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This report deals with the testing of 12 full scale hatch corner

specimens. One of these was essentially the same as the hatch corner used in

the earliest Ilfibertyr!type ships, and the sane as has been used in the earlier

tests. Tho of the specimens tested were invslid due to laminated plates. The

others included the modifications of: continuous longitudinal girder; full

penetration welds; U.S.C.G. Code 5 and Code 1 modifications, and the effactive-

ness of the doubler plate in the Code 5 modification; the British Code 1A

modification; extended coaming; diagonal braces at the bottom of the girder

joint; a new design SimilaL-~n configurationto the hatches used on Victory type

ships; a new desi~n invol.ri.qg a hot-formed double radius corner plate. ‘The

strength and energy absorbing abilities of each were determined. The use of an

extended coaning was found to be a very effective and simple modification. The

design utilizing the formed corner was far $uperior to all other and produced

definitely ductile behavior, a quality which has not before been found in welded

hatch corners.
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This report deals with the construction and test of these twelve

specimens. Throughout this report specimen No. 5, from previous tests, is used

as a basis of compar~son.

,.;

: ,,:
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p?ocmlm .

lot

for

The specimens which were tested are listed in Table I.

ixcept for one piece in oriespecimen, au were constructed frOm One

of lo~ticarbon senm-k~.11ed steel of ABS ship quality, which had been used

some of the .previou.s lXS+:S, ‘ThissteQ had.previously been designated as

Steel “C!!. The analy~is ?n,~
,.st..ren:,+.hiprc,pe:.-:J=esof t.hismaterial are shown in

Tables 11 and IIT A.L: :b: ‘he specimefiow+re co.:s+.ru”“ted at Shipyard No, 3 at

tichmond, Califo~-r:.i.a,,k:]p?~je:t welderfi,e,cd+,henbrougy;ito the Universally

where strau~ gages were app’;.ed and the t.ec+,s!; r.:.:l-d:1!.%?G., ‘Yle‘testswere cOn-

ducted at approximate~y ‘70°F.,t,hcvariation from this temperature being less

than ~ & degrees.

Energy absorption measurements were made on all specimens by measuring

the strain which took place between the pins in the two pulling tabs. The same

method was used as has been described in previous reports.4

The basic design, Specfi;en5, is shown in Fig. i. It will be not,ed

that it consists of three principal stren~th members, These arc: deck,

longitudtial girder, and hatch end beam. The longitudinal girde~ is actually

in two pieces. Zach of these r,emberscontains a right angle j.nteriorcorner.

They are mutually perpendicular to each ct.he~when assembled znd.form an extremely

rigid structure. A “dcu.blci-p?.ateiS f<.31,:,+./c,_..1.’edLO the deck and cctimiil~.. A

heavy hatch end beam flange,,],r]hgitud~r,,31 g:rder f’l,m.ges and deck beams com-

plete the specimen.

All ‘iel,dingwas Joinewith N;iSty~e ?36010and E6020 electrodes. The

welds were given‘aveuy careful visual inspection both prior to and after test-

ing and in r.ocase wore -n.ysignificant tie.fer.tsfoumi.

In”cider’to apply’the load and ebtain prc,perstress distribution,

... ..,’
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heavy pulling tabs were attached to each end of the specimen. These are shOwn

in Fig. 58. To supply seinetransverse restraint, such as would be supplied by

the rerrrsiningstructure‘“in‘an‘actual ship, three transverse r~straining beams

were attached to al-l’specimens above deck. l%ese are shown in Figs.37” and~@

and several other of the photographs. These beams were given a srrrallinitial

compressive load, prior to testing, by means of adjustable wedges. This was the

same procedure which had been used on previous hatch corner specimens.

The first modification which was made to the basic specimen was to make

the longitudinal girder continuous instead of the hatch end beam, Since the

failures in ships were transverse and tests of previous specimens had shown that

the longitudinal to hatch end beam joint was a weak point, it tiasfelt that this

change would give a considerable increase in strength.. Specimen 27 contained

this single design variation.”

