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ABSTRACT

This report summarizes the results of a series of tests made as
a part of the study of the propagation of brittle fractures in 6-ft wide
steel plates. All plates were tested at an .average net applied .stress
of 19, 000 psi, a temperature of about =10 F, and an impact energy of
about 1000 ft-1b, which made it possible to superimpose the test data
and obtain contours of strain on the surface of the plate for a propagat-—
ing fracture. Contours of both the maximum principal strain and strain
measured with vertically Qriented gages for various lengths of crack are
presented in this report. A study of all the applicable data from earlier
tests made as a part of this program indicates that the strain contour
data presented here are alsorepresentative of the data from these earlier
tests. The studies indicate that for the particular specimen geometry
and.associated test conditions, the strain field associated with the tip
of the advancing fraciure remains essentially unchanged after traversing
about one-third of the plate width and extends only about 8--10 in.

ahead of the crack tip.
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INTRODUCTION

General

Brittle fractures in riveted and welded steel structures have been re-
ported in the engineering literature for many years. These fractures generally
are characterized 1) by a lack of the ductility usually associated with failures
of structural steel and 2) by a sudden occurrence with little or no previous warn-
ing.

The significance of the brittle fracture problem was not fully appreciated
until World War II, when a large number of welded merchant vessels failed in
this manner. Fortunately, through the use of improved geometrical layout, crack
arrestors, and improved materials and fabrication procedures, it was possible to
reduce greatly the number of major ship failures. In many cases, provisions have
been made to incorporate similar improvements or changes in the design of struc-
tures other than ships in order to minimize the possibility of the occurrence of
brittle fractures. Nevertheless, in spite of these improvements in design which
have resulted from the large amount of research completed during and since World
War II, brittle fractures still occur, and further studies are required if a better un-

derstanding of the brittle fracture problem is to be obtained.

Object and Scope

The brittle fracture phenomenon is extremely complicated in that it involves
a consideration of materials and their behavior in various environments. This par-
ticular program is concerned with a study of the propagation of brittle fractures in
wide steel plates., The experimental approach followed in this investigation has
consisted of measuring surface strains and crack speed as the fracture traverses a
wide steel plate to obtain fundamental data.

The primary purpose of these tests and studies was to obtain sufficient
data to establish representative strain contours on the plate surface during the time
a brittle fracture is propagating. Thus far, six major fracture tests of 6-ft wide,
semikilled steel plates have been completed in which 34 channels of cathode ray
oscilloscope recording instrumentation have been utilized; in each test, 33 channels

were used for 11 rectangular strain rosettes and one channel was used for speed
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detectors. The plates were tested at an average net applied stress of 19, 000 psi
and at a temperature of about -10 F. The fractures. were initiated {rom one edge
of the plate with the notch-wedge-impact method of fracture initiation. In con-
junction with the crack arrestor program (Project SR-134), one additional set of
records has been obtained for a plate tested at a higher stress level (28, 000 psi)
and at a lower temperature (~15 F). The results presented in this report are based
on the tests that are reported here for the first time, as well as on all of the pre-
vious applicable data obtained as part of this program. -
_Among the more important items presented in this report are the following:
(1) strain gage traces from the component gages of the strain rosettes
(2) principal strain curves computed from the component gage strain traces
(3) discussion of the factors affecting the computed principal strain magni-
tudes and strain rates | |
(4) representative vertical and maximum principal strain contours for vari-
ous crack lengths during the time the fracture is propagating, and
(5) typical sets of maximum principal strain contours and vertical strain
contours associated with a crack in the central portion of the plate.
The strain contours should be of considerable value in correlating t_he test

results and associated significant parameters with other experimental and analyti——

cal results.
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Nomenclature

The following terms are used repeatedly throughout the text:

Dynamic strain gage--SR-4 Type A7 (1/4-in. gage length) strain gage whose
signal is monitored with respect to time on an oscilloscope during the
fracture test,

Static strain gage--SR-4 Type A7 (1/4-in. gage length) strain gage used to
monitor the static strain level.

Component strain gage--Qne of the three individual strain gages of a rectan~-
gular strain rosette.

Crack detector--A single-wire SR-4 Type A9 (6-in. gage length) strain gage
located on the plate surface perpendicular to the expected fracture
path. A rough measure of the fracture speed may be obtained from a
knowledge of the distance between the detectors and the time interval
corresponding to the breaking of adjacent detectors.

Initiation edge~-The edge of the specimen at which the brittle fracture is ini-
tiated.

Notch line--An imaginary straight line connecting the fracture initiation notches
on opposite edges of the plate specimen.

Test load strain--At any gage point, the strain corresponding to the applied test

load.

DESCRIPTION OF SPECIMENS AND INSTRUMENTATION

Specimens and Material Properties

The plate material for the six major fracture tests outlined in Table 1
(Tests 33, 34 and 36 through 39) was a semikilled steel, USS heat No. 64M487,
and was tested in the as-rolled condition. The steel was from the same stock
that was used in the earlier tests made as a part of this program and its proper-
ties, typical of A-7 structural steels, are in agreement with those reported ear-

1,2,5

lier. The specimens were 3/4 in. thick, 72 in. wide, and 20 in. long;



TABLE 1. OUTLINE OF TESTS

Test No. Initial Avg. Stress on Avg.
(Plate No.) Load Net Section Temp. Remarks
(kips) (ksi) (F)

With the exception of Test 35, all tests were conducted on 3/4-in, by 72-in. by 120-in, semi-
killed steel plate specimens welded with E7016 electrodes to 1-in. thick pull-plates in the 3, 000, 000-
1b Baldwin hydraulic testing machine. The brittle fractures were initiated by the notch-wedge-impact
method with a nominal lateral impact of 1200 ft-1b,

The notch was 1-1/8 in, long and consisted of a slot four hacksaw blades wide (~0.141 in.)
for the first 1 in., one blade wide (~0.034 in.) for the next 1/16 in., and ended with a jeweler's saw-
cut (~0.012 in.} 1/16 in. long.

33 1000 19.0 0 Complete fracture--good strain records obtained from

(XC-1) 7 rosettes.

34 1000 19.0 0 Complete fracture--good strain records obtained from

(XF-1) 10 rosettes.

35 1475 28.0 -15 Plate specimen composed of 36-in. starter strake of

(RTRT-4) rimmed steel, 4-in. strake of T-1, 20~in. strake of
rimmed steel, and a 12-in. strake of T-1 steel.

{Tested in Specimen was 27 in. long. Fracture arrested at lead-

conjunction ing edge of final T-1 strake. Final load--85 kips.

with Project Good strain records obtained from 4 rosettes.

SR~-134)

36 997 19.0 ~10 Complete fracture--fair strain records obtained from

(X2B) 11 rosettes. Double fracture last two-thirds of

plate width.

37 997 19.0 -8 Complete fracture--good strain records obtained from
(X2F) 11 rosettes.
38 997 19.0 -9 Complete fracture--good strain records obtained from
(X1B) 11 rosettes.
39 997 19.0 -6 Complete fracture--good strain records obtained from

(X2E) 11 rosettes.
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Fig. 1. Typical Test Setup

the net width at the notch line was approximately 2-1/4 in. less than the gross
width because of the notches on each edge., Both ends of the specimen were
welded with double~V butt welds made with E7016 electrodes to 1~in. thick
pull-plates mounted in the testing machine; in welding the specimen to the
pull-plates, care was taken to keep the warping and residual stresses to a
minimum. A line diagram of the specimen and pull-plates and a view of a typi-
cal test setup in the 3, 000, 000-1b hydraulic testing machine are shown in

Fig. 1.

