” to all concerned.

While detailed analytical methods will be outlined herein,
it is important to note the value of even the simplest of
studies. Simple awareness of the basic tenets of human and
organizational error theory as well as the general counter-
measures described in Boniface [1], Bea [9] and Boniface
and Bea [2] should go far in the improvement of safety. 

In the following, a general risk analyses methodology will be
developed and described. Within this framework, an increas-
ingly detailed approach will be advanced for analysis of the
failure modes, with particular attention paid to HOE. Data
sources (including qualified subjective judgment) will be
discussed, and initial rates supplied (for both general and
specific application). Finally, integration of situational fac-
tors, error recovery, and countermeasures will be discussed.

The analysis of risk in any endeavor can rapidly become an
incredibly complicated task. Those performing the analyses
can rather easily become lost in all the details of the potential
scenarios. To prevent such an occurrence, utilization of a
screening methodology as shown in Fig. 4 should be used.
Within each analysis stage, the investigation loop shown in Fig.
1 should be utilized. Each subsequent stage of the analysis
would utilize more involved risk methodologies, which will
require more time and expertise to implement. Each high risk
item (for which management schemes were not readily avail-
able) from the previous assessment phase would be studied in
greater detail to determine the sub-components which contrib-
ute the most to the identified risk. This added “cost” would be
offset somewhat by the reduction in the number of risks
provided by the progressive screening. The percentages given
in Fig. 4 are representative of the suggested breakdown of time
and effort between the stages of the analysis. Specific details
concerning the methodologies and performance requirements
at each stage will be discussed next. 

3.1 Coarse Qualitative Stage
In this stage of the analysis, all potential mishap scenarios
are identified, categorized, and ranked according to their
risk. Here (and throughout this paper) risk is defined as the
product of the likelihood of a mishap occurring and the
expected costs associated with that mishap. This can be
done by using simple screening methods. We recommend
use of risk encoding techniques as discussed in the pre-
vious section. Details for the utilization of these tech-
niques can be found in Howard and Matheson [3] and
elsewhere, and will not be repeated here.

Here, those scenarios which present the greatest potential
for system (vessel) failure (and for which risk manage-

ment schemes are not readily available) can be identified
for further analysis in the next stage; detailed qualitative
analysis. The primary purposes of this stage are to set the
scope (i.e., identify the problem and all pertinent vari-
ables), and to screen out non-critical variables. At this
stage, the potential scenarios need be no more detailed
than those shown in Table 3.

Table 3  Damage Scenarios

i = Scenario
1 Grounding

2 Collision

3 Allision

4 Structural

5 Fire

6 Stability

However, if possible (and it likely will be with scenario analy-
sis), determination of the most likely causes of failure/damage
(categorized in Table 4) should be attempted. The final cate-
gory in Table 4 (common mode failures) will largely be ignored
in this report. Although these do play an important role in
maritime mishaps, the refinement of HOE analysis is not such
that these can be accounted for very readily.

With the level of detail used in coarse qualitative steps,
successive analyses are greatly simplified. As stated by
Lucas and Embrey [16], the primary functions of qualita-
tive modeling are to: assist in accident investigation by
allowing causes (and therefore countermeasures) to be
determined, support design efforts by allowing for better
incorporation of human performance factors, and to aid in
risk assessment, thereby allowing identification and tar-
geting of those processes most prone to mishap.

Table 4  Vessel Failure Causes

j= Cause
Description-Failures

Due To:

1 Human/
Organizational

Human and organizational factors

2 Material/Supply Inadequate materials and
supplies

3

Equipment/
Facilities

Machinery, piping, electrical &
electronic, hydraulic systems, etc.
(excluding errors due to design
flaws)

4 Structural Hull strength, defects and
deterioration

5 Environmental Natural forces and effects

6 Common Modes Combinations of one or more of
the above
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3.2 Detailed Qualitative
In the detailed qualitative analysis, the most concerning
damage scenario(s) are analyzed as to damage likelihood
and consequence through means of such measures as
reliability and maintainability screening and failure mode
and effect analyses (FMEA). Here, failure modes are
ranked by the number of component failures (or mishaps)
required for system failure, and the potential consequence
magnitude. At the end of this phase, a risk matrix should
be developed to illustrate the risks involved in the process
under consideration, as illustrated in Fig. 5.

Obviously, this will create a natural prioritization, with
those scenarios falling higher and to the right being more
pressing (e.g., Scenario 6 receives highest priority and
Scenario 7 receives the lowest). Within the equivalent risk

bands, prioritization is given by the sensitivities of each
risk to countermeasures and the cost to implement coun-
termeasures for that risk. Risks with a higher return (risk
reduction)  on investment (countermeasure implementa-
tion cost) should be selected first with such a band. The
goal, therefore, is to shift these scenarios down (lower their
potential consequence) and/or to the left (decreasing their
likelihood) through use of countermeasures strategies as
discussed previously.

There have been numerous methodologies developed and
implemented for a detailed qualitative analysis. Of these,
reliability and maintainability (R&M) screening and fail-
ure mode and effect analyses (FMEA) have been selected
due to their widespread and relatively straightforward use.