A considerable’number ‘of early llLibertylttype’ships were constructed

with square corners in the deck plate ah the hatch openings”i In~order to

strengthen these hatch corner’sa gusset type of “reinforcementwas added, aS

shown in Fig. 2. Dia~onal angle brackets’were dlso added at the b.ottom of the

longitudinal girder and hatch end be’amirrtersecbion,(U.s.C.G. Code .5). Specimen

28 involved this modification.

‘Ihehatch corners of a large number of later llLibertylfships iek

constructed in accordance with U.S.C.G. Code 1, SkLOiVn in Fig. 3. This type

corner was incorporated in bpecimen 30. In order to determine the effectiveness

of the large doubler which ia inc,-udedin the Code 1 modification, $pecirrren29

was constructed as shown in Fig. 4 without the doubler. Otherwise these two

speciinenswere identical,

In testing Specimen 30 a failure occurred in the upper end tab at a

load of 2,180,000 pounds. ‘Theload was removed and a new end tab was attached,
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The specimen was then reloaded to failure. ‘“

On a number of !!Liberty”ships opera.ted or repaired by the British,

the hatch corner reinforcement shown in Fig. 5 was used. ~his has been designated

as British Code 1A, It in,mlves three s~.gn:fica.ntfea+.u.res.First, full pene-

tration welds are use< be!.weenLhe dec:<and [iw~b;e:?;i.atesand the coming.

Second, an unusual shape doubler is used. Third, diagonal strapping is added

at the bottom of the girder system, bpecimen 31 incorporateed theee ijritish

modifications.

bince the British Code 1A modification contained three significant

changes from the basic design, it waa desirable to know the effect of each of

the changes. It appeared that the use of full penetration welds might be the

moSt significant of the three changes. Therefore, Specimen 32, aa shown in

Fig. 6, was built using full penetration welds between thu declcand doubler

plates and the hatch coami.ng. Otherwise it was the same as Speciclen5.

Previous tests had shown that in the bzsic design the longitudinal

coaming above deck carries about 75 per cent as much load as the longitudinal

girder below deck. The abrupt termination of this longitudinal coming at the

corner of the hatch opening resuits in a severe stress concentration. Specimens

33 and 37 had the longitudinal cosmimg extended above deck for 30 inches beyond

the hatch cad beam as shown in Fig. 7. Unfortunately the hatch end beam of

Specimen’37 was made from a piece of steel which was badly laninated. This was

discovered just prior ‘tothe test and close observation during the test Showed

that the results.were greatly affected by this condition and camot be considered

valid.

Specimcn.3~ wae an entirely new design. This“design”wa’$su~gested

by the American dureau of bhipping .md”has been designated as the A.B.S. design.

.



The details are shown in

hatch corner used on the

Tiiedistinctive features
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Fig. 8. The general configuration is similar to the

!jVic~orY!!tYPeships bit the plates are not as heavy.

are: (a) an 1811radius in the deck plate, (b) a cO~ng

separate from the longitudinal girder and hatch end beam, (c) contintiois‘longi-

tudinal girder, (d) extended longitudinal coeming, (e) a substantial”One piece

flange, containing generous radii, at the bottom of the main girdtiii~ltersection,

and (f) the use of Ilsnipesr(to avoid concentrat~ons of welding at the intersections

of three plates. The previous tests had indicated that all of these features

would

based

contribute to better performance.

Specimen 35 was also of entirely different design. This design was

upon some preliminary small scale tests which were conceived and carried out

at the University’of Ca.lifornia by Ml. H. u, Kennedy, The details of this specimen

are shown k Figs. 9, 10, 11 and 12. ‘The~~fi feature of this specimen is the

use of a’hot-formed section at the corner, A piece of 3/1+inch ‘ICI!steel was

forged to form the corner, resulting in a 5/8 inch thickness at the top of the

formed ‘sectionwhere”it was attached to tklecoasting. The coaming and the longi-

tudinal transition’~iece between the deck :md coaming were formed cold. This

design resulted in the coaming

and transverse girder system.

specimen.