The composite plate specimen for the arrestor test (Test 35) was fabri-
cated from, in order, 1) a 36-in. fracture starter strake of rimmed steel (the
plate on which the strain rosette gages were mounted), 2) a 4-in. strake of
T-1 steel, 3) a 20-in. strake of rimmed steel, and 4) a 12-in. strake of T-1
steel. Over all, the specimen was 3/4 in. thick, 72 in. wide, and 27 in.long.

Mechanical property tests were made on material taken from the cen-

tral portion of the plates after the plates had been fractured. The check ana-
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lyses and the tensile test data for each of the rimmed and semikilled steel plates

are presented in Tables 2 and 3. Charpy V-notch data are presented in Fig. 2,

Instrumentation

Until recently, it had been possible to obtain only a limited amount of
data from any one test because a maximum of only nine channels of cathode-ray
oscilloscope recording equipment had been available. Nevertheless, earlier
work on this program with both 2-ft wide and 6-ft wide plates produced much

valuable information concerning expected fracture speed and the strain distribu-



TABLE 2., CHECK ANALYSES OF STEEL PLATE MATERIAL
Test No. Material Chemical Composition in Per Cent
C Mn P 8 5i Cu Ni Al
33 Semikilled 0.17 0,71 0.019 .028 0.058 0.02 0.0 0.03
34, 37 Semikilled 0.20 0.76 0,019 .028 0.052 0.02 Trace 0.03
35 Rimmed 0.18 0.42 0.013 .031 0.02 0.23 0.14 0.003
36, 38 Semikilled 0.21 0.82 0.018 .030 0.058 0.02 0.0 0.03
39 Semikilled 0.20 0.76 0,019 . 040 0.03 0.04 0.16 0.002
TABLE 3.TENSILE TEST DATA FOR STEEL PLATE MATERIAL
(Standard ASTM 0.505-in. diam specimens)
Test Material Heat Lower Yield Maximum Elongation Reduction
No. (Plate No.) No. Strength Strength in 2-in. of Area
(ksi) (ksi) T %
33 Semikilled 64M487 (L)* 32.9 59. 40.5 66.5
(XC~1) (T)**32.6 58. 41.0 59.5
34 Semikilled 64M487 (L) 32.9 61. 40.7 66.3
(XF-1) (T) 34.5 62. 40.0 61.7
35 Rimmed 16445 (L) 34.7 68. 36.5 57.6
(Z1A4) (T) 35.2 68.7 31,2 51,6
36 Semikilled 64M487 (L) 36.5 67. 36.0 63.5
(X2B) (T) 35.2 67. 34.5 58.8
37 Semikilled 64M487 (L) 35.5 64, 41.0 67.8
(X2F) () 35.0 64. 36.3 61.8
38 Semikilled 64M487 (L) 35.5 66. 36.5 64. 3
(X1B) (T) 35.6 66. 36.8 59.8
39 Semikilled 64M487 (L) 34.3 61.6 39.5 65.3
(X2E) (T) 35.2 62. 36.8 57.5

#(1) Average of two specimens taken parallel to the direction of rolling,

*%(T) Average of two specimens taken transverse to the directlion of rolling.
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FRANKLIN OSCILLOSCORES surface as recorded by single

]7 strain gages. The results of the
TEKTRONIX

DSCIL,LI’M%COF‘E work through the end of 1956 have

17 DUMONT OSCILLOSCOPES

been reported in a paper5 and, in
more detail, in two technical re-
ports. L, 2 In 1957, an additional
25 channels of cathodeway oscillo-
scope recording equipment were
made available to the program by

the Naval Research Laboratory.

L

The latest 25 channels of
the cathode-ray oscilloscope
equipment were five-channel units manufactured by Franklin Electronics. The
nine earlier channels consisted of two DuMont Type 333 and two DuMont Type
322 dual-beam cathode-ray oscilloscopes, and a Tektronix Type 512 single
beam unit. The recording equipment, along with the calibrating oscillator that
supplied the time signals, is shown in Fig. 3; the cameras for the DuMont
equipment are not shown,

Six of the DuMont oscilloscope channels are sufficiently sensitive to
allow at least 1-1/2 in. of trace deflection for 0.001 in,/in. of strain. How-
ever, the deflection scale used to record the test data on these DuMont scopes
was limited by the size of the scope face and the maximum value of expected
strain. The other 28 channels only allowed about 1/2 in. of trace deflection
for the same strain. In planning the recording of the test data, the equipment
was arranged so that the strain gages that were expected to produce signals of
lowest electrical magnitude were connected to the six DuMont oscilloscopes as
they had the highest sensitivity. The frequency response of all oscilloscopes
was flat up to at ieast 50 kc and therefore, they were considered to be adequate
to record the strain signals. Portions of two typical strain records are presented

in Fig. 4. The oscilloscope channels used to measure and record strain were



Franklin Cscilloscope Record DuMont Oscilloscope Record

Fig. 4. Typical Strain Records

calibrated by shunting gages with a resistance whose equivalent strain value
was known.

The time base for the records obtained from the DuMont and Franklin
oscilloscopes was supplied by continuously moving 35-mm film. Timing marks
on the traces from the Franklin units were energized by the oscillator and re-
corded as part of the strain traces; the DuMont units employed intensity modu-
lation of the electron spot to define the time base. On all of the strain traces
a simultaneous "bilip" was produced by a synchronizing signal supplied from
the Tekironix oscilloscope circuit, immediately before and after the test. This
signal made it possible to synchronize accurately with each other all the strain
traces from a particular test. The synchronizing "blip" is visible on the records
shown in Fig. 4.

The crack detector trace on the Tekironix oscilloscope was recorded on-
a single frame of 35-mm film. The time axis was calibrated by putting a time
signal of known frequency on the channel and photocgraphing one sweep. This
was done immediately after the test was completed.

Since only 34 channels of strain recording equipment were available
{33 channels for 11 rectangular strain rosettes and one channel for crack speed

cdetectors) and the exact location of the fracture path was unknown prior to each
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FIG 5 INSTRUMENTATION LAYQOUT AND CRACK PATH — TEST 33

test, it was decided to concentrate the strain rosettes in three general areas
with respect to width on three of the plate specimens, and thereafter to super-
impose the data to obtain the picture of the strain distribution associated with
a propagating crack.

The instrumentation layouts and crack paths for Tests 33 through 39 are
shown as Figs. 5--11. The strain rosettes are located on only the first two-
thirds of the plate, since it was felt that rosettes located in this region would

yield the desired strain information. The strain rosettes were located at 7-in.
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7 26 i 29.0 9.0 -.00015 -5.00 (Upper)|| 55 12,1 0.3
oF o] 29.% %3 .00026 «H10 " 5T 12,3 o]
28 v 20,0 9.3 L0002 =330 " 59 12,9 -0.k
8 29 H 36.0 9.0 -.00017 -0.k5 " 65 135 -0.9
32 D 26,3 9.3 .0C027 -0.80 " 66.5 1%.5 =1.0
3 v 56.0 9.3 LO00TL =0.75 " 69,5 13.5 -0.8

9 Bl D 22,3 0.3 .00021  3.05 (Lower) 70 13.53 -l.0
10 v 22,0 0.3 00068 2.0 ! 72 136 -C.7
25 H 22.0 0.0 -.00017  3.25 "

10 nn D 29.3 0.3 L0003 2.55 " ¥Crack Branched
15 ¥ 29,0 0.3 00669 2,55 " {U}= Upper Crack
sl " 20,0 0.0 -.0001F 2,85 " {L}= Lower Crack