Table 5  Reliability and Maintainability Screening Criteria

Number Criteria Description Rating = 1 Rating = 4

1 Reliability
Based on Mean Time Between Failures
(MTBF)

MTBF > 106 hrs MTBF  < 103 hrs

2 Maintainability Based on Mean Time To Repair (MTTR) MTTR < 1 hr. MTTR  > 1 day

3 Safety Effect
Based on impact of personnel or
equipment safety (ignores redundancy)

Negligible
Hazard

Potential
Catastrophic

4 Hazard Class Effect of item failure on personnel/system Safe Catastrophic

5 Shutdown Level Degree of shutdown impact Local Shutdown Evacuate 
 (Global)

6 Production Effect Effect on operations No Effect Total Shutdown

7 Redundancy Degree of reserve capacity 100% No Redundancy

8 Complexity Level of intricacy Simple System Very Complex

9 Environment Sensitivity to operating environment No Effect Catastrophic

10 Contamination Sensitivity to process contamination No Effect Catastrophic

Table 6  Example Reliability and Maintainability Worksheet

Equipment or
Sub-System

RO-RO FERRY
BOW DOOR

1 2 3 4 5 6 7 8 9 10 HS* SUM

Locking Devices 4 4 4 3 3 4 3 2 3 2 22 32

Scantlings 4 4 4 4 3 2 4 1 3 3 21 32

Hinge Mechanism 4 4 3 3 3 4 3 2 3 3 21 32

Gasket 4 4 3 3 3 2 4 1 3 3 19 30

Status Indicators 4 4 3 3 2 2 2 3 2 3 18 28

Positioning Horns 4 4 3 4 3 2 4 1 3 3 20 31

*HS = hazard source
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Reliability and maintainability screening is a qualitative
risk assessment tool applicable to initial screening efforts.
Here, organizational and system flowcharts and process
and instrumentation diagrams are used to identify critical
subsystems for more detailed qualitative studies. The
screening is carried out for all major subsystems, with a
rating scale (1 = good, 4 = bad) being used to rank the
sub-system in terms of basic criteria. These criteria are
listed in Table 5 [10], and an example assessment for the
bow door of a Ro-Ro ferry is shown in Table 6. As
illustrated in Table 6, ratings between 1 and 4 are obtained
by interpolating between the two bounds. The hazard
score as noted is the sum of the scores for the first six
criteria. The R&M screening process is extremely valu-
able for the following, detailed qualitative analysis phase,
as the major functional relationships are identified and
illustrated, thus making the failure mode and effect analy-
sis much easier.

In the failure mode and effect analysis, the critical system
(vessel) components and failure modes (from Table 2) are
subdivided into the task level. The functional and reliabil-
ity block diagrams developed previously are then used to
direct the analyses. Fig. 6 summarizes the basic steps
involved in the procedure, which will subsequently be
discussed in greater detail.

The first step in the analysis (system definition) is perhaps
the most critical step in the FMEA process. Here, the
analyst(s) ensures that they have sufficient understanding
of the system to perform the analysis. Walk-throughs,
interviews, etc. are used to familiarize the analyst with the
system components (including personnel) and their inter-
actions, as well as to call upon the expertise of those
directly involved in day-to-day processes. The final sys-
tem description should include an account of normal and
potential abnormal and emergency operations, as well as
maintenance intervals, demand (operational and environ-
mental) description, etc.

Once the analyst(s) are familiar with the details of the
system, block diagrams are then constructed to graphically
illustrate the functional and reliability relationships. As
such, each system will be broken down into sub-systems,
assemblies (or tasks) and components (or steps). The
degree of detail utilized will depend upon the criticality of
the system and the resources available. An example func-
tional block diagram is shown in Fig. 7.

With the completion of the block diagrams, the process of
documenting assumptions should be started. All premises
made throughout the duration of the analysis should be
meticulously documented in order to delineate the limita-
tions of the derived results and show directions for future
study. This list of assumptions should include those factors
which are not varied throughout the analysis (instead

being taken at some nominal value), simplifications made,
etc.

Utilizing the framework provided by block diagrams, data
can then be collected describing system performance and
failures. As shown in Fig. 8 (which is typical of an FMEA
worksheet) [after 10 and 11], the minimum data required
are failure modes and modal failure and detection rates.
Exacting detail is not required at this phase, as it is the
relative risk rankings that will be utilized, not the actual
probabilities of failure. The goal of the data collection
phase is to provide the information required by the FMEA
worksheets. The failure rates used may be subjective or
can be obtained from historical data. If historical data are
used, the base error rates obtained must be modified to take
into account the impact of the performance shaping factors
as applicable. If individual component/step failure data are
not available, qualified assessments may be obtained us-
ing the mapping in Table 7 and 8 [10].

Table 9 shows the ranking schema for use in the ranking
of detection measures [10]. Once entries for all factors
(failure modes for given steps/components) and all three
value measures have been made, determination of the
relative ranking is performed by multiplying all three
values together. The resulting values are indicative of the
relative importance of that step/component; the highest
value indicates the most critical factor, the lowest the least
important. If desired, these values may be normalized by
the largest value for easier comparison. 

FMEA worksheets, as shown, are merely the expanded
and tabulated version of the block diagrams. Here again,
the level of detail utilized will be dictated by the expected
risks and the available resources. It is also important to
note that Fig. 8 is only one example of an FMEA work-
sheet. The format for this worksheet can and should be
modified to meet the particulars of the situation. However,
no matter what format is chosen, the failure modes, rates
and criticality’s must be explicitly identified to allow
ranking.