Since the “cowing of

being 6 inches out of line with the longitudinal

A continuous longitudinal girder was used on this

this specimen was not in the same location as

those of the others, it was necessary to use a special transition section in

connecting the coaming to the upper pd’ling tab. This is shown in Fig. Il.

In testing this specimen no failure occurred at a load of 3,000,000

pounds, the

an interval

mchine,

rated capacit~.of

of about 66 hours

.

the testingj.wichinc. ‘Theload was removed. After

the spec”fii?n“wasbroken by overloading the testing



Specimen 36 was the same

diagonal brackets at the bottom of
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as specimen 5 except for the addition of

the longitudinal girder-hatch end beam joint,

like those shown in Fig. 2. This test was des.ignmlto isolate one of the factors

which was present in the British modification. Unfortunately, upon testing,

this specimen was found to have a very badly laminated hatch end beam plate so

the results were not valid. opecimen 38 was a repeat of this test. However,

nearly all of the 5/8 inch thick ‘ICI!steel had been usvd and it was necessary to

make the hatch end beam of this

steel was obtained on the local

Table IV. These properties are

it is not felt that.its use for

affected the results obtained..

.Specimcnout of another piece of steel. This

market and had tensile propwties as shown in

very nearly the same as thoee for !lC!Isteel and

the hatch end beam of this specimen in any way
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RiSULTS

The principal results of the tests

all cases except a portitinof the doubler’in

were obtained. In several instantes a crack

few inches, accompanied by a slight decrease

are shovinin Tablus V and VI. In

specimen 30j cleavagetype fractures

would originat~ and progress for a

in maximum load. This would be

followed in an instant by major failure of the specimen, in all“cases complete,

or nearly complete failure of the deck. It is felt that the stress value which_—..—.— —

is most important is the one corresponding to maximum load. On the other hand,
. . .. . ...— -———

the important energy value is the one which indicates all of the energy absorbed
___ ————. — --—-----—,’ —.

up to thtipoint of majar fail.urc. ‘fheseare thtitwo values which are shown in
———— —.—.—

Table VI.

The nominal stress valutis

dividing the load by the area which

except 33, 3/.+,35 and 37, this ar~a

the longitudinal girder up to thu top of the doubler, the longitudinal girder

shown in Tables V aridVI were computed by

supported this load. In all specimens

included the dock outboard of the coming,

flange, and the doublw, if any. ~~here radii existed, as in the deck plate in

Specimen 2Y, one third of’the radius was included in the width of the plate. In

specimens 33, 34 and 37, having extended coamings, the transverse area of the

entire longitudinal coaming was included in tho load carrying area. For specimen

35 (Kennedy design) the formed section up to two-thirds the height of’the radius

was included, Some of these areas were somewhat arbitrary but there did not

aPPear tO be anY exact simple method which could bc used.

Photographs of the variovs spccimcns arc shown in Figs, 13 to 65. In

order to serve as a basis of comparison, phOtOgraphs Of the failure in a previous

specimen, No. 4, are shown in Figs. 13 to 18 inclusive. The failure in this

particular spccimcn was typical.of all cleavage fractures w},ichoccurred in
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specimens of the basic design.

It will be noted in Tables VI and V that tho addition of diagonal
,.

bracket& at the bottom of the girder joint (Specimen 38) increased the maxtium
,..

nominal stress only 5 per cent.* However, the increase in energy absorp~ion at

fail’ure‘was38 per cent.

The use of a continuous longitudinal (Specimen 27) gave a 19!4 psr

cent increase in maximum stress and increased the energy absorption by 11+0per

cent.