11 19 i} .3 0.3 00027 1.15 "

20 ¥ 6.0 C.3 00070 1,15 0"
33 H 6,0 0,0 -.000L7 1.65 "

FIG. 8 INSTRUMENTATION LAYOUT AND CRACK PATH — TEST 36
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I ««75"a|-— 7'>—|-— 7"—-|-— ?"——|-—?"—>L-——, |4"—-|
DYNAMIC STRAIN GAGES CRACK PATH
Rosette Strein Orien- X Y Test Load Distance to X b4
Ho. Gage tation {in.) (in.) Strain Fracture {in.) (in.)
No. {in./in,} {1in.)
1 1 i 22 3 -.00018 -1.70 1.1 0
2 D 22,3 3.3 oog22 -2,10 3 0
3 v a2 3.3 00063 -2,10 8 .2
2 & H 15 3 -.00018 -2, ho 15 .6
7 D 15.3 %3 00022 -2.70 20 1.1
] ¥ 15 3.3 00066 -2,T0 22 1.6
3 11 H 15 -3 -.00018 +1.65 25 1.8
12 D 15.3 -2.7 00023 +1.35 ag 2,2
13 v 15 -2, 7 00065 +1.35 32.5 2.6
L 16 H 8 3 -.00019 -2.80 35.5 2.6
L7 D 8.3 3.3 00023 -3.10 36 2.4
18 v 8 33 00067 =3.10 3 2.4
5 21 H 36 [ -.00017 -3.65 JIts] 3.5
ap D 6.3 6.3 00024 =L,00 55 3,5
23 v 6 6.3 00067 -4.00 64 3.6
6 EIn B 22 6 = . 00017 =L 70 69 3.7
I D 22,3 6.3 00021 -5,10 ™ 3.6
5 ¥ 22 6.3 00067 -5,10 T2 5.2
T 26 H 22 9 -, 00017 -0
a7 n 22,3 9.3 00027 -8.10
28 k'S 22 2.3 00065 -8.10
8 29 H 15 6 -.00018 =5.40
32 D 15,3 6.3 00026 -5.70
3 ¥ 15 6.3 00068 -5.T0
] 25 H 22 -, 00016 +1.35
9 ! 22,3 .3 00027 +1.00
10 ¥ 22 .3 00060 +1,,00
10 3 H 8 -3 -.00017 +2.20
1l D 8.3 -2.7 00018 +1.90
15 v 8 -2.7 L0006, +1.90
n 33 H 36 5] ~.0001T +2,35
19 D 36,3 3 00023 +2.00
20 v 36 3 00066 +2.00
FIG, 9 INSTRUMENTATION LAYOUT AND CRACK PATH — TEST 37
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DYNAMIC STRAIW CAGES CRACK PATH
Hosette Strain Orien- X Y Test Load Distance to i ¥
Ho. Gage tation (in.) (In.} Strain Fracture (in.} (in.)
Yo. (1n./in,) {in.}
1 1 H 0 6 -.00017 =0.7T0 1.1 0
2 o] 50.3 6.3 00013 -1.05 5.0 .2
3 v 50 6.3 .000ks -1.05 6.0 3
] [ H 43 3 -.00018 -1.09 10 .8
7 D 43,3 6.3 00019 -1.3%0 op 2,9
3 v 43 6.3 00056 -1.40 ol 3,2
3 1L H 36 3 - 00017 +1.65 27 3.5
12 D 36,3 3.3 00018 §1.25 30 7.9
13 i 36 3.3 00050 +1.25 35 4,6
L 16 i 43 9 -.00019 4,05 40 ]
17 D k3.3 9.3 00021 -4, %0 45 5.1
18 ¥ b3 9.3 00056 =4 kg 50 5.4
5 21 i} 35 [ -, 00017 -1.30 5L St
22 D 36,3 6.3 Nelsakt =173 56 5.3
23 v 36 6.3 .00GED -1.73 [} 5.1
6 2k H 50 3 -.G0GLY -3.70 £5 5.5
S o} 53.3 9.3 00015 -4,05 7O 5.5
5 v 50 9.3 00056 -4.05 T2 5.4
7 26 H L3 12 -.00018 -T.05
27 D k3,3 12.3 00015 =730
28 'S L3 12.3 L QoL =750
8 29 H 50 12 -.00018 -5, 70
%2 D 50.3 12.3 00023 -7.05
Bl v 50 12.3 00057 -7.05
9 25 E 50 3 -, 00017 +2, 35
9 D 50,3 33 00021 +2,10
10 ¥ 50 3.3 00056 +2,00
10 20 H 53 3 -~ 000L7 +1.95
14 D 43,3 3.3 00028 +1.70
15 s b3z 3,3 . 00056 +1,65
1L 335 H 30 -.00018 +k .65
i9 D %65.3 3 00009 +l, 30
20 v 36 3 Q0oL +h, 30
FIG. 10 INSTRUMENTATION LAYOUT AND CRACK PATH — TEST 38
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DYWAMIC STRAIN (AGES

CRACK PATH

Honmette Htrain Orlen- X ¥ Teat Yoad Diztance to X i 4
Fo. dage tetion {in.} (in.) Straln Fracture {in.) (in.)
Ho. {in, fin.) {in,)
1 1 B 22 3 - 00017 +2,29 1.1 o
2 il 22,3 33 00021 +2.10 [ o.7
3 I's 22 33 L0062 +1,96 10 1.8
2 6 H 29 3 -.000LT +h1l 15 33
7 D 29.3 3.3 00019 +3.90 0 b, 5
8 ¥ 29 3.3 00061 +5.85 21 4.8
3 11 H 36 3 -.000LT +h.50 25 6.3
12 b 35.3 3.3 L0009 +k,22 25 7.1
13 ¥ 36 3.3 200053 +14,12 32 7.0
b 16 H 29 6 -, 00016 +1.09 35 Tl
17 D 29.3 6.3 00022 +0.88 Lo 7.9
18 ¥ 29 6.3 . DO06D +0,89 Ls 8,2
5 21 K 3% [4 - 000LT +1.55 50 8.4
28 D 36,3 6.3 00023 41,1k 55 8.5
23 ¥ 36 6,3 00062 +1,12 60 8.5
3 2h H 22 6 -.00017 -0, T3 65 8.6
1 D 22,53 6.3 G025 -0.90 (] B.h
5 ¥ 22 6,3 00056 -1,08 T2 7.9
7 26 H 29 9 -.00018 -1.76
27 D 29.3 9.3 .00020 -2,07
2 ¥ 29 9.3 . 00061 -2,12
8 29 H 6 9 -.00018 SLLBT
32 ) 36,3 9.3 .00023 -1.80
3 v . 9.3 00062 -1.85
9 25 i 22 3 -.000LT +5.27
9 D 22,3 0.3 00022 +5.10
10 ¥ 22 0.3 80059 +4.98
10 0 | 29 -.00019 +7.17
1L D 2¢.3 0.3 00019 +6.85
15 ¥ 29 0.3 . 00059 +6.89
il 33 H 36 5] -, 00017 +7.50
19 D 36.3 0.3 ,00026 +T.20
20 ¥ 36 0.3 00060 +T.1h
FIG. It iNSTRUMENTATION LAYOUT AND CRACK PATH — TEST 39
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intervals across the plate in order to obtain strain values at intervals of one-tenth
the net plate width. Since a double fracture occurred in Test 36, a duplicate test
(Test 39) was conducted.