At this and every stage, a “big picture” review is extremely
important. By looking for trends and commonalties be-
tween failure modes, high payoff countermeasures (i.e.,
those which reduce the consequence and/or likelihood of
two or more scenarios/modes) can be identified for imple-
mentation. An example of such a countermeasure would
be the implementation of a radar training program. Such
a curriculum, if designed and implemented correctly,
could reduce the likelihood’s of collisions, allisions, and
groundings, thus paying off in three ways for the same
investment.

It is also important to note here that the analysis may be
stopped at any point if it is determined that further, more
detailed analysis may not be necessary or desirable (as
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Table 7  Qualitative Severity Ranking Scales

Seriousness of Effect Rating Effect Realized at

Minor:   Unreasonable to expect that this will
impact any performance/evolution.

1 Local scene (e.g., workspace)

Low:   Effect is limited only to one phase of life
cycle (e.g., procurement of supplies, determination
of navigational information, etc.). Results only
impact own operations.

2
3
4
5

Primary operation;
Secondary operation;
Tertiary operation; or
Other evolutions

Moderate:   Effect is throughout life cycle chain
(e.g., error made at design level which increases
construction difficulty, operability, etc.)

6
7

Next life cycle phase
Other than next phase

High:   Effect impacts others in immediate
operating area (e.g., vessels in harbor, etc.)

8
9

Local level
State level

Extreme:   Effect is injury/harm to anyone
involved, widespread damage to the environment,
etc.

10 National level

Table 8  Qualitative Guidelines For Occurrence Rating

Likelihood of Occurrence Rating

Impossible or has never occurred previously 2

Remotely possible and similar events may have occurred previously 4

Has previously occurred rarely 6

Has previously occurred occasionally 8

Has previously occurred frequently 10

Table 9  Detection Ranking Index

Type of Detection Ranking

No inspection or testing 10

Supplier certification- qualitative (conforms to spec) 9

Supplier certification- quantitative (date supplied) 8

First component use 8

100% manual inspection & testing- subjective 7

100% manual inspection & testing- objective 7

Incoming inspection- supplierÕs statistical data analyzed 7

Sample testing (normal sampling plans) 7

In-process attribute frequency sampling 7

Sample testing (tightened sampling plans) 6

100% automated inspection and testing 6

Statistical process control/statistical analysis 5

First/last piece layout 5

Continuous part/process monitoring 2
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illustrated in Fig. 4). If risks (likelihood * consequences)
are low, if one or two scenarios dominate, and/or if one set
of countermeasures is clearly favorable (due to situational
circumstances, projected effectiveness, etc.), the analyses
need go no further. However, often this will not often be
the case.

At the next phase of the analysis (coarse quantitative), the
most important failure modes from the detailed qualitative
stage are further subdivided into tasks and analyzed. Here,
quantitative estimates are introduced to facilitate further
ranking and screening. By using reliability methods, spe-
cific tasks (e.g., loading calculations, loading and dis-
charge operations, etc.) will be highlighted as critical.
These tasks can then be selected for further analysis, or
can be targeted with specific countermeasures. To supple-
ment these analyses, situation factors are quantified using
Performance Shaping Factor (PSF) scales [1, 16,19] and
used to modify base mishap rates. These analyses are
carried down into the micro-task or step level to both refine
the estimates on risk levels and to pinpoint the source of
the high risk items. Again, the analysis can stop here, if
further study is deemed to be cost inefficient.

3.3 Coarse Quantitative
In this phase of the analysis, the assessment of the er-
ror/failure costs and likelihood’s initiated in the detailed
qualitative stage is refined and expanded to provide a more
accurate (and descriptive) account. In particular, the mean
and standard deviation of the system and all levels of
sub-components are obtained through detailed interviews
(for subjective estimates) and/or historical data analysis
(for objective estimates). With this data, fault tree analyses
may be conducted to ascertain the reliability (or, con-
versely, the probability of failure).

If adequate historical data is available, determination of
the mean (µ) and standard deviation (σ) is a relative
straightforward process. Numerous computer programs
exist to assist with data reduction and analysis. However,
if data is inadequate (or even nonexistent), the analyst
must resort to subjective estimation by experience quali-
fied experts. Procedures for conducting the interviews
required are detailed in Howard and Matheson [3],
Spetzler et al. [8] and elsewhere. By using tools such as
probability wheels, interval techniques, etc., the analyst
can obtain cumulative distribution functions for each of
the uncertain variables (likelihood’s of failure and conse-
quences, where consequences include non-monetary
costs. With this description, fault trees may be developed
and analyzed to determine the relative impact on system
reliability.

When including HOE analysis by fault trees, care must be
taken when determining the likelihood of failure. In hu-
man reliability analysis, human performance is typically

taken as a binary fail-no fail system. However, in addition
to our “faults,” we also bring an extremely valuable ability
to intervene when other modes (e.g., structural/equipment
failures) go awry. In order to ascertain the true impact of
human involvement, therefore, intervention should be
modeled as well. However, scant direction in this field was
uncovered during this research. As such, human interven-
tion will not be explicitly modeled. Instead, the base error
rate will be modified such that the situational error rate
will be less than nominal for above average ratings on the
PSF scales, as shown in Equations 19 through 21 [1].