The gusset reinforcement (bpscimen 2Ll,U.S.C.G. Code 5) gavo a maximum

stress increase of 30.5 per cent and increased the energy absorption at failure

by 324 per cent.

The use of a radius ih the deck plate at the hatch corner ,(>peciswn

30,,U.S.C.G. Code 1) produced a 52 per cent increase in maximainstrefisand a

161o per cent increase in total energy absorption. The effcctivcncss of the

doubler in this des,ig~is seen by comparing the results obtained with sp~cimen

29 which was the ,samcexcept that the doubler was omitted. It will be noted

that the absence of~the ‘doubl,erreduced the maximum stress by 6.5 per cent and

the energy absorption by over 71 per cent. It should be rcmwnbered that about.

one-third of the fracture in the doubler of specimen 30 was shear. This un-

doubtedly accounts for some of the increase in ener&y. “~diilethose are single

tests, it appears that the doubler is very desirablc in thi% p srticul.ard,esign.

The British modification (specimen 31) produced results which arc

rather difficult to account for. The increase in,, maximum stress.was slightly

over 25 per cent and the tdtal energy absorption increased 765 pm cent. This

specimen contained full penetration welds, diagonal reinforcing brackets and a
,,:

* All increases’in strength and energy absorption are based upon the values for

Specimen 5.

.,
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doubler of urd,queshape. Specimen 32 which also contain~d full penetration welds

with the regular small doubler showed an increase in maxim-usstress Of 2k per

cent but an increase in total’energy absorption of only 280 per ccnt. hben if

the increase of 38 per cent in energy absorption found due to diagonal reinforcing

bracket$ in bpocimen 38 is added, the total is still far short of the increase in

encr~ absorption shown by ‘thoBritish modification, although the results of

Specimens 29 “and30 do indicate that a.doubler can have considerable effect on

energy absorption,

““”‘Di{restilts’df Speciinen33 are most interesting in that a simple modi-

,,..
fication ‘producedo~standing results. By the simple expedient of extending the

coaming above deck for 30 inches, the maximum stress was increased by almost 45

per cent titiLhe’total enei’gy.absorption .by,1645 per cent. It should be

remembered that the longitudinal of this specimen was not continuous but inter-

costal. As shown in Table V, this specimen actually carried greater load than

Specimen 30. Thus this simple modification gave increased strength batter than

the U. S. C; G, 1 modification and energy absorption considerably superior, It

is unfortunate that the r,cpeattest of this modification (bpecimen 37) w?.s”in-

valid due’‘t<oa Diminated pl.ate. Ho,wever,the results, wen with this badly

laminated’“plate,’indicate that this modification is very effective, Caref@

observations were made during the testing of Specimen 37 and there was no question

but thhk the lhinated plate was the cause of the early failure. In bbth

Specimcne 33 and 37 the absence of distortio,~,at the hatch corner whiCH resulted

from the use of the extended coaming was remar,kablc, In other specimens the

corner of ths coeming started to distort below a load of 1,000,000 pounds. In

these specimens almost no distortion occurred until juet before failure.

It would be interesting to extend th.>coaming of a specimen of the
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basic design by adding a triangular”plate to a completed specimen. This would

,correspend to adding this reinforcement to an c~isting hatch 6orner on a ship.
. . . ,;,

If ths results were nearly as effuctivc as found in Specimen 33j this simple

procedure would be an easy and effective way of strengthening hatch corners of

existing ships.