Rectangular strain rosettes consisting of three SR-4 Tvpe A-7 strain gages
were used to determine the principal strains at various locations on the surface of
each specimen. Since the component gages were of a finite size, it was obviously
not possible to measure the strain in three directions precisely at a point; however,
since the three component strain gages of the rosettes had a 1/4-in. gage length,
it was possible to mount the three gage elements within a 0, 7=in. diameter circle,
and this was considered to be satisfactory under the circumstances. In the tests
reported here, two rosette layouts of the component gages were used., Photographs
and drawings of both gage layouts are presented in Fig. 12. In layout A (Tests 33,
34, and 35), the diagonal gage was centered directly above the horizontal gage,
and the vertical gage was mounted on the side near the initiation edge; in layout B
(Tests 36 through 39), the vertical gage was centered directly above the horizontal
gage, and the diagonal gage was mounted on the side away from the initiation edge.

The gages for dynamic measuremenis were connected in the customary
Wheatstone bridge circuit. Three similar electrical strain gages, which were iso-
lated from the specimen, were used as resistancres to complete the bridge circuit.
These bridges were excited by direct current and their outputs fed to the recording
oscilloscope channels. A diagram of typical circuits is shown in Fig. 13,

The crack speed was measured with a system of six surface crack detec-
tors which broke as the fracture traversed the plate; at each detector location in
Tests 36 through 39, two 6-in. detectors {Baldwin SR=~4 Type A-9 strain gages)
were wired in series to give a 12-in. detector. The breaking of a crack detector
opened an electrical circuit and caused a stepped change in voltage. A diagram
of a typical crack detector circuit is shown in Fig. 14. From a knowledge of the
spacing between detectors and the elapsed time between successive interruptions
of the circuit, the speed of the fracture could be computed. This system gives
an average surface speed of the fracture since the crack front location is not
known precisely at the time the detector breaks. Thus, all calculated speeds

were rounded off to the nearest 50 fps. Crack detector calibration was obtained
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Fig. 13. Strain Gage Circuits
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patTERY ¥

by successivelv opening switches ar-
}-— RESET

ranged in series with the various de-

. tectors and reccrding the trace steps.
_"-'_“_" 10 SWEEP GENERATOR
The switch locations are indicated in

=} THYRATRON

the circuit shown in Fig. 14.

A triggering device, referred to

WANUAL

et as an external trigger because of its lo-

cation, was utilized in these tests to

activate the sweep and spot intensifying

circuits in the recording equipment.

TRIGGER SHORATED
FQR CALIBRATION

This trigger consisted of a strip of alumi-

TRIGOERING
PEVICES =

num foil which was broken as the piston

device drove the wedge into the notch;

—!3||' B thus, the circuits in the recording de-
==
Fig. 15. Trigger Circuit vices were energized just before the

fracture was initiated. To insure that
the circuits would be energized in the event of failure of the external trigger,
a plate surface trigger (A-9 strain gage) was connected in series with the ex-
ternal trigger. The trigger circuit is shown in Fig. 15.

Static strain gages also were located every 7 in. along the notch line
on both faces of the plate and three sets of back-to-back gages were placed
18 in. above the notch line. However, to simplify the instrumentation draw=-
ings presented in Figs.5--11, the positions of the static strain gages are not
shown. Strain readings showed that in each test there was a fairly uniiorm
static strain distribution across the plate during application of the test load;
in addition, bending strains were noted to be less then 0.0002 in./in. in all
tests.

The temperature of the specimen was continucusly recorded during cool-
ing by means of a Leeds and Northrup Type G "Speedomax” recorder and copper-
constantan thermocoup!=s located in 1/4-in. deep heles at various points

across the srecimen.
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A more complete description of the instrumentation may be found in reports

3 3 . 1’ 2’ 5
and papers previously issued as a part of this program.

Data Reduction

Reduction of the strain data recorded on 35-mm strip film was facilitated
with a decimal converter and the University of Illinois high-speed digital com-
puter, the ILLIAC.

A brief summary of the data reduction procedure is presented below. The
35-mm film strips were enlarged and the calibration and timing marks scaled on
the enlargements. With the aid of the decimal converter, values of component
gage sirain versus fime were simultaneously punched on IBM cards, plotted on
an X-Y plotter, and typed in tabular form. The strain-time values were then
transferred from IBM cards to punched paper tape and processed through the
ILLIAC which computed values of the principal strains. The ILLIAC results con-
sisted of tabulated principal strain data, as well as scaled oscilloscope displays
of component gage and principal strain traces. The scaled oscilloscope displays

were photographed for later enlargement and processing.

Apparatus and Test Procedure

In most respects, the apparatus and test procedure used for these tests
was similar to that used in earlier tests made as a part of this program.

The notch-wedge-impact method of fracture initiation was used in these
tests. A closeupview of the 1-1/8 in. deep notch and the wedge is shown in
Fig. 16. A view of the gas-operated piston device that provides the external im-
pact is shown in Fig, 17. The theoretical output energy of the piston device
was 1200 ft=1b, but calibration tests indicate that the device actually delivered
about 1000 ft-1b.

Crushed dry ice was used to cool the plate specimen. Photographs of
the dry ice containers, as well as a diagram showing the thermocouple locations
for the specimens, are presented in Fig. 18. Typical cooling curves for Tests
33--39 are presented in Fig. 19.

After the instrumentation was mounted on the plate and the plate speci-

men had been welded to the pull-heads, the specimen was siressed at room
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fu ; Y 5. ! * . 0ol 1 i
Fig. 16, Closeup of Notch and Tip Fig. 17. Piston Device Used for
of Wedge. Fracture Initiation.

temperature to the test load to check the behavior of the strain gages; at the
same time, it was possible to ascertain the static strain distribution in the
specimen and to obtain the test lcad strain values for each dynamic gage. Any
gages that displayed faulty or questionable response were replaced and the
newly installed gages were checked by another test load cycle.

In Tests 36--39, wiring between gages and oscilloscopes was double
checked by shunting each gage with a resistor and noting the direction of trace
movement on the face of its respective oscilloscope. This gave a positive
identification of the scope trace corresponding to each gage and the direction
of the compression calibration for each gage.

At the time of test, the cooling tanks were filled with crushed dry ice;
when the test temperature was approached, the plate was stressed to the test
load. After loading, the recording equipment was calibrated, and the gas op-
erated piston device pressurized. When the desired specimen temperature was
obtained, the recording cameras were started, and the gas-operated piston de-
vice was fired to drive the wedge into the edge notch to initiate the brittle frac-

ture.,

ANALYSIS OF TEST RESULTS

General

The results presented here are based on all of the applicable data ob-
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0030
1o e e tained as a part of this program. The
0029 [\ ’\ extensive sirain data obtained in Tests
\ \ 33--39 are presented in this report for
0010 d
A . . . .
zev _// L_Ht \/ L the first time. The use of strainrosettes
[ R P R\ — , : ;
I e e I e \\,\ in the latter tests permits the plotting of
o d A | _—
| ooz T contours of maximum principal strain, as
4t-In FROM _FRACTURC
ROSETTE 3=TEST 29
£ /\ \ well as contours of vertical strain, on
@ goro
S i’\ °—u—x_/ \ the surface of the plate as the fracture
| 12-0 [l N .\_ e
L Ve = [ ~{__/~|| propagates across the plate. The data
T e obtained in earlier tests™’ = support the
D010 /\
- PR IR results of the more recent tests which
b
KPR — 7
| et | are presented here.
_____ L St s e
[+] as 1o 150 [+1] 19 15
TIME — miliseconds Recorded Test Data
FIG 20 TYPIGAL STRAIN TRACES AND COMPUTED PRINCIPAL STRAINS Typical strain traces for com-
FOR ROSETTES LOCATED AT VARIOUS DISTANCES FROM
THE FRACTURE

ponent gages located at various dis-

tances from the fracture may be seen in
Fig. 20; the three rosettes are from one plate and are mounted directly above
one another at distances of 1.1 in., 4.1 in., and 7.1 in. from the fracture.
The strain traces shown are representative of the strain-time curves obtained
from all tests conducted as a part of this program. The decrease in maximum
strain magnitude and the change in pulse shape as the distance between the
gage and fracture changes may be clearly noted.