Figures 9 through 15 (Figs. 11 - 15 at the end of this paper)
show the general fault trees recommended for HOE analy-
sis, in increasing levels of detail. Fig. 9 breaks the likeli-
hood of failure for the vessel into the six failure modes
listed in Table 3. Here, these failure modes are assumed to
be statistically independent for notational convenience
only. In actuality, common mode failures (i.e., failures
involving two or more of the failure modes) would have
to be addressed if the full lifetime probability of failure for
all failure modes is desired. 

Fig. 10 then utilizes the next level of detail (failure causes)
to refine the analysis, a process continued in Fig. 11 (which
looks at the failure contribution in each of the k tasks
involved in that particular error mode i) and Fig. 12 (which
itemizes the failure contribution from each of the m steps
involved in a given task k). Figures 13 and 14 show trees
for the analysis at the step level (without the possibility of
error detection or correction) with and without redun-
dancy. Finally, Fig. 15 shows an example decision prob-
lem whereby any of n countermeasures (or no
countermeasure) can be implemented. Obviously, various
forms and combinations of these fault trees can and should
be developed to best describe the particular situation.
Analysis of these trees is as discussed in Ang and Tang
[30], Benjamin and Cornell [31] and elsewhere and will
not be repeated here.

Equations 2 through 22 provide the corresponding general
mathematical model for human and organizational analy-
sis. While the exact relations are not (and may never be)
known with certainty, research has identified some models
as being generally appropriate for some of the prob-
abilistic relationships involved. Others were adapted as
part of this research to better address the marine situation.
Each will be described and discussed individually in turn.

In Equation 2, the overall likelihood (probability) of fail-
ure for the vessel is shown to be the sum of the failure
probabilities for each of the six failure modes, as shown
in Table 12 and Fig. 11. Here, it is assumed that the failure
modes are rare events and are statistically independent.
Equation 3 continues this breakdown by using the total
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probability rule to determine the probability of failure of
a given mode i for all five causes listed in Table 3.

In this research, only the first cause, human and organiza-
tional error, is addressed. As such, Equations 4 through 22
determine the likelihood of human and organizational
error in the life of the vessel. Therefore, the “j” term was
dropped in this and subsequent representations. Equation
4 shows this likelihood as being the sum (over all k tasks)
of each of the likelihood’s of HOE in a mode i given HOE
in a task k (e.g., loading determination, scantlings design,
etc.) and various detection and correction rates at the task
levels. In the first part of that equation, the likelihood is
based upon undetected events (which were therefore as-
sumed to go uncorrected), while in the second, the prob-
ability was based upon the likelihood of detected errors
that were not corrected. P[X|Y] is read as the probability
of X given the occurrence of Y. P[X] is read as the

probability that the event X does not occur. P[X∩Y] is

read as the probability that X and Y occur (intersection of
the events X and Y).

As is the case with most of the probability distributions,
the relationship between the likelihood of HOE given
undetected and uncorrected HOE in any mode (i), task (k)
and step (m) (shown in Equation 5 and Equation 12) is
unclear. No relationships between these variables were
uncovered during the course of this research effort, nor
was any direction available from any other researchers.
Thus, the sub-levels were modeled as being statistically
independent, and the relationship between levels as shown
in Equation 6. This relationship was used again in Equa-
tion 12, as the connection between the likelihood of HOE
in a task (k) given HOE in a step (m) was felt to be similar.

Equation 7 [27] describes the probability of detection
(POD) given the occurrence of an error (the complemen-
tary event is shown in Equation 8). The probability of error
detection of an error has been the subject of many studies,
such as Demsetz et al [23], Nowak [24], Stewart and
Melchers [25, 26] and Engelund and Rackwitz [27] among
others. Demsetz’ work has been related to crack detec-
tion’s in vessel inspections, in order to optimize inspec-
tion, maintenance and repair (IMR) activities. Included in
her report is a summary of POD curves for cracks in
aircraft, as developed by Dinkeloo [29] and as shown in
Fig. 16. As seen, the data appears to fit a shifted negative
exponential curve; a finding also made by Stewart and
Melchers [27] in their study of design review checks.

In the Melchers and Stewart study, they recommended use
of shifted exponential curves (Equation 7) for checking
efficiency as a function of both checking time and error
magnitude, where error magnitude is as given in Equation
9. In Equation 9, the true value is given as xm, while the
value used is given by x. t is a normalized variable repre-

senting either the time for the activity or the tolerance level
for magnitude of the error (as shown in Equation 10).

If personnel involved are relatively inexperienced or un-
trained, Melchers and Stewart recommended use of an
s-shaped curve to better characterize the probabilities of
detection (Fig. 17). This is the classical “learning curve”
first identified in educational studies.

In terms of cost effectiveness, Stewart and Melchers felt
that checking efficiencies (POD’s) between 0.6 and 0.9 to
be optimal [27]. Efficiencies less than 0.6 were identified
as producing limited reductions in the likelihood of error,
while efficiencies greater than 0.9 were seen as producing
a marginally smaller reduction in the error likelihood.
Additionally, they felt that two design checks should be
sufficient to reduce HOE to a minimal level.