The performance of Specimen 34, (A$S design) was excellent, as was

expected from the fcatures which were ‘incorporatedin it. The computed increase

in maximum stress was only 36.8 per cent which is somewhat less than for some

of the other modifications. However, the computed etrcss for this specimen is
,,

probably not a fair method of comparison since it contained MOre rn~talwhich had

to be included in the load carrying area than was thu case for th. other ‘specimens~
.. .... .,

yet it :ccms certain that a lot of this area was actually carrying very”little
:,. ,,,
load, This is borne out by the load valu.s which show that this specimen

carried a load of 2,880$000 pounds which is greater than for any except Specimen

35. The ermrgy absorption of this specimen was an increase of 1990 per cent
,,.

over that of the baeic sp~ci.men. The fracture of this specimen originated at

the intcrsection of the longitudinal and transverse comings end the deck and

travclled in four directions as’“shownb~ Figs.”49, 50, 51, 52, 53 and ’54.

Specimen 35 represented a departurc from conventional hatch design.

The results indicate that this departure was’well justific.d. ThQ maximum load
.,-,

sustained by this spzcimen was much gr.atmr than for any other and the maximum

nominal stress was more than proportionally higher due to the fact thst a

minimum of material was used. The maximom nominal stress of 54~100“psiis an

increase of 124 per cent over that of thtibasic design and is the only “cas~

where the maximum nominal strcss clearly exceeded the yield ‘strengthof the

material. That this specimen did behave in a truly duct~~ manner is shown’
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clearly in Figs. 56 and 57 which were taken after the specimen had been subjected

to the first 3/000,000 pound loading. Fig. 56 is particularly significant in

that this evidence of necking in the deck plate did not

men.

The total cnwgy absorption of 6,786,000 inch

occur in any other speci-

pounds was considerably

better than any other spcximen and represented an increase of 2840 per cent over

that of the basic specimen.

Pcmhaps thu most signifiibnt fact about the test of Specimen 35 is

that the fracture did not occur in the corner..—— , as shown in Fig. 58. This is the

only spec.tienfor which this is true. The fracture originated in the cold-formed

section at about the mid-point of the radius ‘whorean arc.had boon struck in

welding on a flanging clip.

of any cracks of any kind in

IIhilcit could not

Ab the conclusion of the tests there was no sign

the vicinity of the corner.

be measured, obscuration indicated that the re-

duction in thickness in the deck plato on a section near the corner was probably

greater than that which occlwred near thu fracturc. There was considerably more

necking near Iihccorner than at ‘thefracturo. Since over 60 hours elapsed between

the

age

initial and second loading of this specimen, it is possible that some strain-

hardening may have occurred.‘:

The design of Specimen 35 represents a distinctly different approach

than that of Specimen 34 (ABS design), Specimen 34 is extremely rigid as the

result of the use of tho extended coaming and the heavy cross-over flange at the

bottom of the girder intersection. On the other hand, Specimen 35 was designed

to avoid rigidity and allow plastic flow

was not sacrificed by this procedure.

“~hilsbpoc’imen35 ‘representsa

to occur easily. Howeverj strength

departure from conventional hatch design,
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to bc entirely practicable. Only slight structural changes would

made to incorporate it into new ships. In view of the results obtained

in these tests, it appears that these changes could well bc made in order to

utilize this type of hatch cor~er.

From the production viewpoint the design of Spccimen 35 offers no

difficulties. In fact it is very well suited to either SSIO1lor large ecale

production,

‘tile, in view of the results, one hesitates to maku any suggestions

for chan~es in the design, Mr. Kennedy und the inv.>stigatorsbelieve it would

bc desirable to Ilsnipcflthe hatch cnd beam at the top and bottom where it inter-

sects the longitudinal girder.

The load-strain curves from which tho energy determinationswere nmde

~rc shown in ,Fig.66.

‘Thegage layouts used on the various specimens are shown in Figs. 67

to,70 inclusive. Since a very complete stress invcsti[;ationhad been made on

Specimen 1, tested previously, it is included to senm as a basis for compari-

son. This specimen was of the st~dard desi~n except that it had a longitudinal

~d hatch end beam 3/4 inch thick instead of 5/8 inch. Figs. 71 to 7)+inclusive,

show the principal stresses determined at the various gage locations at a load

of 200,000 pounds on some of the specimens, Although tho stress values determined

at this low load are quite small it was necessary to use this load since at

higher loads some of the gages in each specimen indicated plastic flow so the

strain readings could not be converted to stress values. Fig. 75 chows the

stress distribution in bpecimen 34 (AX design).