The vertical and diagonal gage traces exhibit a general shape character—
ized by a fairly steady and rapid increase in strain to a maximum (peak) strain
value as the fracture propagates past the gage; the peak strain is followed by a
decrease to a strain level associated with the removal of external load. For
gages located close to the fracture, the peak is very sharp; for gages located
away from the fracture, the peak is of a lower magnitude and the pulse extends

over a longer time.
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FIG 21 STRAIN TRAGES FROM GOMPONENT GAGES NOS i, 2, AND 3,
AND  PRINCIPAL  STRAINS FROM ROSETTE A — TEST 33

The horizontal gage traces are characterized by three major changes in
strain. The strain trace first exhibits an initial relaxation of compressive
strain, and this is followed by a compression pulse corresponding to the ten-
sion peak of the vertical gage. Finally, the trace exhibits another relaxation
of compressive strain before leveling off at the final strain value.

The strain-time curves of the component gages obtained from Tests
33--39 are presented in Figs. 21--85, All strain traces are plotted such that
the strain at zero time is the initial test lcad strain.

The second peak occurring in the component gage traces (and principal
strain traces) in Figs. 43, 45, 47, and 50 was attributed to electrical effects
associated with the recording equipment (although there is still some ques-
tion regarding this matter), and not the double fracture of the plate specimen
in Test 36.

The crack speed detectors were used tc measure the approximate surface
fracture speed and to aid in determining the location of the surface fracture at
any time during the brittle fracture test. The average surface speeds of propa~-
gation of the brittle fracture for Tests 33--39 are presented in Table 4. It will

(Text continued on page 39)
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TABLE 4. FRACTURE SPEEDS

All distances are measured along the crack path.

Speeds are rounded off to nearest 50 fps.

Distance Breaking Time Distance Breaking Time
Detector between . Speed Detector between . Speed
Time Interval Time Interval
Detectors Detectors
(in.) (milliseconds) (fps) (in.) (milliseconds) (fps)
TEST 33 TEST 37
A 0.76 A 0.96
12.02 0.36 2800 7.02 0.14 4200
B 1.12 B 1.10
13.16 0.37 2950 7.10 0.18 3300
C 1.49 c 1.28
6.02 0,22 2300 6,50 0.22 2450
D 1.71 D 1.50
6.05 0.25 2000 &.97 0.28 2100
E 1.96 E 1,78
13,460 0.62 1850
TEST 34. Fracture Passed above Crack Detectors F 2.40
TEST 35 IEST 38
A 0.77 A 0,34
8.00 0,23 2900 7.14 0.15 3950
B 1.00 B 0.49
8.00 0.14 4750 7.16 0.16 3750
C 1.14 C 0.65
8,00 0.24 2800 6.71 0.20 2800
D 1.38 D 0.85
8.00 0.20 3350 6.94 0.22 2650
E 1.58 E 1.07
13,84 - -
TEST 36 F -—
A 0,31 TEST 39
7.10 0.13 3500
B 0.44 A 0.06
6.64 0.15 4150 6.73 0.19 2950
C 0.59 B 0.25
7.32 0.23 3050 7.18 0,44 2700
D 0.82 (] -
7.15 0.20 3000 7.18 - -
E 1.02 D 0,69
14,47 0.52 2800 7.24 0.26 2300
F 1.54 E 0,95
14,0 0.46 2550
F 1.41
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be noted that these speeds ranged from 1850 to 4750 fps, and are thus in the same

3

range as those reported for earlier tests.

Computed Principal Strains

To compute the principal strains from the rectangular strain rosette equa-
- tions, it was necessary to determine strain values from the three component gage
traces at selected times; the times were selected arbitrarily at points correspond-
ing to changes in strain in the component gage traces.
The rectangular strain rosette equations used in computing the principal

strains and the direction of the maximum principal strain are as follows;

1 - ¢ )2 -c )2
Emax=z ev+ Gh+'\/2 (eh ed) + 2(<ad ev)
) — _
€ min =—; v+ fn” '~/2 (Eh - Ed)z'i' Z(Ed - EV)Z
- — i
) 1 2e | - Eh - cV
e = = tan . .
2 h- v
where: € , o ,
- max = maximum principal strain
e . = minimum principal strain
min
o = angle between € max and the positive X-axis
€ = vertical (Y) component gage strain
€4 = diagonal component gage strain
—_ € = horizontal (X) component gage strain
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The resulting curves.of the principal strains {e max and e min) and the direction
of ¢ max with respect to the positive X~axis (8) for Tests 33--39 are presented
in Figs. 21--85.

There are several important details that should be noted with respect
to the time-—alignment of the component strain traces for any particular rosette
gage. In the case of strain records obtained with gage layout A (Fig. 12), the
vertical gage peaked before or at the same time as the horizontal and diagonal
gages for about 80 per cent of the rosettes. A detailed study of the component
gage traces and the principal sirain computations indicated that changes in the _
vertical and horizontal strain values have the greatest eifect on the principal
strain magnitudes; thus in Tests 36--39 it was decided to center the vertical __
and horizontal gages above one another in the manner shown in layout B (Fig. 12).

For records obtained with gage layout B, the vertical and horizontal gages peaked

before or at the same time as the diagonal gages in the case of about 85 per cent

of the rosettes. Typical component gage traces from both layouts are shown in \ —
Fig. 86; the offset in peaking times may be noted clearly.

It was believed initially that a refinement in the results could be ob-
tained by shifting the recorded component gage traces to a position where the
maximum strain values would occur at the same time. However, later studies -
showed that there was only a small change in the principal strains as a result of
this shifting of the component gage traces. This is illustrated in Fig. 87, which
shows the principal strain traces for a typical rosette computed 1) for the com-
ponent strain traces as-recorded and.2) for the component strain traces shifted
to make the peaks occur at the same time. It will be noted that shifting the
trace does not change the shape or magnitude of the maximum principal strain
trace markedly. For most rosettes it would be necessary to shift the trace by
less than 0.1 milliseconds to make the maximum strain values occur at the
same time. This time difference is of the same order of magnitude as the inherent
time error that accompanies matching of the trace times during a reduction of the
original 35-mm strip=film record. It should be noted that many other factors also
tend to affect the strain traces, such as the discontinuous nature of the fracture,
the deviation of the crack path from the noich line, and inherent variations in in-

strumentation. All of these factors and studies tend to justify the decision not
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to shift the traces; therefore, all of the principal sirains have been computed

from the as-recorded component gage traces.