When developing the HERROS model, it was unclear
what checking relationship was applicable for the marine
industry. It appears that some form of relationship between
the bounds displayed in Fig. 18 should hold true. Further-
more, it appears that the most significant factors impacting
this relationship are the training and experience of the
inspector/checker and the time allotted for the check,
although fatigue and others certainly play important roles
as well. Research is currently being conducted to better
identify the true nature of this relationship. However, until
results from these studies are available, use of the model
given in Equation 7 [25] is recommended and will be used
in this paper for both the task and step levels.

Not correcting an undetected error was assumed to be a
certain event, as shown in Equation 10. The probability of
not correcting an error that has been detected falls into the
violation category (at a level given by the seriousness of
the violation). Although functional studies have not been
identified, it is believed that the error rate will be most
affected by the organizational, workload, impairment and
personality performance shaping factors. Until more de-
finitive relationships are known, a Poisson model will be
used. This model (Equation 11) which is the same as the
model for HOE (Equation 19) will be discussed in detail
shortly. The likelihood of not correcting an undetected
error was assumed to be 1.0.

λc is the base correction error rate. SLI is the Success
Likelihood Index developed by Embrey [16] and Chien et
al [17], and as modified by Zamanali et al [15]. wn is the
weighting factor for the directly acting PSF, vn is the
directly acting PSF value (from the PSF scales), wo is the
weighting factor for the indirectly acting PSF and vo is the
indirectly acting PSF value. Given the lack of information
regarding the PSF effects, the wn and wo must be subjec-
tively estimated for the particular situation. The distinction
between directly and indirectly acting PSFs is made to
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address the differing degrees of impact on the system
safety that they would have. 

The model for the SLI was modified to allow a use of a 1
to 7 Likert Scale (instead of the 1-10 scale recommended
by Embrey), which is less prone to a central bias [1].
Furthermore, adaptations have been made to account for
the likelihood of performance improvement (and therefore
human intervention in other error modes) by taking the
difference between the observed PSF scale value (vn) and
the mean PSF scale value (which corresponds to the mean
error rate), all of which is normalized by the standard
deviation of the PSF scale values. The use of the normal
cumulative density function (Φ) in Equation 13 allows for
the modeling of performance enhancement (error rates
below base rate) for situations where the PSF scale values
being less than the average (lower being better). Until
further research is available, it is recommended that values
of 3.5 be used for both the mean (µn)and the standard

deviation (σn)(the coefficient of variation shown in Table
10 is of the order of 100%) [1].

Equation 2

Equation 3

Equation 4

Equation 5

Equation 6

Equation 7

Equation 8

Equation 9

Equation 10

Equation 11

Equation 12

Equation 13

Equation 14

Equation 15

Equation 16

Equation 17
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Equation 14 continues the breakdown further, down to the
step or micro-task level (e.g., table look-ups in a loading
calculation, monitoring equipment performance parame-
ters, etc.). As seen, the relationships used were the same
as at the task level.

The model for the likelihood of HOE in a given step (m)
of task (k) and failure mode (i) was based upon work by
Rackwitz [13], Ang and Yamamoto [14], and Zamanali et
al [15]. In the HERROS modeling, this likelihood is as
shown in Equation 20 (discrete) and 21 (continuous).
Here, b represents the base error rate for the task (skill
based, rule based, knowledge based, violation, etc.).

Use of Poisson processes (Equations 20 and 21) was
chosen based upon work by Ang and Yamamoto [14].
Although Poisson processes require events in non-over-
lapping time intervals to be statistically independent (not
entirely the case here), this was believed to be a relatively
minor difference. Other models were reviewed, including
normal [18, 19], lognormal [20], SLIM (Equation 22) [21]
and others, but all were found to be inadequate. Further
research in this area should shed more light on the true
nature of the relationships between base error rates, PSFs
and modal failure rates.

As seen in Equations 4 through 19, the likelihood of failure

in a level is conditioned upon the occurrence and nonoc-

currence of errors in each sub-level. Thus, the likelihood

of HOE as contributing to failure mode i is conditioned

upon the likelihood of HOE in each task involved in mode

i as well as the detection and correction events. (The model
as developed makes the assumption that all corrections
undertaken are effective for the sake of simplicity, al-
though this is not required.)  The error rate at the task level
is in turn conditioned on the error likelihood in the step (or
micro-task) level, as well as the detection and correction
events. By handling all probabilities as conditional events,
the effects of correlation between steps, tasks and modes
are implicitly included, which greatly simplifies the analy-
sis. The conditional probability of redundant steps, for
varying degrees of dependency (shown graphically in Fig.
14) is shown in Table 10 [18].

Table 10  Dependency model

Level of
Dependency

Actual
P[m2|m1]

Approximate
P[m2|m1]

Zero P[m2]= P P

Low (1+19P)/20 0.05

Moderate (1+6P)/7 0.14

High (1+P)/2 0.5

Complete 1 1

In order to supply the data for these analyses (base error
rates), extensive research was conducted into existing
maritime, aviation, civil engineering and nuclear power
plant databases [1].

The nuclear industry’s NUCLARR human error prob-
ability (HEP) database was classified using the HERROS
taxonomy [2] and analyzed to determine central tendency
and dispersion measures. Although not all base error rates
were able to be obtained (as they were not contained in the
database), and the data presentation (mean, median, and
confidence band values for approximately 1,300 data
points which were already reduced) precluded all but a
fairly crude analysis, the results shown in Table 11 and
Fig. 19 were felt to be fairly representative of reality. 