For those who are int,crested in the strain valutisat l,igherloads,

the load-strain data for the individual gages are included as Figs. 76 to 80,
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inclusive, b Appendix A.

In a previous report4 a temperature-transitioncurve for hatch corner

type specimens constructed frem “C!!steel was included. Data have recently been

obtained at the University of California, but not directly as a part of this

work, for hatch corners constructed of JIB!!steel. Fig. 81 in Appendix B shows

thu temperature-transitioncurves for hatch corner type specunens of both !!!d!:

CONCLUSIONS. .—

From the results of the tests descritxd in tilisreport the following

conclusions are drawn:

1. There are two basically different approaches to tiproved welded hatch

corner design. One results in a very rigid structure wherein improved per-

formance is obtained by the addition of structuralmembers and the?reduction of

points of high multi-axial stress concentration insofar as possible (a problem

which is difficult with increased rigidity). The second approach is to design

for a minimum of rigidity so that plastic flow may occur naturally and easily,

with the result that high stress concentrations do not occur. This second type

of design appears to be the superior.

2. Since the principal stresses in the ship girder system adjacent to the

hatches are longitudinal rather than transverse, th. longitudinal girders near

hatch corners should be smde conti.wuouswith the transverse girders intercostal.

Such construction adds about 19 per cent in strength and 140 per cent in ability

to absorb energy.

3. The use of a hot-formed corner, having a radius in both vertical and

horizontal planes, in the corner of a welded hatch, as exemplified by Specimen 35,



_lj.

produced far better results, both in strength and energy absorption, thm any

other design tested. ‘Thiswas the only dosign in which the platcs showed any

appreciable pkastic flow.

4. If the rigid type of welded hatch design is to be used, the most benef-

icial single feature which can be incorporated is an extension of the longi-

tudinal coaming for at luast 30 inchcs beyond the transverse coaming. This singlc

featrrroproduced an increase of nearly 45 per cent in maxcmum nominal stress and

1645 per cent in energy absorption, as compared to the basic design. This simple

chan~c resulted in as much of an i.mprovcmcmtas that obtained by tho use of the

more complicated U,S.C.G. Code 1 modification.

5. ‘Theuso of a hatch corner gusset plate ar!ddia~~onalbars at th. bottom

of the girder system as a method of strongthcning !jIlbcrtylftype ships (U,b.C,G.

Code 5) was fairly cffective, Its use in these tests produced a strength in-

crease of 30 per cent and a 324 per cent incrouse in encr~ absorption. Of these

increases, about one-sixth of thG strength and one-fourth of the cncr[;yabsorption

m~asdue to the diagonal brackets and the remainder to the gusset .Dlate rein-

forcement.

6. ‘TtNmethod of reinforccmwnt used on “Libcrtj,;’ typ~ ships by thu British,

commonly designated as British Code 1A, was about equal to the U.f>.C-G. Cede 5

modification in strength but was about twice as good in energy absorbing ability,

7. Hatch corners of U,S.C.G, Codo 1 design arc very much superior to those

having the basic design. lhey are about 52 per cent strongor and will absorb

about 1600 per cent more energy. ~e doubler plate ueed in this design adds

only moderately to tho strength but appwirs to be responsible for nwirly 76 per

cent,of’tho increased energy absorbing ability.

8,, ‘lhcuse of’full penetration welds between the deck and doubler plates
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snd the coaming in a specimen of the basic design, in which the transverse hatch

end beam was continuous and the longitudinal girder was intercostal, increased

the strength by 24 pw c.ent and the encr~ absorbing ability b: 280 per cent,,

. .
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Specimcn~a

5

27

28

29

30

31

32

33

34

35

36

37

38

i)istinguishingFeatures.— .——. — .,.—..