Discusgion of Strain Traces

In general, the maximum principal strain trace for each rosette is of es-
sentially the same shape as the vertical component gage trace. The magnitudes
of the peak strain for the vertical gage trace and for the principal strain trace
are also nearly equal for any rosette. This is shown in Fig. 88, in which a
comparison is given of the maximum principal and vertical peak strain magni-
tudes; it will be noted that there is nearly a one-to-one correspondence in
strain values, irrespective of the distance from the fracture path. Almost all
peak strain values fall into a range between 0.0008 in./in. and 0.0030 in. /in.

The minimum principal strain traces are characterized by a shape that
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00060
exhibits a slight peak in tension,

00050 followed by a fairly sharp com-

pressive pulse occurring as the

00040 fracture propagates past the

rosette; this compressive pulse
Q0030

corresponds to the tension peak

voom0 of the maximum principal strain.
/ The traces then return to the final
00010 . strain level of the rosette.

In the case of rosettes

MAXIMUM PRINCIPAL STRAIN — 1n.fin,

o 00010 00020 00030 00040 00050 0.0060 located close to the fracture path,

AN, YERTICAL STRAI = Inn. the magnitude of the strain peak
Fig. 88. Comparison of Maximum Prin- is relatively large. As the dis-
cipal and Vertical Strain Magnitudes.

tance beiween a rosette and frac-

ture increases, the peak principal
strain magnitude decreases rapidly. This may be seen c¢learly in Fig. 20, in
which typical principal strain traces for rosettes located at various distances
from the fracture are presented. When the distance between the rosette and
the fracture exceeds about 2 in., the rate of decrease of the peak strain magni-
tudes is somewhat less. Figure 89 is a plot of all the peak maximum principal
strains versus distance between the rogette and the fracture. This figure gives
the impression that there is a wide scatter; however, if the curves are plotted
for rosettes located at varying distances from the initiation edge (8 in., 15 in.,
etc.), the individual curves move to the right with increasing distance, as may
be seen in Figs. 90 and 91. Thus, there is an increase in the peak maximum
principal strain with increasing distance from the initiation edge; this increase
is noticeable to a distance from 22 to 29 in. from the initiation edge, after
which there is no apparent change. Thus, the strain field associated with the
propagating fracture appears to reach a "steady state" condition at about 22 to
29 in. from the initiation edge.

The variation of the maximum strain rate with vertical distance of the
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rosette from the fracture surface was also studied. The strain rate (in./in./
sec) is difficult to determine accurately because of the very nature of the
strain traces (Fig. 4); the computed strain rates presented in Fig. 92 should
be considered as only a qualitative picture. However, it is apparent that a
general trend of strain rate versus distance between rosette and fracture does
exist, as might be expected. The sketch in the upper right corner of Fig, 91
illustrates the procedure by which the strain rates were determined. A "best
fit" curve of all points is also shown on the plot. Strain rates ranging from 1
to 109 in./in. /sec were computed; however the majority of the values fall in
the range of 1 to 30 in./in, /sec for gages located at 1/2 in. to 3 in. from the
fracture.
Figures 38--41 present strain~-time curves of the component gages, as

well as the computed principal strains of the four rosettes for which records
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were .secured, as taken from Test 35. This test was conducted at a higher stress
(28,000 psi) and a lower temperature (-15 F) to determine the effect of a higher
stress level on the strain pattern. The traces are essentially the same shape as
those found in the plates tested at lower stresses, although the peak maximum
strains are slightly higher. However, the rosettes were located quite close to
the fracture path and in view of the earlier discussion it is to be expected that
the strain magnitudes might be fairly high. The maximum principal peak strain
magnitudes of rosettes obtained in Test 35 are plotted in Fig. 89. These exhibit
the same trend as peak strain magnitudes from the other tests. Thus, on the
basis of one test only, it appears that there was no marked change in the strain

behavior for a propagating crack at this somewhat higher stress level.

Maximum Principal and Vertical Strain Contours

In order to depict the sirain distribution in a plate during the time a frac-
ture is propagating, it was decided to plot contours of certain strain components
for various crack lengths. The available data consist of strain-time traces for
horizontal, diagonal, and vertical gages obtained from this series of tests, as
well as from earlier tests, and computed. principal strain values for the rec-
tangular rosettes formed with the component gages of this test series. The maxi-
mum principal strainsg.are of particular interest since thev provide both the magni-
tude and direction of the maximum tensile strain.

Strain contouwrs were obtained by superimposing the results from a number
of tests. The data were superimposed only Irom plates tested under similar con-
ditions of stress, temperature, and impact; the only major variable among the
individual tests was the location of the fracture path with respect to the noich
line. In general, the fraciures sloped upward from the point of initiation and
then leveled off as they traveled across the plate. The excursions from the notch
line were of the order of 2 to 8 in.; precise locations of the fracture paths are
tabulated in Figs. 5=--11. However, since these distances are small in relation
to the plate width, the actual crack length was never more than a few per cent
greater than the net plate width. The horizontal projeciion of the fracture was used

as the commoen fracture path on the strain contour plots.
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The procedure used in plotting the strain contours may be summarized as
follows. It was first necessary to establish from the original strain-time curves
the time relative to various selected crack lengths., Also it was necessary to
establish the position of the gage with respect to the fracture path. Then, at
any particular time corresponding to a given crack length, the strain values were
obtained from the test data, and these strain data were used in plotting the con-
tours. The contour lines were drawn in regions where data were available by
joining points of equal strain. No contours were drawn in regions where there
were no data, although it is obvious that strain contours do exist in these re-
gions.

Before strain values could be determined for any particular crack location,
it was necessary to establish the respective times that corresponded to the desired
crack positions in every test. These times were determined by a knowledge of the
breaking times of the crack detectors and the peaking times of the vertical strain
gages located closest to the fracture surface; they are tabulated in Table 5 forvari-
ous crack lengths. It was assumed that the peak sirain of a rosette occurs when
the surface fracture is directly above or below the rosette, although the exact posi-
tion of the tip of the fracture cannot be determined at any precise time. At points
where there was disagreement between detector breaking times and gage peaking
times, the peaking times of the strain gages were selected as the more reliable in-
dication of the surface fracture location because of the more sensitive response of
the strain gage. As a general rule, the detector breaking times were used only as
a guide in the selection of times corresponding to selected crack lengths. At frac-
ture positions where there were no strain gages or detectors, the corresponding
time was approximated by a linear interpolation between any two known points.,

Since the horizontal projection on the notch line of the actual fracture path
was used as the common fracture path in all tests for purnoses of superposition, it
was important to locate accurately each gage or rosette with respect to this com-
mon fracture. Three different methods of determining the gage and rosette locations
on the plate layout using the common fracture path were investigated. The first
method consisted of measuring the vertical distance between the rosette and the

actual fracture for particular tests and locating the rosettes on the plate layout ac-
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TABLE 5. TIMES CORRESPONDING TO VARIOUS CRACK LENGTHS

All times. are in milliseconds and refer to the time base of the
strain-time curves presented in Figs., 21--85

S;?lg];h Test No.