As shown in Table 11, there were significantly more data
points for the skill based and rule based error rates, thus
providing a stronger sense of confidence in these values.
It should be noted here that the data points were derived
from thousands of events and the actual number of points
involved is significantly higher. Given that the results
realistically need only be in terms of an order of magnitude
accuracy (particularly for the coarse quantitative analysis),
the results obtained should be more than suitable. Further-
more, their relative ranking (as shown in Fig. 19) appears
to be correct intuitively, with the knowledge based rate
being greater than the rule based rate, which is in turn
greater than the knowledge based rate. The wide variation
(as shown in Fig. 20) is also consistent with intuition.

Equation 18

Equation 19

Equation 20

Equation 21

Equation 22
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Table 11  Results of NUCLARR Data Analysis

Category
Mean
Rate

Coef. of
Variation

%

No.
Data
Pt.s

Skill Based 0.0269 322.24 558

Rule Based 0.116 175.81 655

Knowledge Based 0.153 168.89 73

Ingrained Violations 0.0468 93.85 4

Routine Violations 0.0768 132.06 16

Exceptional Violations 0.0219 30.79 16

Overall Violations 0.104 243.81 36

Physical-Coordination 0.0073 311.87 55

As can be seen, the level of effort for even the coarse
quantitative analysis is rather substantial. It is for that
reason that careful screening in the qualitative phases is so
important. However, from the coarse quantitative analysis
completed, a fairly accurate ranking of the risk is available.
If desired, the analyses can be stopped at this stage and
countermeasures developed and implemented to address
those items with the most risk, thus reducing the costs
involved. However, by continuing the analysis into the
detailed quantitative phase a more refined and more accu-
rate prioritization of risk countermeasures can be devel-
oped. This final phase will now be described.

3.4 Detailed Quantitative Analysis
In this phase, the most important errors (it is recommended
that only 2-3 variables be analyzed here to minimize
computational costs) be reviewed. Here, the errors (and
countermeasures) analyzed can be at the modal, task or
step level, although the latter is more likely to be the case.
These errors will be further screened in this stage for their
costs (in terms of net present value or similar measure) as
well as their risk and sensitivities to and costs of counter-
measures. In this stage, the risk assessment will take the
form of a Level III Reliability Analysis, with economic
analysis included as an integral part. Level III reliability
analyses are covered in great detail in Mansour [22] and
Bea [9], and will not be covered here. However, economic
(including both monetary and non-monetary costs) and
sensitivity analyses must be conducted in conjunction
with these risk analyses. To begin, the process of sensitiv-
ity analysis will be outlined.

Sensitivity analyses are generally conducted in two phases;
deterministic and probabilistic. In the deterministic phase, the
risk analysis is conducted with all values at their median value.
The expected cost obtained (by resolution of the decision/fault
tree) is then the nominal or base case. One by one, the variables
involved (usually payoffs/costs) are changed to their high and

low values, and the percentage change in expected cost
versus the base case is plotted versus the percentage
change in the input variable. By doing so for all variables,
it is a straightforward process to develop the deterministic
sensitivity diagram, as illustrated in Table 12 and Fig. 21.
Here the retrofit and newbuild options are seen as most
sensitive (as indicated by the maximum slope), while the
do nothing option is least sensitive (which has minimum
slope). Positive slopes indicate that the variable and ex-
pected profit are positively correlated, while negative
slopes show negative correlation (inverse relationship).
Probabilistic or stochastic sensitivity analysis is virtually
the same as the deterministic sensitivity. The only real
difference between the two is that in stochastic sensitivity
analysis, the probabilities are varied to their upper and
lower bounds, with the percentage change in input versus
percentage change in measure plotted. The resulting graph
is interpreted in the exact same manner as described above.
With these sensitivity tests, the degree of response of the
system (vessel) to various countermeasures can be pre-
dicted and ranked. Obviously, those countermeasures
which have the greatest sensitivity will be preferable, as
they provide the most return on investment.

The final portion of the detailed quantitative analysis is the
incorporation of the time value of money into the investi-
gation. Knowing the firm / organizations minimum attrac-
tive rate of return, and estimating the inflation rate and
costs associated with various countermeasure options, the
fault tree (with countermeasures) can be re-analyzed using
common dollar values. For most problems, this should not
change the prioritization of countermeasures. However, if
cash flows are significantly different between counter-
measure options, or if long-term schemes are to be imple-
mented, the priority ranking may change.

Table 12  Sensitivity table

Vessel Option
Low
Cost

Nominal
Cost

High
Cost

Do Nothing $150M $250M $350M

Retrofit Existing $21M $169M $534M

Build New Vessel $80M $228M $532 M

4. Conclusion
With this modeling system as outlined, the marine deci-
sion maker (owner, operator, regulator, etc.) may ration-
ally allocate resources to minimize risk in their purview.
Although no methodology can guarantee success, utiliza-
tion of these reliability and decision analysis techniques
will ensure that good decisions are made. On the average,
these should prove to provide more favorable results over
time.
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Figure 12
 Step / Component Level Fault Tree
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Figure 14
 Countermeasure Decision Model
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Figure 15
Simplified Step Fault Tree: with Redundancy, But No Detection or Correction