Standard design MCI!steel.

Continuous longitudinal girder.

Gusset plate rcinforccmont - U.S.C.G. Code 5,

ilottcd coaming (no doubler) - U.S.C.G, Code 1,

Slotted co.aming(with doubler) - U.S.C.G. Code 1,

British modification - British Code 1A.

Full penetration welds,,

Extended coming.

ABS design.

Kennedy design.

Diagon,albrackote - invalid, l,wninateclplate,

Extended coaming, repeat of No. 33 - laminated plate.

h’ackets on lower part, repeat of No. 36.
Commercial typtisheel, similar to lfCtlsteel,
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TABLE 11,

Ana~ of Steel IICII— ,——. —

Q... —% Mn. G a

0.24 0.49 0.015 0.033

(Supplier1s analysis)

TA13LiIII.

=le and Hsrdness Properties Steel IIC!!.—

Plate No. Direc. Tensile Data ~O~Bars )—. —.—. —----
Yield

Hardness
Ultmat e Rreak ‘Elongation Reduction (Rockwell

.Jm ---@l- ~ ~zti %!& . .‘“L

c-1 Long. 35,230

Trans. 35,75o

c-1 Long, 37,500

Trans. 34,1OC

68,700 55J300 36.o 59.6 71

68,000 57,050 33.6 52.5

Tensile Dg.ta(Full Thickness

66,5oO 53,600 45.5 56.5

66,200 56,600 32.5 50.4

‘TABLEIV

Tensile and Hardness Properties Commercial Steel
(Used in bpecimen 38)

Direc, Tensile Data (,505 Bars)
Hardness

,Eeld [Jltiriate Elongation Reduction (Iiockwell

mm (% in 2“) in Area % IiB”)

Long. 35,720 6LI,4%~ 37.0 53.9 67.3

Trans. 36,003 64.403 39.5 59.8

Tensile,Data(Full Thichess-—
+%CW%

Flat. 35j737 64,800 30.8 59.7
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TABLE - IZI
HATCH CORNER TESTS

MAXIMUM NOMINAL STRESS AND ENERGY ABSORPTION

w
N
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MAXIMLM NOMINAL STRESS ENERGY ABSORPTION



1+
m

Iii)
.—
II

[

m 7.

I
‘o
“

‘0
.

0
.

‘-

,+

z
=j
n.

Ov



P
SKETCH NO I

>.k ,,= ,,.s

\&

-’ —-

— 57”’~1” I
1

J L6.E>k
fACE PLA7E 30.69

—x’—~ ““’’’’ %”=’’”0”

04

%s.),6“:1’0”,+-

II

,4 ,,
S“I1..Ik’=m’

h’
+lUP- 3,\ L*% FIG. 2

llzp-l

UNIVERSITY OF CALIFORNIA DETAIL OF GU55’tT PLATE REINFORCEMENT ( U.S.C.G. CODE 5) FOR :; “;”””” ~ ‘-v’” \ ~
w.,D1..RESEARCH ‘ANCCI+ =516 II HATCH CC37NER SPECIMEN *28

!0/2?/+6 .. . L S7

112mb W. LA= BE*N..~. CAL,,
m ,“ Zm.-g. I / / IWL –



26

*. I

D!

—-



L&J

SECTION 2-A
Suu 0.. !-0.

6 II

ELLVATION AT HATCH CORNER
sm., !V.1.0

II
1,
,1

II
11
1!

?s”
OETAIL z-A

,,... . . ,.0

SECTION A-A
JA ‘CA” ‘Y””””

“Arc” . . . w.

BOTTOM VIEW OF
HATCH GIRDER

STRAPPING
,.,,, !*.. (:0,,

E!G_4
LIN,vERSITYOF CALIFORNIA HATCH CORNER REINFORCEMENT FOR SPECIMEN 29

SC,,, AS $ “OWN APPROVE.