(in.) 33 34 37 38 39
8 0.22 0.03 0.92 0.35 0.10
15 0.94 0.50 1.11 0.52 0.31
18.5 1.05 0.72 1.18 0.61 0.45
22 1.16 0.95 1.24 0.70 0.59
25.5 1.24 1.10 1.35 0.81 0.67
29 1.32 1.25 1.45 0.92 0.75
32.5 1.57 1.37 1.56 1.03 0.91
36 1.62 1.50 1.66 1.14 1.07
39.5 1.74 1.63 1.82 1.26 1.18
43 1.86 1.77 1.97 1,37 1.30

Note: These times, corresponding to various crack lengths, were used in determin-~
ing both the maximum principal strain contours (Figs. 93--102) and the verti-
cal strain contours (Figs. 103--112}.

cordingly; the second method consisted of measuring the perpendicular distance of
each rosette or gage from a horizontal line projected across the plate from the tip of
the surface {racture for the particular crack length under investigation; and the third
method consisted of 1) measuring either the perpendicular distance between a rosette
and the fracture or the extension of the fracture in the direction in which it was travel-
ing at that particular instant, and 2) locating the rosette above or below the common
fracture path by this amount. A study of the three methods of locating the gages and
rosettes on the strain contour plots. indicated that regardless of the method used, the
final strain contours were essentially unchanged. Since, in general, the fracture fol-
lowed a horizontal path as it passed through the region where rosettes were placed, it

was obvious that in the majority of cases there would be no significant difference in
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the final rosette locations as determined by any of the three methods investigated.

In tests where the fracture was not horizontal, there would be a change in rosette
locations; however, the changes in strain at some distance in front of the tip of the
fracture were usually so small that the strain contours were still not altered markedly.
Therefore it was decided to use the actual fracture path as the common reference

line for location of the strain gages and rosettes.

The maximum principal strain contours are presented in Figs. 93--102, and
are based on the data from Tests 33, 34, 37, 38, and 39. The data from Tests 35
and 36 were not used in the contour plots because Test 35 was conducted on an ar—
restor specimen at a higher applied stress level and Test 36 resulted in a double
fracture. However, careful examination of the strain-time records (Figs. 38--52)
from gages and rosettes of Tests 35 and 36 will show that the data from these two
tests are similar to those of the other tests reported. In the contour plots, the mag-
nitudes and directions of the maximum principal strain are shown at the respective
locations on the plate layout; the directions of the maximum principal strain are
shown as short straight lines. For ease in interpretation of the contours, all strain
units are in./in. times 106. Since all of the tests were made at about the same
stress level, it appeared desirable to plot the contours in terms of absolute strain,
i.e., with respect to the as~rolled condition.

In the majority of cases, as the fracture approaches the rosette, the direc-
tion of the maximum principal strain rotates slightly, so that it points toward the
approaching fracture, and then returns to a more or less vertical position.as the
peak value of the strain occurs. After the maximum strain value is reached, the
direction of the maximum principal strain continues to rotate and, in general, con-
tinues to point toward the surface fracture tip. Values of 0, plotted as short
straight lines in the direction of ¢ max " the principal strain contours, show this
behavior quite clearly.

For an 8-in. crack (Fig. 93), the shortest crack length for which contours
have been plotted, it will be noted that the increase in strain directly above and
below the surface fracture tip is small in comparison with strain changes for longer
crack lengths. At points in front of the 8-in. crack, the strain changes are negligi-

ble and the plotted strains correspond to the test load principal strains. The varia-
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tion in test load principal strains for ihe rosettes and for the various tests accounts
for the differences noted in the plotted strain values. The numbers in parentheses
following the strain values refer to the test number and corresponding rosette from
which the plotted strain values were obtained, These two numbers are shown only
on Fig. 93 but refer also to Figs. 94--102 as well,

For an 8-in. crack length, the small changes. in strain exhibited by the
rosettes located only 8 in. from the initiation edge attest to the fact that the notch-
wedge-impact method of fracture initiation has little effect on the strain distribution
in a wide plate at some distance from the source of initiation.

The change in strain distribution as the crack length increases may be seen
clearly by comparing Figs. 93, 94, and 95, in which the maximum principal strain
contours are presented for crack lengths of 8 in.,, 15 in., and 18.5 in. As the crack
length increases it is noted that the magnitude and extent of the strain field associated
with the crack tip also increase. At a crack length of 22 in. (Fig. 96), the strain pat-
tern surrounding the moving crack tip ceases to change, and for crack lengths in ex-
cess of 22 in. (Figs. 97-~-102), the strain field surrounding the advancing crack tip
remains essentially unchanged. This general effect was noted earlier in connection
with Figs.90 and 91, which show the resulis of a study of the peak strain magnitude
versus distance of the rosette from the fracture for rosettes located at various dis-
tances from the initiation edge. The extent of the strain contours directly in front of
the fracture increases only slightly with increasing crack langth. Thus, for this
particular specimen geometry, the propagating brittle fracture apparently does not
reach a "steady state" condition until it has traversed a distance of about 22 in.
This length is somewhat longer than that suggested by earlier studies.

As may be seen in Fig. 96, the major portion of the strain field associated
with the propagating brittle fracture extends only about 8--10 in. in front of the
fracture. In the region directly in frontof the cracks, the strains decrease slightly
as the fracture approaches. It is likely that some of the strain variation observed
directly in front of the fracture is associated with the formation of fracture nuclei
in front of the main fracture, or with transmitted strain changes resulting from the
fracture and strain energy relaxation.

The main changes in strain occur above and below the fracture tip and
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slightly in front of it. Behind the fracture front the strains decrease rapidly. Ac-
tually all strain contours appear to converge at the fracture front. Although ex-
tensive strain measurements were not obtained at distances far above and below
the fracture, the recorded strain data indicate that the contours are symmetrical
around the fracture path.

Further information on the extent of the strain field associated with a propa-
gating brittle fracture may be obtained by studving the strain traces presented in
Figs. 44 and 46. These strain traces are for two rosettes {Numbers 3 and 5) lo-
cated between the double fracture occurring in Test 36 (Fig. 8). Each rosette was
located approximately 2 in. from one of the fractures and the sitrain traces of the
rosettes are typical of strain curves for rosettes so located. A study of the strain
data would seem to indicate that the strain field associated with either of the ad-
vancing fractures was affected little, if any, by the strain field associated with
the other advancing fracture.

As has been noted earlier, the magnitude of the maximum principal strain is
essentially equal to that of the maximum vertical sirain; one reason for this is that
the principal strain direction does not rotate much from the vertical. Thus, as a
matter of comparison and because a plot of the vertical strain allows an incorpora-
tion of data from the earlier tests, it was decided to present contours for the vertical
strains as well; these are presented as Figs. 103--112. It is to be noted that in
these figures the reference strain is the test load strain.

The vertical strain contours could have been plotted in terms of absolute
strain as was done for the principal sirain contours. However, in order to incorpo-
rate the data from earlier tests in which the test load stress varied from 15, 000 psi
to 20, 000 psi, it was decided to subtract the test load strain from the absolute verti-
cal sirain and plot the relative strain values. In Fig. 103 the numbers in parentheses
following the strain values refer to the original test number and corresponding vertical
gage number respectively from which the plotied strain values were obtained. In gen-
eral, the vertical sirain contours are similar in shape and magnitude (if the test load
strain were added) to the maximum principal strain contours discussed previously.

With regard to the sirain data, which are plotied at any particular time for

purposes of establishing the strain contours, there are several additional factors of
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importance that should be noted, Because of the nature of the recording equip~
ment, the component gage strain and the computed principal strains are accu-
rate only to about the nearest 0.0001 in./in., and the recorded times are accu-
rate only to about 0.05 milliseconds. For an average fracture speed of 2500 fps,
this time error of 0.05 milliseconds would correspond to a fracture length of
about 1-1/2 in. The value of the test load strains varied somewhat for the tests
because of the slight bending of the plates which was caused by the welding of
the specimens o the pull-plates, and by changes of the residual strains in the
plates. . Consideration of such variables led to the decision to not plot contours
at intervals of less than 0.0002 to 0.0004 in. /in.