Ship Structure Symposium ’96

G-18



Figure 16
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Discussion
by Robert Sielski, Marine Board, National Academy
of Engineering, National Research Council, Washing-
ton, DC

The authors have defined a process for decision making,
that although at first glance may seem complicated, if
implemented in the four stages from coarse qualitative to
detailed quantitative as shown in Figure 4, then the process
can be manageable and useful.  The key as the authors
have brought out, is to perform only enough analysis in
order to make a decision.  Such staged analysis is not
always the case in application of risk analysis in decision
making.  For example, in the required Safety Case analysis
for offshore platforms in the North Sea, typical analyses
cost millions of dollars to perform because detailed quali-
tative analyses are performed when  a decision can be
made on the basis of coarse quantitative analysis because
the analyst believed such detail was necessary to satisfy
regulators.  How do the authors believe that such a staged
approach can be implemented so that a good process for
obtaining insight to key variables doesn’t become a com-
plicated process where all insight is lost?

As I understand the authors’ approach, they recommend a
seven-phase cycle starting with information gathering and
ending with final action as is illustrated in Figure 1.  This
basic cycle can be repeated in up to four stages from coarse
qualitative to detailed quantitative.  However, such a path
does not seem reasonable considering the processes in-
volved in each phase.  For example, it is not until informa-
tion gathering is completed that the first step of the
deterministic phase, defining and bounding the decision
problem is taken.  Doesn’t it seem more reasonable to
define and bound the problem before setting out to obtain
all available information?  How else can the investigator
know if the information is relevant to the problem?

In their discussion of the coarse quantitative phase the
authors imply that the statistical analysis of data is a trivial
task.  They ignore such difficult questions as to the suffi-
ciency of data, applicability of data to the problem, and
bias of data.  If the analysis involves rare events, then
typically the interest is with the tails of probability distri-
butions, where mean and standard deviation are of little
benefit.  The authors use probability of detection curves
from aircraft inspection as an illustration of how such data
could be used if properly developed for the marine indus-
try.  But, can the data from aircraft be applied to marine
with a few supplemental data points, or will the charac-
teristics be entirely different?  In an ongoing risk assess-
ment study, available data on propulsion reliability of the
world-wide fleet was deemed inappropriate for the U. S.
steam-powered fleet.  Considerable effort was expended
to obtain data because the existing data was considered as
inappropriate.  Bias in data can come in many ways, one

of which is the human tendency not to report information
that could be harmful to the reporter.  Can the authors
reflect on the triviality of data analysis?

The authors have defined a generic process for decision
making that appears to apply to any situation.  In the
discussion, particularly of coarse quantitative analysis,
several specific instances of tailoring the process to the
marine industry are made.  Data on the probability of crack
detection is an example, although it is unclear throughout
the paper how much the process has been modified to
reflect the marine situation.  Will the authors please indi-
cate what characteristics of the marine field make it
sufficiently different so as to modify the process and
techniques of decision making and of risk assessment for
that field?

The authors have described a process that has the potential
to become complex, and that is heavily influenced by
many human and organizational factors that can affect the
decision making within the process.  For example, the
authors selected influence diagrams as the most appropri-
ate means to model the many different problems to be
encountered in the marine field.  However, there are other
modeling techniques, such as system simulation, that may
be more appropriate or a particular situation.  I have
already alluded to the difficulties in analysis of data, which
often arise from human and organizational considerations,
such as data bias.  Certainly there is considerable room for
human and organizational error in the conduct of inter-
views to obtain data, a process to which he authors devoted
only one half of a paragraph.  And there are certainly
human and organizational factors involved in determining
if the analysis has included sufficient rigor with which to
make a decision  How do the authors feel that the human
and organizational error inherent in their process to
analyze human and organizational error can be mini-
mized?

My final question reflects my personal unfamiliarity with
the subject matter.  The authors place considerable empha-
sis on Performance Shaping Factor (PSF) scales and rat-
ings.  However I found no definition or discussion of this
term in the paper.  Could the authors please explain this
concept?  Perhaps then I could provide more insightful
comments on this excellent paper.

Author’s Reply
Guidelines and protocols need to be developed that will
encourage general use of the four stage process we have
proposed.  The goals of all concerned need to be clearly
stated and agreed to; e.g., to identify potentially important
challenges to the safety of systems at the simplest stage
possible, and to remedy these challenges in order of the
risks they present to the extent that resources can and
should be made available to achieve the desired level of
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safety.  Information systems need to be developed and
implemented that will allow us to document and monitor
the results of the safety measures and experiences with the
process.  Qualifications and training need to be developed
for those that perform these assessments.  These assessors
need to have formal training in HOF.

Developing information for an analysis is a recursive
problem.  It is desirable to be as complete and comprehen-
sive as possible at the start of the analysis.  This is because
the analysis can not be any more perceptive or complete
than the data and information that is assembled to guide
the analysis.  The extent of the data and information
assembled at the start of the analysis should be extensive
enough to prevent  misdiagnosis and misdirection of the
analysis.  As the analysis progresses, in all likelihood it
will be desirable to gather additional information to an-
swer the questions raised by the analysis.