WELDING .,s,,...

.R. n”l CP 17/,, /+7 1...

,,, BY I I / I I?.m



27

c1

ii
1,
ii
II
II
II

AA
1,

Ah



28

—

[ .====::: ~ ~~

II I
II I

6“

II 1
, ,,

,1 I

II 1
II I

.====l ~- ,~
~; \

II I .9-’1

7r II I * II
II I

II I II II I

1

II : IL,5’J
‘]~1

II II ,1 I

II I II IK 1
II

II I II II [ 46”

1, I II ,
II

II I
II I

II,1 I
11 ,

Ill,
II II I
II

,1 ,
II ,

II II
II I
II I

II 1, I

II
II I

l! , 1

~--- “%...~

PLAN VIEW

NOTE5
SPECIMEN 32 MADE WITH FULL PENETRATION
MLDS 6ETwECN THE DECK AW COUOUR ptirE5
ANO THE U.TCH cOAWNG.
.JOINT OF TRAN5VEUSE AND LONGITUDINAL
G!UDEU9 ?0 BE FILLET WELDED AS IN
PREVIOUS SPECIMENS.

I

I
T

I la”
I
I

1

T

f f . .
,6

‘h’”u 7
19%” 2og

1 ..- 1

~ *“” f
t T

*~

ELEVATION

FIG. 6

DETAILS OF HATCH CORNER ~y~ ;;:-O” I APPROVED

7 /!7 147 IclwcL.&/

SPECIMEN 32 TR. BY i I I I PANEL I



EXTENDED COAMING SPECIMEN ’33

PLATE LAYOUT FOR PART OF LONGITUDINAL
GIRDER AND COAMING SHOWING EXTENSION
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Fig. 12 Specimen 35: Below deck view before test







Fig. 17 Specimen 4: View of fracture in weld between longitudinal
flange and hatch end beam flange

Fig. 7.8 specimen 4t View of corner from Inside of’hatah
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F’i-. 35 Specimen 30: View of frs.ctures from ins+de of hBt~h

F~~. 36 Specimen 30: View of fractures in deck and doubl?T





~.lg. 39 Specimen 31: View from below deck, outboard and forward

of hatch end beam

Fig. ~ Specimen 31: View f=Om inside of hoI,.}







Fig, .t5 Specimen 33: VfeW of fractures from above deck and inboard

SIR, 4s Spectmen 33: ‘Jiewof fractures from above deck and outboard





Fig. 49 Specimen 34: Overall view from above deck Fig. 50 specimen 34: Overall view from below deck



Fig, 51 Specimen 34: View of fractures from above deck

~~g. 52 specimen 34: View from below deck, outboard Ef!d

forward of hatch end beam
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~+ *.:,.5S Spec;.men 34: View from inside of’hatch

Fig. 54 Spec [men 341 Fracture patterns, looking forward



Fig. 55 Specimen 35: view showing Fig. 56 Specimen 35: View show-

di stortioz in coaming at end ing necking in deck pls.te
of first test at end of’ first test

(3,000,000 lb. load)

Fig. 57 Specimen 35: View shovring

distcrtinn in Icngitudinal
at end of firet test
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Fig. 60 Specimen 35: View of fractures from above deck

Fig. 61 Specimen 35: View of fractures from below deck



Fig. 62 Specimen 38; View of fractures from above [leek

Fig. 63 Specimen 38: View Of fr~~~re frOm bal~~ deck, Ou~,boardand
forward of hatch end beam
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~~;.,44 Specimen 38: View from inside M !M+t:P!:
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APF’2ND1X A

Load Strain Data for Individual Gages.
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APPENDIX B

Temperature Transition Curves for Hatch Corner Specimens, IIBuand I!CIISteels



TEMPERATURE TRANSITION CURVES

FOR HATCH CORNER SPECIMENS,
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