A set of typical maximum principal strain contours is presented in Fig.
113; these contours are based on the results presented in Figs. 96--102, and,
for the geometry and test conditions reported here, are considered to be repre-
sentative of the sirain field associated with the crack tip for a crack length in
excess of 22 in.

A typical set of vertical strain contours based on the results of Figs.
106--112 and for a crack length in excess of 22 in., is presented as Fig, 114,

Vertical strain contours for a crack length of 29 in., based on results
from alliearlier 6~it wide plate tests are presented in Fig. 115. A tabulation of
the data used to plot the contours in Fig. 115 is presented in Table 6, These
values are tvpical for the crack lengths in excess of 22 in. investigated for
Tests 13--32. The strain values were superimposed in a manner described
earlier; although a few exceptions may be noted, the strain values exhibit the
same general patiern as shown in Fig. 114.

Although contours of only the maximum principal strain and vertical
sirains are presented in this report, contours of the other strain components,
namely the diagonal strain, horizontal strain, minimum principal strain, and
shear strain, could be prepared from the strain data presented in Figs., 21--85.

The contours of maximum principal strain and vertical strain are based
on data obtained from all the 6-ft wide plates tested as a part of this investiga-
tion, and are considered to be representative of the strain distribution recorded

on the surface of the plates during britile fracture propagation. In spite. of the



TABLE 6.

DATA OBTAINED FROM PREVIOUS TESTS 13-32
{See Fig. 115}

Vertical Distance Distance Time Test Strain
Test Gage of Gage from of Gage from Corres. Total Load Referenced to
No., No. Init. Edge Fracture to 29-in. Strain Strain Test Load
Crack Strain
(in.} {(in.) (milliseconds) {in./in.} {(in./in.) {in./in.)
13 1 12.0 -0.3 0.66 .00063 ,00063 0
2 35,5 -1.,7 0.66 .00072 00072 0
3 60.0 -2.0 0.66 00066 00066 0
15 1 35.0 1.6 0.81 00079 , 00064 .00015
2 36,0 1.6 0.81 .00071 . 00049 .00022
3 36.0 -3.4 0.81 .00090 00078 .00012
19 2 36.5 -0.6 0.56 .00052 00047 00005
4 61.0 0 0.56 . 00055 ., 00055 0
22 1 37.0 -3.5 0.32 ,00082 00064 .,00018
4 61.0 -3.5 0.32 ,00062 .00062 0
23 5 36.0 -3.0 0.82 .00067 .00067 0
6 43,0 ~3.4 0.82 .00067 00067 0
T 50,0 -3.5 0,82 .00064 .,00064 0
8 57.0 -3.5 0,82 .00063 ,00063 0
9 64.0 -3.5 0.82 .00052 .00062 -.00010
25 1 8.0 -0.5 0.92 -.00003 .00059 -.00062
2 15.0 -0.8 0.92 -.,00001 .00061 -.00062
3 22.0 ~0.7 0.92 -.00007 .00061 -.00068
4 29.0 - =0.7 0.92 .00231 . 00056 .00175
9 64.0 ~0.8 0.92 . 00061 .00061 0
3z 1 15.0 -2.,0 0.60 -.00011 . 00057 -.00068
2 36.0 -6.6 0.60 ,00095 .00055 .00040
3 50,0 -7.2 0.60 . 00050 .00055 -.00005
4 57.0 -7.1 0.60 .00054 .00054 0

_89_
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limitations discussed in this secticon, it is felt that the strain contours pre-
sented give a very representative picture of the effect of a propagating brittle

crack on the strain distribution in a wide steel plate,

Crack Path and Surface Texture

Photographs of the fractured plate specimens are presented in Fig. 116,
In general, the fractures slope upward from the point of initiation and thenlevel
off. A black string is stretched along the notch line in these figures. In most
tests a secondary crack started from the notch cut at the far edge, propagated
toward the approaching fracture, and ended in a submerged crack before reach-
ing the main fracture. These secondary cracks may be seen in the figures. The
fracture in Test 36 branched into two complete fractures near the center of the
plate.

Views of a typical fracture surface are presented in Fig. 117. The shear

lip associated with the fractures was very small and a most imperceptible. Por-



-6l

T e,
O

I

Test 35 Test 39

Fig. 116, Fracture Paths--Tests 33--39

tions of the surface exhibit a coarse texture with the usual herringbone pattern,
while in other regions, usually near the initiation edge, the texture is quite
smooth. Enlarged views of typical smooth and coarse fracture texture are pre-
sented in Fig. 118,

The reduction in plate thickness in the region of the fracture surface
was one to two per cent; this reduction in thickness is of the same order of

magnitude as that found in earlier fracture tests conducted as a part of this

program.
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Fig. 118. View of Portions of Typical Fracture Surfaces from
Test 34 Showing a Coarse Surface on the Left end a Smooth
Surface on the Right. '

SUMMARY

This research report contains a summary and preliminary analysis of
data primarily from Tests 33--39, conducted as a part of the current brittle
fracture propagation study. More complete siudies of these data, as well as
data obtained subsequently, are being made as a part of the program.

The specimens were tested with a net stress of about 19, 000 psi, at a
temperature of about -10 F and with a nominal impact of 1200 ft-1b for fracture
initiation. Thirty-four channels of instrumeniation were used for each test;
this is more than three times as many channels as had previously been availa-
ble for any one test. The strain-time traces from the component gages, as

well as the computed principal strains, are presented. Since the tests were
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conducted under similar conditions of stress, temperature, and impact, it was
possible to superimpose the strain data to obtain a more complete picture of
the strain distribution on the surface of the plate associated with the moving
fracture.

The behavior exhibited by the component gages was similar to that ob-
served in earlier tests. Tor example, in the case of a vertically oriented strain
gage, as the distance between the gage and the fracture path decreased, the
strain pulse became sharper and had a greater magnitude; as the distance be-
tween the gage and fracture increased, the strain pulse extended over a longer
period of time, but the precise shape of the pulse depended on the distance
from the fracture path. For gages oriented in the diagonal and horizontal direc-
tions, this same general trend was noted, but the shape of the strain trace, par-
ticularly in the case of the horizontal gage, was markedly different.

In the case of the principal strains compuied from the component strain
traces, the maximum principal strain was found to exhibit the same type of be-
havior as observed for a vertically oriented gage, with the exception that the
direction of the maximum principal strain was found to rotate slightly to either
side of the vertical axis depending upon the location of the fracture.

Although the nature of the strain traces are such that only a rough pic-
ture of the strain rates may be obtained, the trend is of some interest. As
would be expected, the maximum strain rate occurs for gages located quite
close to the fracture. Strain rates ranging from 1 to 109 in./in./sec have been
computed; the majority of the values fall in the range 1--30 in./in./sec for
gages located 1/2--3 in. from the fracture.

Contours of maximum principal strain and vertical strain for various crack
lengths are presented. The major portion of the strain field associated with the
front of the propagating brittle fracture extends only about 8=~10 in. in front of
the fracture; the regions most affected are above and below the fracture tip and
slightly in front of it. Although extensive strain measgurements were not obtained
at distances far above and below the fracture, the recorded strain data indicate
that the contours are symmeirical around the fracture path.

A study of the data reveals that for crack lengths in excess of about
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22 in., the extent, magnitude, and nature of the strain field associated with the

advancing tip of the fracture remains essentially uncharged. Typical maximum

principal strain contours and vertical sirain contours kased on all of the availa-

ble data are presented for fractures propagating in the central one-third of the

plate width.
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