The authors did not mean to imply that analysis of data is
trivial.  The issues raised by Dr. Sielski are correct.  Our
discussion of data analysis was brief due to length limita-
tions on this paper.  Our experience with data analysis
involving a wide variety of marine systems indicates that
very frequently the data is incomplete and in many cases,
potentially misleading.  The processes used to gather,
validate, and encode the data frequently are seriously
flawed.  This is particularly true for accident and near miss
data, data on and from inspections, and data gathered in
the field.  To the authors knowledge, there is not one
complete database available for reliability and risk analy-
ses of marine systems, including ship structures.

The means and standard deviations of probability distri-
butions are quantities that are used to determine the shapes
of these distributions, including the tails of the distribu-
tions.  Some probability models have additional parame-
ters to help shape the distributions.  It is important to
recognize that a probability distribution is a model.  In
many cases, there is no inherent reason why one prob-
ability distribution model is “correct.”  The justification
for a probability model should be rooted in an under-
standing of the physics and mechanics of the processes of
concern, the ability of the model to fit the data in the
regions of concern, and ease of use.

It is not likely that data from airframe inspections can be
used directly in quantifying the probabilities of detection
of flaws in ship structures.  The conditions under which
the data is gathered in these two systems is dramatically
different.  The inspection methods, and qualifications and
training of inspection personnel are generally very differ-
ent.  However, the general trends from airframe inspec-
tions are useful: under the best of conditions, small flaws
are difficult to detect  Large flaws are easier to detect.
Flaws frequently occur where they are not expected.  The

airframe industry has developed a variety of methods to
help guide inspections.  But, the most important method
still used is visual.  The most important aspect of airframe
inspections is the inspector and the methods that are used
by the inspector to disclose both anticipated and unantici-
pated flaws and problems.  The most frequent cause of
unanticipated and perhaps unanticipatable flaws are the
unanticipated and unpredictable actions and inactions of
people.  We are working on development of inspection
guidelines for ship structures that will address both antici-
pated and unanticipated flaws and that will take advantage
of the lessons in inspections gathered in other fields such
as airframe inspections and medical inspections.

Bias in data has many potential sources.  Such bias can
have sources in: 1) the personnel that perform the data
gathering, 2) the organizations that become involved in the
data gathering, encoding, and analysis, 3) the procedures
used in the data gathering, encoding, and analysis, 4) the
equipment used, 5) the procedures used, and 6) the envi-
ronments in which the data are gathered, encoded, and
analyzed.  Data gathering, encoding, analysis, and record-
ing is not a trivial undertaking. It is because many of these
factors have been ignored that there are so few databases
and data on marine and ship structures that can be used in
reliability and risk assessments.  Much more use of experi-
mental design methods is needed to help guide gathering
data on ship structures.  Long-term commitments are
needed by industry and government to allow sufficient
data to be developed.  The experience of the commercial
and military airframe industries have much to offer the
designers of database systems and data gathering for ad-
vanced engineering of ship structures.

Influence diagram methods are only one method that can
be used to help formulate and express the logic of risk and
reliability analyses.  Event tree, fault tree, logic diagram,
and other similar methods have been developed.  Each has
its applications, powers, and limitations.  The method
should be chosen that best fits the problem being ad-
dressed.  A number of computer based analysis programs
have been developed that facilitate applications.  It is
important that the user understand the theory behind these
aids and use them appropriately.

The authors believe that decision making processes should
be tailored to those that make the decisions.  Important
corporate, local, and national cultural and experience fac-
tors influence how decisions are made.  The metrics from
such processes must address the unique concerns and
considerations associated with each decision problem.
We are learning that many informed and experienced
decision makers frequently do not believe nor rely on
engineering probabilities nor expected risk values derived
from such analyses.  Decision makers know that risk
analyses do not have the ability to forecast the future in
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any reliable way.  The variance of the risk frequently has
more meaning, but unfortunately this variance is fre-
quently so large that it too can loose its meaning to
decision makers.  Scenarios associated with plausible up-
per and lower bounds on the risk estimates are frequently
more meaningful.  Perhaps it is the decision making proc-
ess that is most important.  It is the communications,
information accessed, deliberation, thought, and disci-
pline that is used that may be the most important aspect.
The measures of results from reliability and risk analyses
should not become the objective of performing such analy-
ses.  It is the process that holds the most promise for
helping achieve serviceable, durable, safe, and compatible
ship structures.

Human and organizational error can be minimized in
performing a process by a variety of means that include
qualifying and training those that perform the process,
monitoring and independent checking and verification,
development of meaningful and detailed guidelines and
examples for performing the analyses, and providing in-

centives and motivations for performing and conducting
high quality analysis processes.

Performance Shaping Factors (PSFs) are a logical way to
reflect how “things” affect the different “base” rates of
human errors.  General information is available to help
guide quantifications of base rates of some types of errors.
For example, given normal conditions, an experienced
person will mis-dial a telephone about once in one hundred
times.  However, given influences that can have sources
in personal, organizations, procedures, equipment, and
environments, this rate can be dramatically increased.
PSFs attempt to capture these influences with multipliers
on the base rates.  Given a combination of stressors like
distracting noise, poor lighting, a rush to dial, an unusual
telephone, and an unusual dialing procedure, the rate
probably rises to unity.  If one wants to quantify the
likelihoods of human errors in task performance, then such
PSFs can be very useful.

The authors would like to thank Dr. Sielski for his detailed
review of our paper, a very stimulating discussion of some
of its critical aspects, and his thoughtful questions.
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